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Understanding the functional properties of cells of different origins is a long-standing

challenge of personalized medicine. Especially in cancer, the high heterogeneity

observed in patients slows down the development of effective cures. The molecular

differences between cell types or between healthy and diseased cellular states are

usually determined by the wiring of regulatory networks. Understanding these molecular

and cellular differences at the systems level would improve patient stratification and

facilitate the design of rational intervention strategies. Models of cellular regulatory

networks frequently make weak assumptions about the distribution of model parameters

across cell types or patients. These assumptions are usually expressed in the form of

regularization of the objective function of the optimization problem. We propose a new

method of regularization for network models of signaling pathways based on the local

density of the inferred parameter values within the parameter space. Our method reduces

the complexity of models by creating groups of cell line-specific parameters which can

then be optimized together. We demonstrate the use of our method by recovering the

correct topology and inferring accurate values of the parameters of a small synthetic

model. To show the value of our method in a realistic setting, we re-analyze a recently

published phosphoproteomic dataset from a panel of 14 colon cancer cell lines. We

conclude that our method efficiently reduces model complexity and helps recovering

context-specific regulatory information.

Keywords: regularization, sparsity, clustering, network model, logical model, optimization

1. INTRODUCTION

One goal of Systems Biology is to understand emerging functional properties of biological systems
from the interactions of their components (Wolkenhauer, 2014). Such understanding would allow
the design of new pharmacological strategies to treat diseases that arise when these systems do not
function adequately, like cancer. One frequent approach is to map experimental measurements to
the model variables of the system, and infer the most likely parametrization. To be useful, a well-
parametrizedmodel of a complex system should not only be able to predict non-obvious, non-linear
behaviors, but also provide a mechanistic explanation for these behaviors and to suggest hypotheses
about ways to control the system.

The most informative modeling approaches include prior information about the system
(Aldridge et al., 2006). Classically, dynamical systems like regulatory networks of mammalian
cells are modeled with systems of ordinary differential equations, describing in detail the status
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of chemical species like proteins or membrane receptors over
time. Alternatively, logical models (Morris et al., 2010; Hill et al.,
2012; Le Novère, 2015) were introduced several decades ago
for the modeling of regulatory networks (Kauffman, 1969). As
they are simpler in their formulation, they are easier to handle
computationally, scale better to large models and datasets, and
are easier to interpret. The prior knowledge used to construct
logical network models frequently comes from reviewing the
literature of a certain mechanism, disease or signaling pathway,
and may be summarized in a database like STRING, Reactome
or WikiPathways (Joshi-Tope et al., 2005; Kutmon et al., 2016;
Rigden et al., 2016; Szklarczyk et al., 2017).

Logical models can be used to model stochastic processes.
Probabilistic Boolean Networks (Shmulevich et al., 2002) have
been introduced to simulate logical models in the presence of
uncertainty, as they allow combining multiple Boolean networks
with the respective continuous selection probabilities in one
mathematical model. They have successfully been applied to the
modeling of biological regulatory networks (Trairatphisan et al.,
2013). This framework can be generalized to Dynamic Bayesian
Networks (DBNs), a general class of models that includes Hidden
Markov models and Kalman filters (Murphy, 2002), and can be
used to represent the same joint probabilities between variables.
In a graphical model of a DBN, the values of the different nodes
represent the probabilities for randomly chosen molecules to be
in an active state, while the edges represent the probabilities
of the parent nodes to activate their targets. Network update is
performed according to the laws of probabilities.

There is, however, a number of impediments to successful
biomolecular modeling. Firstly, the prior knowledge used to
build the model could be inaccurate, or more frequently,
incomplete, or both. In other words, compared to the true
network, databases likely contain additional edges, as well as
miss others. Secondly, the information contained in databases
is often generic, collected across cell types, genetic backgrounds,
and experimental conditions. Given an interaction graph and a
series of contexts (cell types, patients), the task of determining
which interactions are context-specific and which ones are
context-independent rapidly becomes intractable. This task is
however essential to reduce the model complexity, as overly
complex models are prone to overfitting (thus less generalizable),
computationally expensive, and might be less interpretable than
simpler ones. In addition, identification of the most variable
model parameters between contexts has the potential to be
directly informative about the mechanisms at play and help draw
parallels between contexts.

