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A commentary on

Central-acting therapeutics alleviate respiratory weakness caused by heart failure–induced

ventilatory overdrive

by Foster, A. J., Platt, M. J., Huber, J. S., Eadie, A. L., Arkell, A. M., Romanova, N., et al. (2017). Sci.
Transl. Med. 9:eaag1303. doi: 10.1126/scitranslmed.aag1303

Heart failure (HF) is a chronic, progressive condition that manifests not only in cardiac dysfunction
but also in respiratory dysfunction. Diaphragmatic myopathy is common and contributes to
dyspnea and exercise intolerance in advancing stages of HF (reviewed in Cahalin and Arena,
2015; Dubé et al., 2016). The potential pathophysiological mechanisms driving diaphragmatic
myopathy over the evolution of HF have remained elusive. Long-held views suggest that a HF-
induced increase in lung mechanical load (either from pulmonary edema or lung fibrosis) is the
primary cause of progressive diaphragmatic myopathy (Mahdyoon et al., 1989; Chomsky et al.,
1997; Gheorghiade et al., 2010; Cahalin and Arena, 2015; Dubé et al., 2016). However, Foster
et al. provide compelling evidence for an additional explanation (Foster et al., 2017). In the article
“Central-acting therapeutics alleviates inspiratory weakness caused by HF-induced ventilatory
overdrive” they elegantly demonstrate that initiation of diaphragmatic myopathy is mediated by
a hormonal mechanism independent of lung mechanical load. They used two mouse models of
pressure-overload-induced HF to show that activation of functionally codependent angiotensin
type-1 (AT1) receptors and beta-adrenergic receptors (β-ARs) triggers an excessive central drive to
breathe that underlies the development of diaphragm myopathy. This ventilatory (AbdAlla et al.,
2005) overdrive was associated with increased mRNA expression of PERK (protein kinase R–like
endoplasmic reticulum kinase), hyperphosphorylation-mediated inhibition of EIF2a (eukaryotic
translation initiation factor 2α) and consequent reduction in protein translation and cross-sectional
area of the diaphragm. Given that only blood-brain-barrier (BBB)-permeant antagonists of the
AT1 receptors and β-ARs were able to diminish diaphragmatic myopathy, Foster et al. concluded
that receptors behind the BBB were responsible for ventilatory overdrive. These atrophic changes
preceded detectible evidence of diaphragm force changes and weakness. Thus, ventilatory overdrive
associated with HFmay now be thought of, and perhaps treated, as an early hormonal complication
of the disease.

In our opinion, the important therapeutic impact of the Foster et al., findings is twofold. First,
their study provides rationale for early initiation of treatment to prevent ventilatory overdrive—
perhaps upon diagnosis of HF, but certainly well before lung structural or mechanical changes
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occur. Second, this work highlights the therapeutic importance
of considering the BBB-permeant and other characteristics of
AT1 receptor and βAR blockers used to treat HF. Before
commenting on the pharmacological aspects of the Foster
manuscript it may be instructive to provide clarification of
some of the complex terminology and concepts used in the
manuscript.

VENTILATORY DRIVE AND OVERDRIVE

The drive to breathe is reflected by the frequency of action
potentials that originate at the medullary respiratory center
and are transmitted to the diaphragm via the phrenic nerve
(Whitelaw et al., 1975). This drive to breathe is influenced by
numerous types of sensory information, not the least of which
is chemical. The main finding in the Foster et al. paper is
that blockade of hormones typically elevated in HF significantly
mitigates the increased drive to breathe and diaphragmatic
weakening observed in their murine heart disease model.

Foster et al. use the term “ventilatory drive” to describe
the drive to breathe but there are several other synonyms
including central drive, neural drive, and respiratory drive.
Because measurement of phrenic nerve activity, the most direct
measure of ventilatory drive, is not feasible in humans and
difficult in animals, minute ventilation can be used as a surrogate.
However, in pathological conditions minute ventilation may not
accurately reflect the drive to breathe (Celli et al., 1997). Thus,
in disease states the ventilatory drive to the diaphragm can be
inferred from the magnitude of respiratory pressure generated
by the contracting muscle. In humans the pressure generated
during the first 0.1 sec of a very brief inspiratory occlusion (P0.1)
during a normal tidal breath reflects the ventilatory drive (Celli
et al., 1997). In the Foster study ventilatory drive is approximated
by the inspiratory pressure (PI), which was calculated from
esophageal pressure measured during normal eupneic breathing
in the anesthetized mouse.

Elevated mouth occlusion pressure (P0.1) or inspiratory
pressure (PI) reflects increased activation of the phrenic nerve
and concomitant increased contraction of the diaphragm.

