
METHODS
published: 23 May 2018

doi: 10.3389/fphys.2018.00549

Frontiers in Physiology | www.frontiersin.org 1 May 2018 | Volume 9 | Article 549

Edited by:

Matteo Barberis,

University of Amsterdam, Netherlands

Reviewed by:

Tomáš Helikar,

University of Nebraska-Lincoln,

United States

Kyle B. Gustafson,

United States Department of the Navy,

United States

Marija Cvijovic,

Chalmers University of Technology,

Sweden

*Correspondence:

Tomas Gedeon

gedeon@math.montana.edu

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Physiology

Received: 31 January 2018

Accepted: 30 April 2018

Published: 23 May 2018

Citation:

Cummins B, Gedeon T, Harker S and

Mischaikow K (2018) DSGRN:

Examining the Dynamics of Families of

Logical Models. Front. Physiol. 9:549.

doi: 10.3389/fphys.2018.00549

DSGRN: Examining the Dynamics of
Families of Logical Models

Bree Cummins 1, Tomas Gedeon 1*, Shaun Harker 2 and Konstantin Mischaikow 2

1Department of Mathematical Sciences, Montana State University, Bozeman, MT, United States, 2Department of

Mathematics, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States

We present a computational tool DSGRN for exploring the dynamics of a network

by computing summaries of the dynamics of switching models compatible with the

network across all parameters. The network can arise directly from a biological problem,

or indirectly as the interaction graph of a Boolean model. This tool computes a finite

decomposition of parameter space such that for each region, the state transition graph

that describes the coarse dynamical behavior of a network is the same. Each of these

parameter regions corresponds to a different logical description of the network dynamics.

The comparison of dynamics across parameters with experimental data allows the

rejection of parameter regimes or entire networks as viable models for representing the

underlying regulatory mechanisms. This in turn allows a search through the space of

perturbations of a given network for networks that robustly fit the data. These are the

first steps toward discovering a network that optimally matches the observed dynamics

by searching through the space of networks.

Keywords: Boolean networks, switching systems, network dynamics, parameter space, database of dynamics

1. INTRODUCTION

Experimentally determined pairwise interactions between genes, proteins and signaling molecules
are often assembled into pathways and networks. There is a strong desire to understand the
dynamics of networks, diversity of their potential stable behavior, as well their response under
mutations or targeted pharmacological intervention. Such an ability would allow us to target many
diseases, most importantly cancer, with great precision and accuracy, without disturbing other
functions of the cell, and without the devastating side effects on healthy cells that are the hallmark
of many current drugs.

The current state of modeling gene network dynamics is characterized by a trade-off between
the model’s ability to quantitatively match the experimental data, and the need for a large number
of kinetic parameters to parameterize the model (Karlebach and Shamir, 2008; Heatha and Kavria,
2009; Machado et al., 2011; Goncalves et al., 2013). Properly parameterized ordinary differential
equation models can provide a good quantitative match and are easily generalized (Chen et al.,
2004; Tyson and Novak, 2013). However, numerical simulation of these models require knowledge
of kinetic parameters that are usually not known. The indirect estimate of these parameters by
comparing the output of the model to the experimental data suffers from at least three fundamental
problems: (i) the correspondence between dynamics and the structure of the network is not one-
to-one; (ii) the need to match data corrupted by significant intrinsic and experimental noise to an
individual solution of the ODE model; and (iii) the lack of methods to search high dimensional
parameter spaces for dynamic signatures observed in the data.
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A popular modeling platform is that of Boolean nets, where
each protein, ligand or mRNA is assumed to have two states
(ON and OFF), and the discrete time evolution of the states is
based on logic-like update functions (Glass and Kauffman, 1972,
1973; Thomas, 1973; Thomas et al., 1995; von Dassow et al., 2000;
Bernard and Gouze, 2002; de Jong, 2002; de Jong et al., 2004;
Belta and Habets, 2006; Chaves et al., 2006; Faure et al., 2006;
Albert, 2007; Batt et al., 2007a,b; Bornholt, 2008; Tournier and
Chaves, 2009;Machado et al., 2011; Albert et al., 2013; Saadatpour
and Reka, 2013). Rather than providing rate parameters, the
biological input into model formulation is limited to postulating
logical functions, one for each node in the network, which
compute the next Boolean state of node i based on Boolean
states of the nodes that provide input to node i. These Boolean
functions at each node are assembled into a Boolean function
that provides the next state of all nodes in the network based
on the previous state of the network. Iterations of this function
are an approximation of the time evolution of the state of the
network.