Inter-patient variability is an important factor for many
diseases, and in particular cancer. Intra-tumor heterogeneity has
been recognized for a long time (Fidler et al., 1982) and it has
been established that the heterogeneity of cell lines isolated from
different patients spans the genomic, epigenetic, transcriptomic,
and proteomic levels, resulting in large phenotypic differences,
even within the same tissue of origin (Hoadley et al., 2014).
Additionally, the patients’ own genetic backgrounds and the
tumor micro-environment also play a role in increasing the
heterogeneity of clinical responses (Zhou et al., 2008; Marusyk
and Polyak, 2011; Junttila and De Sauvage, 2013). However,

recent successes in matching a biomarker with the sensitivity
to certain targeted anti-cancer therapies, notably in the case of
HER2-overexpressing breast cancer (Vogel et al., 2002), EGFR-
mutated non-small-cell lung cancer (Lynch et al., 2004), BCR-
ABL fusions in chronic myelogeneous leukemia (Sherbenou and
Druker, 2007), and BRAFV600E-mutant melanoma (Bollag et al.,
2010) suggest that the general approach of targeting specific
mechanisms in subsets of patients harboring functionally similar
tumors is clinically promising.

A number of methods have been devised for the general
task of variable selection. Various methods rely on the intuitive
notion of comparing models comprising different subsets of the
independent variables (Hocking, 1976). This strategy is however
problematic for several reasons. Firstly, the number of possible
subsets grows very fast with the number of variables, leading
to the infeasibility of testing them all. Secondly, repeatedly
optimizing a model structure using the same dataset violates the
central assumptions of the F-tests or χ2-based statistics used
for comparisons, which are designed to test a single hypothesis.
Strategies like forward-selection, backwards elimination, or
combinations of both are consequently affected by numerous
problems, notably biased parameter estimation and artificially
low p-values (Harrell, 2001; Burnham and Anderson, 2002).

Fitting an overspecified model first and clustering the
parameters in a second step is not a sound method to achieve
sparsity, as the parameter estimates might not be stable, resulting
in inaccurate clustering. Furthermore, the two objectives are
not coupled, which is problematic: a small difference between
the values of two parameters might or might not be supported
by the data. It makes more sense to specify our assumptions
about the distribution of the parameter values as part of the
objective function. Regularization is a technique for adding prior
information to a regression problem. It consists in adding to the
loss function a function of the parameters alone. More formally,
when attempting to learn the parameter set θ from dataset X =

[x1, x2, ..., xn] with a modelM, the objective function O takes the
form:

O = f (M(X, θ),X)+ λg(θ) (1)

where f is the loss function, for example the sum of squared
errors. The hyperparameter λ is used to balance goodness-of-fit
with the regularization objective g(θ). Themost common form of
regularization is the Tikhonov regularization (Tikhonov, 1963),
also called ridge regression, which materializes the assumption
that small model parameters are more probable than larger ones.
Also called the L2 norm, the Tikhonov regularization term takes
the form:

g(θ) =

T∑

j=1

(θj)
2 (2)

where T is the number of parameters of the model. The L2
norm is used to impose a penalty on large parameter values.
Its popularity is due to the fact that the function is convex,
continuous and differentiable everywhere, and is therefore well
adapted to gradient descent optimization. It is mostly used in
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predictive models to avoid overfitting and produces models that
are more generalizable. Because the gradient of this function
becomes very small around zero, Tikhonov regularization does
not achieve sparsity under most conditions and therefore does
not perform variable selection, however this can be solved by the
use of thresholds.

Intuitively, the most sensible sparsity constraint should be the
L0 norm, or the cardinality of the non-zero parameter set:

g(θ) =

T∑

j=1

1(θj 6=0) (3)

where 1(C) is the indicator function, and is equal to the number
of cases where condition C is true. However, this is usually not
feasible in practice, as this function is discontinuous and cannot
be used in many optimization algorithms. A good approximation
is the L1 norm, which sums the absolute values of the parameters,
without squaring them:

g(θ) =

T∑

j=1

|θj| (4)

The L1 norm, or LASSO (Tibshirani, 1996) can be used to
reduce the size of a model by efficiently removing variables
(i.e., set their coefficients to zero) which contribute the least to
the model. Importantly, by screening a range of regularization
parameter λ, it is possible to order the variables according to
their importance. It is natural to use it then, for contextualizing
models of biological systems with measurements from different
contexts to point to their differences. Different approaches have
used the L1 norm to contextualize network models of signal
transduction in mammalian cells. However the assumption is
either that there is no relationship between the different cell
lines (Eduati et al., 2017; Lucarelli et al., 2018), or that the
differences to the mean value should be minimized (Merkle
et al., 2016). While the latter works in the case of only two
cell lines, it does not when comparing more. The reason is
that heterogeneity between cell lines is expected, and we know
that different mechanisms are at play in a given experiment.
By penalizing any difference, such regularization does not allow
parameters to have two or more possible values. However,
cancer-related perturbations to molecular interactions occur in
discrete steps. Driver mutations often result in the complete
loss of the function of a certain protein, for example p53,
or constitutive enzymatic activity, for example the common
mutation of genes of the RAS family (Kandoth et al., 2013).
The desired regularization should therefore penalize differences
between contexts but allow for a structure in the parameter
space. While a number of methodologies exist (Dondelinger
et al., 2012; Hill et al., 2012) to regularize network models
of signaling pathways for time-stamped data, in that case the
structure of the prior on the parameter space is known, as time is
oriented. We propose that the correct assumption for analyzing
perturbation data from multiple cell lines, cell types, or across
patients, is that network parameter values would form clusters
corresponding to the most common signaling deregulations.