Diaphragmatic weakness is assessed in humans by voluntarily
generating a maximal inspiratory pressure (PImax) (Celli et al.,
1997; Lin and Lin, 2012). Since a volitional maneuver is
not feasible in mice, Foster et al. measured esophageal
pressure during a 25 s tracheal occlusion in anesthetized
mice (PIOOC). In summary, inspiratory pressure is directly
proportional to ventilatory drive, maximal inspiratory pressure
is inversely proportional to diaphragm weakness and, although
the mechanisms are not well understood, chronic elevated
ventilatory drive is associated with diaphragmatic weakness.

Foster et al. use the term “ventilatory overdrive” and
define it as a persistent increase in ventilatory drive triggering
diaphragmatic myopathy. This is a somewhat cumbersome
definition, but deconstructed it essentially reflects the
combination of both an increase in PI and a decrease in
PIOOC. The utility of this somewhat confusing term becomes
apparent in the manuscript discussion where the focus

rests on the effect of hormones to promote progressive
diaphragmatic weakening associated with an increased drive to
breathe.

EARLY RAAS-TARGETED INTERVENTIONS

TO COMBAT DIAPHRAGMATIC MYOPATHY

Although HF is a heterogeneous condition with multiple
etiologies, all etiologies lead to chronic activation of the renin-
angiotensin-aldosterone system (RAAS) and the sympathetic
nervous system (McMurray et al., 2014; McMurray, 2015; Metra
and Teerlink, 2017). The RAAS consists of a two-arm axis:
an excitatory angiotensin II (ANGII)/AT1R/ACE (angiotensin
converting enzyme) arm and a protective AT2R/ACE2 arm.
Increasing evidence suggests that in HF there is an imbalance
to favor the excitatory arm, leading to sympathoadrenergic
activation and that this imbalance is modulated in part in the
cardiovascular-control regions of the brain (reviewed in Zucker
et al., 2014). Therefore, the use of BBB permeant interventions
that restore RAAS balance and/or cause sympathoinhibition are
plausible therapeutic strategies. Certainly, the data in Foster
et al. challenge us to consider the potential application of BBB
permeant pharmacological interventions, especially early in the
HF disease process, to inhibit AT1 receptor- and βAR-stimulated
ventilatory overdrive and mitigate diaphragmatic myopathy.

Nonpharmacological interventions such as physical exercise
may also be important to consider as an early therapeutic strategy
given its positive effects on mortality, morbidity, functional
capacity, and quality of life in HF (De Maeyer et al., 2013). For
instance, aerobic exercise has been shown to dampen RAAS and
sympathoadrenergic activation and reduce the typically elevated
circulating levels of ANGII and catecholamines characteristic of
HF (Coats et al., 1992; Braith et al., 1999; Passino et al., 2006a,b;
Gielen et al., 2010). Additionally, exercise has also been shown
to dampen central RAAS activation (reviewed in Zucker et al.,
2014). Thus, exercise may be an important therapeutic approach
to mitigate respiratory dysfunction in HF via its inhibition of
RAAS and catecholamines. Targeting the respiratory muscles
themselves may also be beneficial given that inspiratory muscle
strength is correlated with exercise capacity and peak oxygen
consumption and is an independent predictor of survival (Meyer
et al., 2001). For example, inspiratory muscle training using a
threshold device, examined across multiple systematic reviews,
has been shown to improve one or more pathophysiological
manifestations of HF such as dyspnea, maximal inspiratory
and expiratory pressures, respiratory muscle strength, muscle
sympathetic activity, and exercise capacity (reviewed in Cahalin
and Arena, 2015). Slow breathing exercises in patients with HF
aims to reduce respiratory rate and improve dyspnea and exercise
tolerance. It has been demonstrated to decrease chemoreflex
activity to hypoxia and hypercapnia and increase baroreflex
activity through improved vagal tone (Bernardi et al., 1998,
2002; Parati et al., 2008). Thus, centrally-targeted AT1 and
βAR receptor modulating pharmaceuticals in combination with
physical exercise early in HF progression may combat ventilatory
overdrive and mitigate respiratory muscle myopathy to improve
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HF symptomatology, exercise tolerance, and potentially severity
classification.

ANGII DRIVE TO BREATHE AND THE

BLOOD BRAIN BARRIER

The notion that ANGII regulates ventilation is not new.
Potter and McCloskey (1979) and Alexander and Lumbers
(1981) showed that ANGII stimulates the drive to breathe in
anesthetized dogs. Subsequent studies showed this to also be
true in dogs that were conscious—where arterial baroreflexes,
not dampened by anesthesia, can inhibit ventilation (Ohtake
and Jennings, 1993). When the blood pressure-raising effects
of infusion of ANGII (a vasoconstrictor) were normalized
by concomitant infusion of SNP (a vasodilator), the ANGII-
mediated drive to breathe was revealed to be quite pronounced
(Ohtake et al., 1993). If this translates to humans, then
pathologically elevated levels of ANGII may indeed cause
ventilatory overdrive.