This attractive class of synchronous Boolean models has
several disadvantages. The first class of objections comes
from biology: these models cannot represent ubiquitous
cellular noise, since states change simultaneously they
require unreasonable uniformity of duration of different
cellular processes, and the fit to experimental data is
typically problematic. A mathematical objection is that
discretization of the phase space and the discretization
of the set of Boolean functions compatible with a given
network does not allow consideration of changing dynamics
under graded perturbation. In other words, it is difficult
to construct a bifurcation theory in the class of Boolean
functions.

In this contribution we study multi-level discrete maps,
which are a direct generalization of Boolean maps, that are
compatible with an ODE system. We propose that only the
asynchronous updates of these discrete maps have biological
meaning. The concept of an asynchronous update of a Boolean
function has been introduced previously (Pauleve and Richard,
2012). We review and formalize these concepts in the next
section. We then study a particular class of ODEs that can
be viewed as a continuous parameterization of a family of
multi-level discrete maps. Continuous parameterization of a
finite number of inherently discrete objects implies that there
is a finite decomposition of the parameter space into disjoint
domains, each of which supports a multi-level discrete map.
Mutual position of these parameter domains is captured in a
parameter graph, whose nodes represent the domains and edges
their adjacency.

We describe a computational approach, called Dynamic
Signatures Generated by Regulatory Networks (DSGRN), that
computes the parameter graph for a given network and input
interaction at each node. In addition, to each node of the
parameter graph we associate a Morse graph whose nodes are
the strongly connected path components of the asynchronous
update of the corresponding multi-level discrete map, and edges
represent reachability by iterations of this map. We call the
resulting collection a DSGRN Database.

2. BASIC DEFINITIONS

Definition 2.1. A regulatory network RN = (V ,E) is a graph
with network nodes V = {1, 2, . . . ,N} and signed, directed edges
E ⊂ V × V × {→,⊣}. For i, j ∈ V , we will use the notation
(i, j) ∈ E to denote a directed edge from i to j of either sign, i → j
to denote an activation or positive interaction, and i ⊣ j to denote
a repression or negative interaction.

We define the targets of a node i as

T(i) := {j | (i, j) ∈ E}

and the sources of a node i as

S(i) := {j | (j, i) ∈ E}

For each node i in a regulatory network RN, define a set of integer
states V(i) := {0, 1, . . . ,mi}. Let V :=

∏N
i=1 V(i). For state s ∈ V

let

Si+ := {u ∈ V | ui > si, uj = sj for all j 6= i}

be the set of states that differ from s only in the i-th coordinate
and are strictly greater in the i-th coordinate.

Definition 2.2. We say a (multi-valued) map f :V → V is
compatiblewith a regulatory networkRN (RN-compatible) if and
only if the following are satisfied

• (i, j) ∈ E is a positive edge i → j if and only if there exists a
state s ∈ V and at least one u ∈ Si+ such that fj(u) > fj(s).

• (i, j) ∈ E is a negative edge i ⊣ j if and only if there exists a
state s ∈ V and at least one u ∈ Si+ such that fj(u) < fj(s).

A regulatory network, as introduced in this paper, is also called
the interaction graph of Boolean function f , as defined in Pauleve
and Richard (2012). Our definition above goes in the opposite
direction and defines a set of multivalued maps consistent with a
fixed regulatory network; we also generalize from Boolean maps
to maps with more than two discrete values.

Definition 2.3. A synchronous Boolean model for a regulatory
network RN is an RN-compatible map

B :{0, 1}N → {0, 1}N .

Given a synchronous Boolean model B, the regulatory network
RN such that B is RN-compatible, is the interaction graph of B.