However, methods to efficiently identify the parameters of
a biological model and cluster them at the same time are
missing.

The general problem of regularizing a model toward a specific,
although unknown, structure has been investigated before. The
vast majority of the proposed methods combine L1 and L2
norms in various ways. Group LASSO (Yuan and Lin, 2006) was
introduced to allow the selection of entire groups of variables.
This was then extended to a hierarchical selection of nested
groups of variables (Zhao et al., 2009), partially overlapping
groups of variables (Jacob et al., 2009), and to the induction
of sparsity within groups by penalizing for pairwise differences
between coefficients of variables belonging to the same group,
with the OSCAR algorithm (Bondell and Reich, 2008) and the
clustered LASSO (She, 2010). Later Simon et al. proposed the
sparse group LASSO (Simon et al., 2012), a modification of
the elastic net criterion proposed by Zou et al. which combines
the L1 and L2 norms (Zou and Hastie, 2005). The fused
LASSO (Tibshirani et al., 2005) is applicable when there is a
natural ordering in the model variables, like time-stamped or
spatially organized data. Several groups have tried to decouple
the steps of clustering and model fitting, either by considering
all possible clusters (Jenatton et al., 2011) or by applying first
hierarchical clustering based on the measurements covariance
matrix (Bühlmann et al., 2013).

While these approaches have proven useful in some cases
(Zhang et al., 2014; Steiert et al., 2016), they do not apply
well to the case of regulation networks, because group zero-
sparsity (removal of entire groups of variables, as opposed
to within-group sparsity) is not necessarily desired, except in
the case of network pruning. We therefore implemented a
regularized version of the objective function of the FALCON
toolbox (De Landtsheer et al., 2017), to lower the degrees
of freedom of the model by encouraging the grouping of
model parameters across contexts, regardless of the number of
groups. This can be achieved by detecting anomalies in the
parameter values distribution, assigning a penalty to groups
of values more alike the reference null distribution. In our
case (Bayesian Networks), the uniform distribution [0 − 1] is
assumed to better represent the prior of uncorrelated parameter
values, as they are usually interpreted as probabilities. Under
different modeling formalisms, other distributions would be
more appropriate, for example for ODE-based or constraint-
based models. We show how the penality correlates with other
measures, with unsupervised clustering, and we demonstrate
the use of regularized fitting, first on a small synthetic network
model, then with biological data.

2. METHODS

2.1. Algorithm
We propose a measure of uniformity of the parameter values
distribution modified from previous work in the field of quasi-
random sequences (Sobol, 1976). Given a parameter space P and
N parameter vectors with T parameters θ1, θ2, ..., θN , with θn =

{θ1n , θ
2
n , ..., θ

T
n }, we compute for each t ∈ T the average absolute
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deviation from the expected local density of points Dt with:

Dt =
∑

R∈P

|1(θ tn∈R) − Vol(R)| (5)

for all rectangles R = [a1, b1] × [a2, b2] × ... × [aT , bT] such
that 0 ≤ ai ≤ bi ≤ 1, and with Vol(R) being the volume of the
T-dimensional rectangle R.

Vol(R) =
∏

i

bi − ai (6)

The first term in Equation 5 represents the observed density
of points, while the second one represents the expected density.
These two quantities are equal in the case of perfect uniformity.
We then define the uniformity U of the parameter vector as the
inverse of the average deviation over the T parameters:

Ut =
T

Dt
(7)

and the uniformity of an entiremodel parameter set as the average
over all vectors:

U =
1

N

N∑

i=1

Ui (8)

In one dimension, this metric has an intuitive interpretation,
as shown in Figure 1: when parameter values are as different as
they could be, the expected difference between any two values can
be calculated from their relative rank in the set. For example, the
distance between two successive observations is θ tn−θ tn−1 = 1/N.
When values cluster together, they create windows in which the
local density is either higher or lower than this expected value.
Note that in one dimension, the rectangles R are equivalent to
the distance between the points, and to the convex hull of these
points, while it is not true in higher dimensions.

2.2. Uniformity as a Penality in Regularized
Fitting
We analyze the sensitivity of our new metric to the amount of
structure in sets of model parameter values by computing it for
a large number of sets of uniformly, independently distributed
random values. We compare uniformity with the standard
deviation, with the results of the Kolmogonov-Smirnov (K-S)
(Massey, 1951) and Anderson-Darling (A-D) tests (Anderson
and Darling, 1954), and with the sum of pairwise distances.
The two non-parametric statistical tests aim at comparing the
empirical distribution of the values in the set with a reference
distribution, in this case the uniform distribution. The sum of
pairwise distances is used in Bondell and Reich (2008) and She
(2010), the standard deviation is examplative of measures of
spread around a single value, like in Merkle et al. (2016). In
addition, we compute for each set the optimal number of clusters
(explaining 90% of the variance) using the k-means algorithm
and the elbow method (Ketchen and Shook, 1996). Using the
inferred number of clusters, we compute the sum of intra-cluster
distances. We performed this comparison with 104 vectors. Also,

to assess the usability of this metric for large-scale computations,
we compare the running time of the different computations for
sets of size 10, 20, and 40, simulating models with increasing
number of contexts.