Definition 2.4. A synchronous multi-level discrete map for a
regulatory network RN is an RN-compatible map

D :V → V

where V =
∏N

i=1{0, 1, . . . ,mi}.

Definition 2.5. A nearest neighbor multi-valued map for a
regulatory network RN is an RN-compatible map

F :V ⇉ V
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such that either s ∈ F(s) or, if v ∈ F(s) and v 6= s then v satisfies
the adjacency condition:

|vi − si| =

{

1, for i = k
0, for i 6= k

for exactly one index k. We say that s and v are adjacent.

Definition 2.6. We say a nearest neighbor multi-valued map F

is an asynchronous update of amulti-level discrete mapD if, given

t1 = D(s1) where t1 = (t1,1, . . . , t1,N) and s1 = (s1,1, . . . , s1,N),

we have s2 ∈ F(s1) in either of the two following conditions:

(a) if t1 = s1 then s2 = s1; or
(b) if t1 6= s1, then s2 is adjacent to s1, and s2 lies between s1 and

t1, which means that either

(a) s1,i < s2,i ≤ t1,i or
(b) s1,i > s2,i ≥ t1,i.

For a regulatory network RN = (V ,E) consider a system of
ODEs in variables xi for each i ∈ V . We assume that there are
finite number of thresholds θ1,i, . . . , θmi ,i that divide the semi-
axis [0,∞) to mi + 1 intervals Ik. The collection of thresholds
{θj,i} decomposes [0,∞)N into a finite number of domains κ ,
characterized by the property that the projection on i-th variable
πi(κ) = Ik for a unique k ∈ {0, . . . ,mi} for every i. We call each
κ a domain. Let K be a collection of all domains κ ⊂ R

N+ in the
non-negative orthant of RN .

Let x = (x1, . . . , xN) ∈ R
N+ and let

Gi :[0,∞) → V(i)

be defined by Gi(xi) = k if and only if xi ∈ Ik. Let

G :[0,∞)N → V

be the vector-valued function with coordinate functions Gi. For
a given domain κ , the value G(x) does not depend on x ∈ κ .
Therefore we can assign the state s := G(x) ∈ V , x ∈ κ to the
domain κ and write s = g(κ). Viewed as a map on the set of
domains K, g is a bijection

g :K→V .

Definition 2.7. For a regulatory networkRN= (V ,E) consider a
system of ODEs in variables xi for each i ∈ V . We say that such an
ODE system is compatible with a nearest neighbor multi-valued
map F if solutions x(t) can traverse from domain κ1 to adjacent
domain κ2 only if g(κ2) ∈ F ◦ g(κ1).

This definition of compatible ODE system states that the
dynamics of an ODE system can be captured, in an coarse sense,
by a finite multi-valued map. We now apply these ideas to a
specific family of ODE systems.

3. SWITCHING SYSTEMS

Switching systems, also known as Glass systems, were introduced
by Glass (Glass and Kauffman, 1972, 1973) in the 1970’s
and developed subsequently by many authors (Thomas, 1973;
Thomas et al., 1995; Edwards, 2001; Bernard and Gouze, 2002;
de Jong, 2002; de Jong et al., 2004; Chaves et al., 2006; Tournier
and Chaves, 2009; Ironi et al., 2011; Edwards et al., 2015).

Definition 3.1. A switching system for a regulatory network
RN= (V ,E) is a system of ordinary differential equations

ẋi = −γixi +Mi ◦ σi(x), i ∈ V (1)

where γi > 0 is a decay rate, Mi is a multi-affine algebraic
expression (Belta and Habets, 2006; Batt et al., 2007b; Cummins
et al., 2016) , and σi = (σi,j) is a vector of step functions, one for
each edge (j, i) ∈ E. When (j, i) = j → i is an activation, then the
step function transitions from a low (li,j) to a high value (ui,j), and
when (j, i) = j ⊣ i is a repression, then σi,j transitions from ui,j to
li,j. The transition happens at the threshold xj = θj,i:

σi,j :=















li,j if j → i ∈ E and xj < θi,j
or j ⊣ i ∈ E and xj > θi,j

ui,j if j → i ∈ E and xj > θi,j
or j ⊣ i ∈ E and xj < θi,j

(2)

We assume 0 < θi,j and 0 < li,j < ui,j to ensure the
model captures the basic biological meaning of concentration,
activation, and repression. We further assume θi,j 6= θk,j for all
j ∈ V whenever i 6= k and so each node j affects its downstream
nodes at different thresholds.