To illustrate that the use of uniformity as a penalization in
an objective function results in the convergence of parameter
values into clusters, we iterate a gradient descent process for
random sets of uniformly, independently distributed random
values. This is equivalent as optimizing a null model using
uniformity as a regularizing function, and shows the effect of this
penalization in the absence of data. We used gradient descent
(using empirical gradients and the interior-point method) with a
learning rate of 10−3, collect the shape of the set over 100 updates,
and we compare with the centroids of the k-means clustering.
All computations were done using Matlab 2017a on a standard
desktop computer which specifications are detailed in section
2.3.3.

2.3. Modeling Experiments
Modeling experiments in this paper used the toolbox FALCON
(De Landtsheer et al., 2017), a Matlab-based versatile tool to
contextualize logical models of regulatory networks. Briefly,
FALCON uses a Dynamic Bayesian framework (Lähdesmäki
et al., 2006) in which Boolean operations are explicitly defined
as arithmetic, continuous logical functions. FALCON emulates
a Probabilistic Boolean Network with user-defined topology and
uses experimental data from perturbation assays to optimize the
weights of the network, which represent the relative activating
and inhibiting influences of the network components with
respect to the logical functions. For the large-scale analysis of
biological data, we used a custom implementation of FALCON
running on a high-performance computing platform which
specifications are detailed in section 2.3.3.

O =
1

n

n∑

i=1

(Yi − Ŷi)
2 + λU(θ) (9)

where Y is the vector of measurements for the observed nodes,
Ŷ is the vector of corresponding predictions and U(θ) is the
uniformity of the parameter set θ across contexts, as defined
by Equations 5–8 above, with λ being a scalar that controls the
relative contribution of the penality to the objective function.
The code and data files used for both the synthetic model and
the biological example are available at the address https://github.
com/sysbiolux/FALCON. Additional driver scripts are provided
in the Supplementary Materials.

2.3.1. Synthetic Toy Model
In order to assess the use of our regularization scheme for finding
context-specific parameters, we design a simple toy model with
7 nodes and 9 edges. Two of these nodes are inputs, while two
others are measured. We set the model parameters differently
for four conceptual cell lines, in such a way that while most
parameters are conserved, some would be different, and shared
across several (but not all) cell lines. Figure 2 shows a graphical
representation of the network, the values chosen for the model
parameters, and the final synthetic data used for model fitting.
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FIGURE 1 | Illustration of the computation of uniformity for two sets of 5 parameter values within the range [0, 6]. (A) In the first case, all pairwise distances are equal

to the expectation given the rank of the value in the set. (B) In the second case, the gray bars indicate the differences compared to the expected density in a given

interval.

FIGURE 2 | Overview of the toy model design. The topology is parametrized in order to display two-by-two similarity between cell lines. For each cell line, the

Bayesian Network is simulated with the corresponding parameter values for 8 different combinations of the input nodes values. Random Gaussian noise is added to

the values of the two output nodes C and D, simulating biological measurements. The heatmap shows the final node values for each condition, cell line, and node.
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To realistically simulate biological data, we use our toy
model to generate synthetic steady-state data for the measured
nodes by simulating the network with different combinations
of values for the input nodes, thereby mimicking a designed,
perturbation experiment. We simulate noise in the data by
adding a two-component gaussian perturbation around the
theoretical value, as explained in Supplementary Methods. The
magnitude of the perturbation was chosen to reflect the signal-
to-noise ratio of typical biological measurements, for example
phosphoproteomics or microarray data.

2.3.2. Biological Dataset
To show the usefulness of our approach in a biological setting,
we reanalyze the dataset from Eduati et al. (2017), in which
the authors measured 14 phosphoproteins under 43 different
perturbed conditions (combinations of 5 stimuli and 7 inhibitors)
in 14 colorectal cancer cell lines. Using CellNetOpt (Terfve et al.,
2012), they contextualized independent logical ODE models
(Wittmann et al., 2009) for each cell line, and proceed to train a
statistical model using the cell-specific parameters to predict the
responsiveness of the cell lines to a panel of drugs. This study
provides an example of the use of system-level analyses to gain
understanding of functional properties that cannot be inferred by
genomic features alone. We normalized the data (log2 difference
compared to control) linearly to the [0−1] range across cell lines.