It is important to note that to a given RN one can associate
many switching systems. Indeed, a selection of multi-linear
expressions Mi, i = 1, . . . ,N in addition to the structure of the
network RN, determines the parameterized set of ODEs (1). The
function Mi determines how the information from the source
nodes S(i) is combined into the right hand side of (1).

A parameter of the switching system is a set of real numbers

p = {γi | i ∈ V} ∪ {θi,j, li,j, ui,j | (j, i) ∈ E}

that satisfy these constraints. The set of all parameters p is
denoted P.

Definition 3.2. The collection 2i : = {θj,i | j ∈ T(i)} for
each node i ∈ V is totally ordered, and this order induces a
decomposition of phase spaceK, such that each domain κ ∈ K is
written

κ =
∏

i

[θjk,i, θjk+1,i]

where θjk,i, θjk+1,i are adjacent. We define the thresholds θ0,i : = 0
and θ∞,i : = ∞, so that the intervals below the lowest threshold
and above the highest threshold are captured.
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Let mi = |T(i)| be the number of targets of node i ∈ V , and
let V =

∏N
i=1{0, 1, . . . ,mi} as before. The decompositionK is the

same as that in the previous section, and using the total order
on 2i, we can construct an appropriate bijection g : K → V .
Using this bijection g, we show in Crawford-Kahrl et al. (2018)
that given a switching system at a fixed parameter p ∈ P, there is a
unique multi-level discrete mapDp, and an asynchronous update
rule of Dp, Fp, such that the switching system is compatible with
F

p. We note that the collection {Dp}p∈P does not exhaust the
entire collection ofRN-compatible multi-level mapsD. However,
the induced collection of maps {Dp}p∈P decomposes into finite
number of classes.

Definition 3.3. Let p be a parameter of a switching system with
totally ordered thresholds 2

p
i . Let D

p be the unique multi-level
function associated to the switching system parameterized by p.
Let O

p
i = {j1 < j2 < · · · < jmi} be such that jk < jl if and only

if θjk,i < θjl ,i in 2
p
i . Define O

p = {O
p
i } to be the order parameter

associated to p, and (Op,Dp) to be the combinatorial parameter
of the system. If q is another parameter of the switching system
with (Oq,Dq), then we define an equivalence relation q ∼ p when
(Oq,Dq) = (Op,Dp). We call the collection of combinatorial
parameters Z .

The partition induced by ∼ is clearly finite, since the order
of mi integers is finite, and the number of multi-level maps D
on a finite set is also finite. Let s := |Z| be the cardinality of the
set Z . We show in Cummins et al. (2016) that each u ∈ Z has
a computable geometrical representation as a connected subset
U ⊂ P. Therefore there is a computable decomposition of the
parameter space P in s regions Ui for i = 1, . . . , s, such that for
any p, q ∈ Ui we have Dp = Dq, and hence also F

p = F
q.

Therefore a finite collection {Fu}u∈Z captures dynamics of all
maps Fp across all the parameter space P.

We remark that the parameter graph captures the dynamics of
all subgraphs of RN as well as RN itself. Although not addressed
in this paper, we can limit the exploration of the dynamics only
to those combinatorial parameters that result in RN-compatible
multi-level discrete maps D.

4. DSGRN: DYNAMICAL SIGNATURES
GENERATED BY REGULATORY
NETWORKS

Given a network RN and the associated switching system, the
computational tool DSGRN (Cummins et al., 2016; Harker, 2018)
computes and records a graph of graphs in SQL database format.
This general database can be queried in many ways, and we will
give a short example after defining the graphs that are computed.
If a user starts with a synchronous Boolean model B, the first
step is to calculate an the interaction graph RN of B. DSGRN
then describes the long term dynamics of all multi-valued nearest
neighbor maps compatible with the switching systems associated
to RN. Each of these multi-valued nearest neighbor maps is an
asynchronous update of a multi-level discrete map. Therefore
DSGRN embeds the dynamics of B into a family of multi-level

discrete models that are all compatible with the dynamics of a
switching system associated to RN.

Definition 4.1. The parameter graph P = (C,A) has nodes
C that represent all combinatorial parameters via a bijection
h :C → Z . The non-directed edges (c, c′) ∈ A occur when the
difference between h(c) = (O,D) and h(c′) = (O′,D′) is exactly
one of the following:

1. there is a swap in the order of one pair of adjacent integers jk, jl
between O and O′, and all other elements remain the same;

2. for exactly one v ∈ V , ||D(v) − D(v′)|| = 1, and ||D(w) −
D′(w)|| = 0 for all w ∈ V \ {v}.

For each u ∈ Z , there is a representative nearest-neighbor
multi-valued discrete map F

u. This map can be viewed as a
graph.

Definition 4.2. The state transition graph (STG) of a switching
system with combinatorial parameter u is the directed graph
(V , E), where the nodes V were defined previously, and (v,w) ∈ E

if and only if w ∈ F
u(v).

A recurrent component (also referred to as a strongly connected
path component) of the STG (V , E) is a maximal collection M of
vertices such that for any u, v ∈ M there exists a non-empty path
from u to v within the subgraph induced byM. The collection of
all recurrent components of (V , E) is denoted by

MD(F) :=
{

M(i) ⊂ V | i ∈ P
}

and is called aMorse decomposition of the STG.HereP is an index
set. Recurrent components inherit a well-defined partial order by
the reachability relation in the directed graph (V , E). In particular,
there is a partial order on the indexing set P of MD(F) defined
by i ≤ j if there exists a path in (V , E) from an element ofM(j)
to an element ofM(i).

Definition 4.3. TheMorse graph of the STG, denoted MG(F), is
the Hasse diagram of the poset (P,≤). We refer to the elements
of P as theMorse nodes of the graph.

Any recurrent behavior of the ODE system will be be captured
by one of the Morse nodes of the Morse graph. That is, any
recurrent set of the ODE will be a subset of a set of domains that
correspond to states in STG that belong to a single Morse node.

Each component of theMorse graph can be annotated.We use
the following terminology:

1. FP denotes a Morse graph component consisting of a single
node of the state transition graph (STG).

2. FP(v) denotes an FP that is located in κ = g−1(v) for v ∈ V .
3. FP ON denotes an FP in which the associated v has no zeros.
4. FP OFF denotes an FP in which the associated v is all zeros.
5. FC denotes a Morse graph component M that contains at

least one path through the subgraph induced by M that
crosses at least one threshold in each variable xi. FC stands
for “full cycle.”

6. XC(xj1 , . . . , xjn ) denotes a partial oscillation in variables
xj1 , . . . , xjn , where only thresholds in these variables are
crossed by paths in the Morse graph component.
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If a component is a leaf of theMorse graph, i.e., it has no outgoing
edges, then we call it an attractor. For each node in the parameter
graph, DSGRN records the annotated Morse graph, and this
collection comprises the database.

5. EXAMPLE

A DSGRN Database can queried via any general expression in
SQL. Some queries have been implemented on a sample set
of databases at http://chomp.rutgers.edu/Projects/DSGRN/DB/
index.html. See Figure 1A for a screenshot of the above website
showing networks with precomputed databases. This screenshot
shows a selection of different regulatory networks, each of
which may be clicked on to show detailed information about
the computation of the network dynamics. Figure 1B shows a
screenshot the result of such a click, and Figure 1B shows the
result of applying a filter to the network dynamics. We will now
step through each of these screenshots in more detail to explain
the displayed summary of network dynamics.