Logical ODE models like the one used by Eduati et al. rely on
a transformation of the discrete state-space of Boolean models
into a continuous one, in such a way that Boolean behavior is
preserved on the vertices of the unit cube, i.e., when the inputs
are in {0, 1}. While there are many such possible transformations
(Wittmann et al., 2009), the authors chose to use normalized Hill
cubes, which are sigmoidal functions of the inputs. The strength
of such an approach is the ability to take into account the non-
linear ’switch-like’ nature of molecular interactions, however at
the expense of doubling the number of free parameters (Hill
functions are defined by a threshold and a slope). In contrast, our
approach uses maximum one parameter per interaction and is
restricted to linear relationships, which ensures coherence with
the laws of probabilities. To infer the DBN model corresponding
to the logical ODE model proposed by Eduati et al., we kept the
original topological information, but defined the update function
for each node by amultivariate linear function of its parent nodes.
In our framework, if two nodes A and B are both activators of a
third nodeX, we have for each time-step t:Xt = kAAt−1+kBBt−1

with probabilities 0 ≤ kA ≤ 1 and kB = 1 − kA. Similarly, if a
node X is activated by node A but inhibited by node B, we have
Xt = At−1kB(1− Bt−1) with probability 0 ≤ kB ≤ 1.

We used the phosphoprotein data to fit the probabilities
for each interaction simultaneously for all cell lines. The
complete model comprised 363 nodes and 1106 parameters.
The objective function included a penality computed from
the average uniformity of the parameters across cell lines,
according to Equations 5–8. We optimized 49 models, varying
the hyperparameter λ from 2−20 to 25, and we recovered
the optimal parametrization for each cell line in the form of
regularization paths. We used the value of 0.01 as threshold for
deciding if two parameters should be merged into a single one.

For each value of the regularization strength λ, we computed
the mean squared error (MSE) and the number of different
parameters P in the regularized model, and from these calculate
the Bayesian Information Criterion (BIC), which we calculate as
Nlog(MSE) + log(N)P, with N the number of individual points
in the dataset. Lower BIC values indicate models with favorable
balance between goodness-of-fit andmodel complexity (Schwarz,
1978; Burnham and Anderson, 2004).

We selected the model with the lowest BIC for further
analyses. We grouped cell line-specific parameters together using
the above-mentioned threshold, and re-optimized the model
using the obtained topology without the regularization term, in
order to obtain unbiased parameter estimates. We performed
hierarchical clustering with 1000 bootstrap resamplings on the
parameter values using WPGMA and euclidian distance.

Furthermore, we investigated whether the recovered
parameter values are associated with drug sensitivity. We
downloaded the IC50 values for the 14 cell lines and 83
drugs directly targeting either one of the network’s nodes or
a target used in clinical practice to treat colorectal cancer
from the Genomics of Drug Sensitivity in Cancer database
(www.cancerrxgene.org). We computed the linear regression
models between each drug and each of the 31 parameters
which showed high variability between cell lines (CV ≥ 10%).
The F-statistic was used to compute a p-value for each test,
and q-values were computed from these, using the Benjamini
Hochberg procedure to control the False Discovery Rate.

2.3.3. Materials
• Hardware

• Synthetic model: standard desktop computer equipped with
an Intel Xeon E3-1241 CPU clocked at 3.50GHz and 16GB
of RAM under Windows 7

• Biological example: high-performance computing platform
with 49 nodes running Matlab2017a, each node consisted
of one core of a Xeon-L5640 clocked at 2.26GHz with 3GB
RAM

• Software

• Matlab 2017a (Mathworks, Inc.)
• FALCON toolbox (https://github.com/sysbiolux/FALCON)
• Optimization Toolbox (http://nl.mathworks.com/

products/optimization/)
• Parallel Computing Toolbox (http://nl.mathworks.com/

help/distcomp/)
• Bioinformatics toolbox (http://nl.mathworks.com/help/

bioinfo/) (optional)

3. RESULTS

3.1. Uniformity as a Measure of Structure
We computed the uniformity U, the standard deviation,
the sum of pairwise distances, the K-S statistic, the A-D
statistic, and the optimal number of clusters using the k-means
algorithm and the elbow method, for 104 one-dimensional
sets of uniformly, independently distributed random values.
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The complete correlation plots are presented in Supplementary
Materials. We always show uniformity U on the logarithmic
scale. Figure 3A shows the relation between uniformity and
the standard deviation, while Figure 3B shows the correlation
between uniformity U and the p-value of the K-S test. Similar
results were obtained with the A-D test. The relationship between
uniformity, the standard deviation, and the K-S p-value are
further explored in Figure 3C, and the computation times are
compared in Figure 3D.

Firstly, log(U) is positively correlated with the p-value of the
K-S and A-D non-parametric tests evaluating the distance to
the reference uniform distribution, showing that low uniformity
is indicative of structure. Secondly, the comparison with the
standard deviation shows that low-uniformity sets can have
drastically different standard deviations, but that the inverse is
not true. This is explained by the fact that sets with tightly
clustered values will nevertheless be spread around the global
average if there is more than one cluster. Figure 3C shows a
3D plot of uniformity, standard deviation, and the K-S p-value
and illustrates the point that simple measures of spread are not
adapted to the regularization of a set of parameter values if the
ground truth is that there is more than one cluster. The figure
also displays a graphical representation of the 10 values in the set
for four chosen sets, to show that low-uniformity sets correspond
to clustered values (with low K-S p-values) while low standard
deviation is associated with single clusters.

One important argument for choosing a metric in a
regularized optimization problemmight be its low computational
cost. Comparison of the running time for uniformity with
other metrics shows that the new metric can be computed
very efficiently (Figure 3D), several orders of magnitude faster
than the non-parametric tests or the clustering algorithm. This
low computational cost makes is well adapted to the repetitive
computations characteristic of gradient-descent optimizations.

In addition, we performed experiments using gradient descent
either with the standard deviation, sum of pairwise distances,
or uniformity U as an objective function on sets of randomly,
uniformly distributed random values. Using the regularization
objective as the objective function, without data or model to
produce an error function, helps understanding the effect of
regularization when signal is low in the data. The traces in
Figure 4 reveal the strength and direction of the bias applied on
each value in the set in the absence of cost function. Penalizing
on the standard deviation results in a homogeneous pull toward
the average value (Figure 4A), which does not accomplish the
goal of forming clusters. Using the sum of pairwise distances, in
turn (Figure 4B), results in grouping of values together, however
the clusters themselves are still pulled together. In contrast, the
traces in Figure 4C show that using uniformity U, the values
form a number of groups, but that these groups are more stable.
This is due to the fact that the computation of uniformity U
measures local density both below and over the expected value,

FIGURE 3 | Evaluation of uniformity U as a measure of structure, for 104 one-dimensional sets of 10 values. (A) Comparison with standard deviation. (B) Comparison

with the p-value of the K-S test (similar results were obtained with the A-D test). (C) 3D-scatterplot of uniformity, standard deviation and K-S p-value. (D) Computation

times for the different metrics. log(U), log2(uniformity); Std, standard deviation; Dist, sum of pairwise distances; K-S, p-value of the Kolmogonov-Smirnov test; A-D,

p-value of the Anderson-Darling test; K-means, k-means clustering, number of clusters determined with the elbow method.
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FIGURE 4 | Gradient descent trajectories for a set of randomly uniformly distributed values displaying a certain level of structure, using different metrics as objective

function: (A) standard deviation, (B) sum of pairwise distances and (C) Uniformity U. The dotted lines show the values of the centroids of clusters as determined by

the k-means + elbow method for the original vector.

which means that not only clusters but also voids produce low-
uniformity sets. As a result, once values with all clusters have
merged, the average of the different clusters remain very similar
in number and value to the centroids of the k-means clustering.

3.2. Toy Model
To test the ability of a regularization function using uniformity
U to recover context-specific parameters of a network model, we
generated an example Bayesian Network which we parametrized
for four different imaginary contexts. In our example, the
contexts are cell lines, and their regulatory network are identically
parametrized two by two. We used the network to generate
measurements for two of the nodes while two other nodes were
controled. We added noise to this synthetic data to simulate
background noise and normaly distributed measurement errors.
We used the toolbox FALCON to contextualize the network for
the four cell lines, with and without regularization based on the
uniformity U of the set of parameter values. We screened 41
values of the hyperparameter λ. The computations took a total
of 220 seconds on a standard desktop computer. The results
are presented in Figure 5. The regularization paths in Figure 5A

show the optimal parameter values over a range of regularization
strengths λ. The unregularized model is parametrized differently
for each cell line, and the regularization induces a grouping of
the parameters values across cell lines. However, this clustering
occurs at different values of λ. As regularization strength
increases, so does the error of the model (Figure 5B), while the
number of unique parameters in the model decreases as they are
merged together. We used the Bayesian Information Criterion

to balance goodness-of-fit with model size and identified λ =

2−4.5 as the best model configuration. Figures 5D,F show
the fitting cost for each cell line for the unregularized model
and the regularized one, respectively. Figures 5D,G show the
correlation of the simulated values with the measurements, for
the unregularized model and the regularized one, respectively,
and Figures 5E,H show the correlation of the inferred parameter
values with the real values for the unregularized model and
the regularized one, respectively. Together, these results show
that while the new model displays a higher MSE, the inferred
parameters are much closer to the ground truth. Regularization
transfers a portion of the variance from the parameters back to
the data, and so decreases the part of the error on the parameter
estimates due to noise. More importantly, the grouping of the
samples is easily recovered (Supplementary Figure S2), which
also carries information: the cell lines are identical two-by-two.