In Figure 1A, in the third row on the right, we see a network
labeled 5D_2015_10_21_VA. Clicking on it, we see the middle
screenshot in Figure 1B. The picture of the network RN is in the
upper left, and next to it an Annotation Filter, which allows us to
filter the results based on the annotations of the displayed Morse
graphs. All of the annotated Morse graphs that are generated
by at least one combinatorial parameter are shown, ordered by
the number of combinatorial parameters that produced the given
Morse graph. By clicking on the “Yes” button besideFC, we select
the Morse graphs that contain a component annotated by FC.
In Figure 1C, we show a few top Morse graphs satisfying this
condition. By choosing different combinations of “Yes”, “No”,
and “Either” in the Annotation Filter, we can explore the different
dynamical behaviors of the system.

Although graphical display of the database is useful for
exploratory purposes, it is not as powerful as SQL searches
over the DSGRN database in which arbitrary combinations
of annotated Morse graphs can be selected. Moreover, to use
graphical display it is necessary to set up a server. The expected
use of DSGRN is to calculate the database and then to use flexible,
user-defined SQL queries to search for dynamics of interest.

We now show how to perform some queries that are
not available in our demo website. In order to compute the
database for DSGRN, the user needs to install DSGRN (Harker,
2018) from GitHub, following the instructions on http://dsgrn.
readthedocs.io/en/latest/index.html. While we intend to provide
SBML compatibility in the near future, currently the user needs
to create a network file that provides names for each node
in the regulatory network RN and describes the input logic
functionMi for each node i. The following is the network file for
5D_2015_10_21_VA as shown in the upper left of the middle
screenshot in Figure 1B:
p53 : (Chk2 + ATM)(∼Mdm2)

ATM : ∼Wip1

Chk2 : ATM (∼Wip1)

Wip1 : p53

Mdm2 : p53

The name of the node is on the left hand side of the colon, and
the input logic functionMi to the node is on the right hand side.
For example, p53 has three inputs, with “OR” (addition) logic
between Chk2 and ATM, and “ANDNOT” (multiplication) logic
on Mdm2. The symbol “∼” denotes repression. Suppose that
this file is saved under “RN.txt.” To compute the DSGRN SQL
Database named “RN.db” using 4 threads we run the following
command:

mpiexec -np 4 Signatures RN.txt RN.db

After the database is computed, we can query RN.db
for different dynamical behaviors. Several tables for the
database are automatically generated, including Signatures,
MorseGraphAnnotations, and MorseGraphEdges, which we
will use in queries below. For a comprehensive list of the
tables generated, more detail on the SQL database, and other
queries, see the links from the documentation site http://dsgrn.
readthedocs.io/en/latest/index.html.

We take the number of combinatorial parameters that
generates a specific dynamical behavior to be a proxy for the
robustness of the behavior across all of parameter space. The
number of combinatorial parameters for network RN specified
in RN.txt is the number of rows in the database RN.db. Therefore
we can find the number of parameters using the command:

sqlite3 RN.db ‘select count(*) from

Signatures’

which in this case tells us that there are 803,520 parameters
associated to the network 5D_2015_10_21_VA. We now
search the database for the number of combinatorial parameters
with at least one stable FC. Note that the Annotation Filter in
Figure 1B searches for any FC, including unstable ones. The
command for this search is

sqlite3 RN.db ‘select count(*) from

Signatures natural join

(select distinct(MorseGraphIndex) from

(select MorseGraphIndex,Vertex from

MorseGraphAnnotations where Label="FC"

except select MorseGraphIndex,Source from

MorseGraphEdges))’

and the result is 6904 combinatorial parameters, which is
0.86% of all the parameters. In contrast, the number with at
least one stable FP is 667,536, which is 83% of the parameters,
obtained by:

sqlite3 RN.db ‘select count(*) from

Signatures natural join

(select distinct(MorseGraphIndex) from

(select MorseGraphIndex,Vertex from

MorseGraphAnnotations where Label like

"FP%"

except select MorseGraphIndex,Source from

MorseGraphEdges))’

Based on the results of these queries, we conclude that a stable
FP is far more common that a stable FC, and therefore a more
robust behavior for this network.