3.3. Biological Dataset
In order to assess the applicability of our new method
of regularization to uncover context-specificity in a realistic
modeling setting, we reanalyzed the data from Eduati et al.
(2017) using a Dynamic Bayesian Network adapted from the
topology of the ODE model. The dataset comprised 8428
datapoints (14 phosphoproteins for 14 cell lines under 43
experimental conditions). We screened 49 values for the
hyperparameter λ. The computation time was 1,761 h, or 42
h when parallelized among 49 computing cores. The results
are presented in Figure 6. Minimum BIC was reached when
λ = 0.5, which corresponds to a model in which 26 of
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FIGURE 5 | Results of the synthetic toy model analysis. (A) Regularization paths for each parameter of the network model. When regularization strength increases,

values accross the four contexts are encouraged to merge. (B) Mean squared error (MSE), number of different parameters of the model, and Bayesian Information

Criterion (BIC) for different regularization strengths. (C,D,E) Unregularized model. (F,G,H) Sparse model. (C,F) MSE for the four contexts with both models. (D,G)

Comparison of the simulated node values with the measurements for both models. (E,H) Comparison of the inferred parameter values with the ground truth for both

models. r2
adj

: adjusted Pearson’s correlation coefficient.

the 79 network parameters can be parametrized identically
for all cell lines, and the remaining ones can be organized
in 2–9 groups. Overall, the most variable parameter across
cell lines is the ERK-EGFR negative feedback (Figures 6A,B).
Notably, interactions relating to the PI3K/Akt/mTOR axis, to
the JUN pathway, and to p38 regulations showed relatively
high heterogeneity compared to the crosstalks between them. A
number of interactions reveal differential parametrizations for
certain cell lines, for example CCK81 in the case of TGFRβ

activation by EGFR (Figure 6C), or COLO320HSR in the case
of RASK activation by IGF1 (Figure 6D). Figure 6E shows an
example of regularization path where no cell line specificity
is left in the model with the optimal topology. In addition,
many interactions (narrower arrows in Figure 6A) show very
low values for all cell lines, suggesting that they do not play
an important role in this experiment. The complete set of 79
regularization paths is presented in the Supplementary Materials.
The changes in BIC are shown in Figure 6F, displaying a
marked minimum around the value 0.5. The goodness-of-fit
was similar for all cell lines, with MSE values ranging from
0.018 to 0.035 (Figure 6G). While these results are in line with
the ones reported in the original study, it should be noted
that in our final model, the role of TAK1 is less prominent,

a fact that can be explained by the difference of modeling
paradigm. Indeed, while in Eduati et al. (2017) TAK1’s node
responsiveness parameter τ is extremely low for all cell lines
while edges from and to TAK1 are quite variable, our modeling
framework considers all nodes equally responsive, and as a
consequence low TAK1 activity is represented by low edge
parameter values.

Figure 6H shows a heatmap of all model parameters for
all cell lines. The dendrograms show the clustering of model
parameters and cell lines based on their parameter values.
We chose WPGMA to perform hierarchical clustering using
the euclidian distance between parameter vectors, with 1000
bootstrap replicates. The support for the nodes in the cell
line dendrogram are indicated as percentages. Interestingly,
cell lines HT29 and HT115 cluster strongly together, while
they are highly dissimilar in their genomic alterations. In
general, we noted a poor correlation between the genomic
and functional pattern over this set of cell lines, a fact
already noted in the original study. Cell lines COLO320HSR
and CCK81 are the cell lines functionally most unlike the
others. This is also visible in the raw data (see Supplementary
Materials), notably in the amplitude of the Akt/PI3k/MEK
activations.
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FIGURE 6 | Results of the analysis of the biological dataset. (A) Optimized network topology (adapted from Eduati et al., 2017). The width of the arrows represents

the median parameter value across the 14 cell lines, with wider arrows corresponding to the most active interactions. The number next to the arrows is the number of

clusters that the 14 cell lines form for the optimal regularization strength. (B–E) Regularization paths for four chosen interactions, showing decreasing amounts of cell

line-specificity. (F) BIC (Bayesian Information Criterion) path. (G) MSE (Mean Squared Error) for the 14 cell lines for the optimized model. (H) Heatmap of the values of

the 79 parameters for the 14 cell lines. Dendrograms were produced with WPGMA using euclidian distance. (I) Correlation between two PI3K-related parameters and

sensitivity to two MEK inhibitors. Left: IRS1-PI3K; refametinib: r2 = 0.737, p-value = 0.133; trametinib: r2 = 0.671, p-value = 0.176; Right: IGF1-PI3K; refametinib: r2 =

0.701, p-value = 0.146; trametinib: r2 = 0.652, p-value = 0.185.

Next, we explored the possible associations between the 31
most variable model parameters and sensitivity to 83 chosen
drugs. The 25 most statistically significant of these linear
associations are presented in the Supplementary Materials.
While no parameter-drug pair shows strong significance (most
likely due to the high number of hypotheses tested), we
noticed a pattern in which some parameters seem to correlate
with sensitivity to MEK inhibitors. Figure 6I shows that the
parameters relating to PI3K activation by IRS1 and IGF1R
are inversely correlated to the log(IC50) of refametinib and
trametinib, two known MEK inhibitors.

4. DISCUSSION

We propose a new measure of the degree to which sets of
values are clustered around an unknown number of centers.
We use this new metric, called uniformity U, as a penalization
in the objective function of models of signal transduction.
Previously, regularization applied to the parameters of such
models have assumed either that parameter values would be
mostly identical across the different studied contexts (using
measures of spread), and looked for departures from this
assumption for context-specific parametrizations, or that the
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parameter values would change in correlation with another,
known variable between samples (e.g., smoothly over time).
While these assumptions make intuitive sense, they are probably
not usable in the case of models of regulatory networks in
a large number of cell lines. Indeed, functional relationships
between molecules in cells, like enzymatic rates and binding
strengths, usually exist in a small number of versions for a specific
interaction. Because we do not expect these properties to change
along a continuum but in a discrete way, it is natural to assume
that model parameters of a regulatory network display the same
type of structure. Our method efficiently reduces the complexity
of network models. In our toy model example, we decrease the
number of parameters from 32 to 11, and correctly recover the
fact that two groups of cell lines exist and should be parametrized
differentially. In our biological example, we decrease the number
of parameters from 1,106 to 272, without increasing the error
disproportionately.

We show that this method is applicable to biological
studies by re-analyzing the dataset from Eduati et al. (2017).
Our analysis indicates that the most variable interactions
relate to the PI3k/Akt/ERK axis, in particular the ERK/EGFR
negative feedback. Interestingly, it has been shown that negative
regulation of the MAPK pathway by ERK is a highly complex
mechanism and comprises several components, many of which
are affected by cancer mutations (Lake et al., 2016).

By performing hierarchical clustering on model parameters
after fitting the data to the best model topology, we recover a
grouping of the cell lines that correlates poorly with the genomic
alterations. We hypothesize that this means we capture a degree
of functional heterogeneity that cannot easily be explained by the
cell lines’ genomic features. Further indication that our network
approach is able to recover phenotypical information that is not
obvious in the raw measurements is provided by the pattern of
relatively strong correlation between a number of parameters
and sensitivity to several MEK inhibitors. This observation
fits into the recent developments made in integrating network
modeling approaches with advanced statistical modeling, where
machine-learning methods have been used to successfully predict
sensitivity to single drugs and to drug combinations (El-Chaar
et al., 2014; Way et al., 2018). Further work is needed to quantify
the merits of our regularization scheme when applied in such
context.

Our key contribution is the demonstration that using a simple
measure of parameter coefficients density inside the parameter
space, it is possible to regularize a large network model and
to efficiently group together model parameters for which the
difference is not well supported by the data. By de facto removing
part of the noise in parameter estimates, we are able to decrease
model complexity. Furthermore, our regularization scheme is
easily adaptable to stronger or weaker priors. Equation 8 can be
modified as follows:

U =
1

N

N∑

i=1

Uiwi (10)

with w being the set of relative weights for the different
parameters. When wi = 1∀i, all parameters are regularized

with the same strength. This weighted average allows the
specification of additional prior information, namely that the
structural assumptions might not be true everywhere, or that our
confidence in these assumptions might be stronger in some cases
than others.

It is likely that in the near future, single-cell proteomic
studies will provide ever-larger datasets, therefore challenging
modeling formalisms and requiring them to adapt to larger
number of features (Spitzer and Nolan, 2016). While statistical
analyses have largely benefited from regularized parametrizations
in the form of more predictive models, the current regularization
objectives are not well adapted to the study of signaling
networks.

A natural extension of this regularization scheme is to
consider subsets of M parameters, corresponding to coherent
parts of the model, like known signaling pathways. In that
case, regularization will act simultaneously on the different
constituent parameters of the pathway, and will allow
the determination on cell line-specific pathway activity,
a high-level information which is usually recovered by
ontology-based pathway analysis. However, in such two-
step analysis, the confidence for the different parameters is lost.
In addition, ontology-based analyses use pathway knowledge
from databases, thus suffer from their incompleteness and
inaccuracy.

Finally, although we have demonstrated the applicability of
this novel method to the study of regulatory networks with
logical models, it would be straightforward to extend its use to
other modeling environments. For example, systems of ODEs,
which are often used to model regulatory networks, might
benefit from the addition of a new kind of regularization,
using the same methodology presented in this paper. More
generally, regularization based on the uniformity of coefficients
would in principle be applicable to any type of regression
problem and therefore has the potential to be integrated in many
analytical frameworks, and be relevant to advanced statistical
analysis.
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