Table 1 shows the computational scaling of DSGRN in a series
of small networks taken from http://chomp.rutgers.edu/Projects/
DSGRN/DB/index.html, some of which are shown Figure 1A.
We see that the computation time and database storage increase
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FIGURE 1 | Screenshots of http://chomp.rutgers.edu/Projects/DSGRN/DB/index.html. The description of the Figure and step-by-step guide through an example is in

the text.
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TABLE 1 | Example performance of DSGRN on 4 threads on a 2013 MacBook

Pro. In practice, DSGRN is limited more by storage space than by computation

time.

Name # Nodes # Edges # Parameters Time Storage

2D_Example_A 2 4 1,600 2.7 s 124 K

3D_Cycle 3 5 5,400 3.1 s 224 K

4D_Example 4 6 122,472 10.4 s 4 M

5D_2015_10_21_VA 5 8 803,520 2 m 26 s 46 M

7D_2016_04_05_

yeastLEM

7 10 3,499,200 12 m 41 s 128 M

rapidly as the network size increases. This increase is due
particularly to the presence of high degree nodes, rather than
to the absolute number of nodes and edges. High degree nodes
cause the most rapid increase in the number of combinatorial
parameters. Because of parallelization and usage of computing
clusters with a large core count, we find in practice that DSGRN
is more limited by space to store databases than by computation
time.

In order to address the storage space scaling limitations, we
have implemented two additions to DSGRN. The first is the
idea of “essential” parameters, which is the subset of parameters
consistent with Definition 2.2. DSGRNwas originally designed to
study not only RN-compatible asynchronous multi-level maps,
but all such maps that were S-compatible with any subgraph
S of RN. By limiting ourselves to RN-compatible maps, the
size of parameter space is greatly reduced. To specify essential
parameters, add “: E” to the end of every line in the network
specification file for RN. For example, the essential network
specification file for 2D_Example_A using multiplicative logic
is:
X : XY : E

Y : XY : E

The second addition is an extensive Python module DSGRN
that can be used to explore individual parameters rather than
calculating the entire database at once. This model is part
of the standard DSGRN installation. If a hypothesis about
the network dynamics can be constructed a priori, then
the selection for annotated Morse graphs can be computed
on the fly, allowing much larger networks to be analyzed
than is otherwise possible. See https://github.com/shaunharker/
DSGRN/blob/master/Tutorials/GettingStarted.ipynb for a brief
introduction to the Python library.

6. DISCUSSION

Given a regulatory network RN there is a very large number
of multi-level maps D that can be associated to this network.
We can enumerate them by selecting for each node an arbitrary
assignment of node value based on the node inputs. If the
structure of the network is the only information available, these
all represent valid models for the network dynamics in the class

of discrete multi-level maps, which generalize Boolean models.
This class of functions generate, via asynchronous update, a class
of multi-valued nearest neighbor maps F which better represent
biological reality. States of F only change one at a time.

To make the collection of RN-compatible functionsF smaller
and more biologically realistic, we employ a switching system,
which is an ODE system with discrete-valued interaction terms.
They were introduced in the 1970’s (Glass and Kauffman, 1972,
1973) as a continuous time counterpart to Boolean networks.
A switching system is parameterized by continuous parameters,
but this set decomposes into a finite number of computable
regions (Cummins et al., 2016), each of which is associated with a
singlemulti-level mapDu and its asynchronous updateFu, where
F

u is compatible with the switching system ODE (Crawford-
Kahrl et al., 2018). The mutual position of these regions in the
parameter space provide a natural way to define a notion of
“neighboring” functions Du,Dv (and thus Fu,Fv).

Our computational tool DSGRN (Cummins et al., 2016;
Cummins et al., 2017; Harker, 2018) constructs the collection of
all such parameter regions and encodes them in the form of a
parameter graph. For each node u of the parameter graph, the
DSGRN Database stores information about the global dynamics
in form of a Morse graph, which is a summary of the dynamics of
F

u. A DSGRN Database provides a summary of dynamics for all
maps Fu which are compatible with a switching system on RN.
In this sense DSGRN represents the dynamics compatible with
the network RN across all parameters.

DSGRN can be used to either list dynamical behaviors that
are compatible with a given network RN, or search in the
space of networks for those networks that provide most robustly
dynamics of interest, for instance FC or FP.
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