However, Foster et al., did not measure systemic or brain
levels of ANGII, nor did they speculate about the specific central
location at which ANGII acts to stimulate ventilation. In fact,
they state that the ability of ANGII/catecholamines to cross the
BBB is controversial. In conscious dogs, systemic-derived ANGII
cannot cross the BBB; however, it is still able to centrally stimulate
ventilation by activating circumventricular organ neurons which
effectively lack a BBB but project to medullary cardiorespiratory
control centers behind the BBB (Walker and Jennings, 1994).
Because only BBB-permeant antagonists of the AT1 receptor and
βAR rescued the mice, Foster et al. concluded that receptors
behind the BBB mediate ventilatory overdrive. An alternative
explanation is possible in that the same molecular characteristics
that enable an antagonist to cross the BBB may also allow it
to regulate cell signaling downstream of the AT1 receptor/βAR
heterodimer in a unique way. If true, the BBB-permeant
antagonists may have acted at circumventricular organ neurons,
rather than those behind the BBB, to exert an effect on ventilatory
drive. Yet another possibility is that the chronic disease model
[transverse aortic constriction (TAC)] employed in this study
may have initiated changes in the heterodimer ratio of AT1

receptors to βARs that resulted in signaling changes at the
diaphragm muscle cells themselves, or myopathy secondary to
activation of ventilatory overdrive.

G PROTEIN-COUPLED RECEPTOR

THEORY

βAR and AT1 receptor are two very well characterized G
protein-coupled receptors (GPCRs). GPCRs, the largest family
of cell surface receptors, are implicated in numerous diseases
and thus their signaling pathways are prime targets for
therapeutic intervention (Lefkowitz, 2004). Intra- and inter-
molecular electrostatic forces determine the 3-dimensional shape
of a receptor and thus, its function (Matthew, 1985). The current
GPCR paradigm states that signaling is transduced by both a

G protein-dependent and a G protein-independent/βarrestin-
dependent signaling pathway (Lefkowitz and Shenoy, 2005). For
example, orthosteric binding of a ligand causes the receptor to
shift into a shape which triggers G protein- and/or βarrestin-
dependent signaling (Lefkowitz, 2004). Moreover, each receptor
ligand, based on its molecular structure, can activate these two
signaling pathways with differing efficacies resulting in biased
signaling of one pathway over the other. Also, exogenous drugs,
endogenous molecules and ions that electrostatically interact
with receptor regions (other than the binding pocket) act
as allosteric modulators or receptor signaling. For example,
Zn2+ enhances agonist affinity and second messenger signaling
downstream of the β2AR (beta-2-adrenergic receptor) in
membranes prepared from Sf9 cells (Swaminath et al., 2002).

Adding complexity to GPCR signaling mechanisms, we now
know that two or more molecularly dissimilar and individually
functional GPCRs can combine to form a receptor signaling
complex that has a distinct pharmacology (Angers et al., 2002;
Smith and Milligan, 2010; Rivero-Müller et al., 2013). GPCRs
were typically thought of as monomers capable of signaling
completely independently. Although the majority of receptors
within a specific GPCR type do indeed function as monomers, a
functionally relevant proportion of them can dimerize (Whorton
et al., 2007). In 2003 Barki-Harrington et al. (2003) were the first
to show that AT1 receptor and βAR heterodimerize. Moreover,
they demonstrated that the tachycardic effect of isoproterenol
was inhibited by either propranolol or valsartan in mice. Since
publication of that seminal finding, numerous other investigators
have described receptor heterodimerization (Barki-Harrington
et al., 2003; Noma et al., 2007; Tilley, 2011; Siddiquee et al., 2013;
Wilson et al., 2013). The electrostatic interactions derived from
the close proximity of receptors within the heterodimer complex
impacts receptor conformation and thus, signaling (Kenakin and
Miller, 2010). Moreover, pathway intermediates downstream of
one receptor can exert lateral allosterism on the other receptor
in a heterodimer (Wilson et al., 2013). Taken together, receptor
heterodimers are allosteric machines where activation of a
receptor in its monomer form does not necessarily yield the
same physiological outcome as its activation when complexed
as a heterodimer (Goupil et al., 2013). Thus, alterations in the
ratio of monomer to heterodimer may occur during times of
stress and lead to pathogenesis. For example, angiotensin and
bradykinin 2 receptor heterodimers sensitize vascular smooth
muscle cells to the pro-contractile effects of ANGII (AbdAlla
et al., 2000). This has been shown to contribute to experimental
hypertension (AbdAlla et al., 2005) and human preeclampsia
(AbdAlla et al., 2001). Additionally, the work from Siddiquee
et al. (2013) concludes that loss of apelin or its receptor, which
tonically inhibits AT1 receptor signaling as part of a heterodimer,
may lead to pathogenesis in cardiovascular disease.

Although AT1 receptor and βAR transmodulation clearly
underlies the results in the Foster et al., it is prudent to
consider that biased cell signaling may also play a role
through its effect on heterodimer signaling. Others have
shown that [Sar1,Ile4,Ile8]-ANGII (SII), a βarrestin-biased
angiotensin receptor agonist, inhibits/dampens bradykinin 2
receptor signaling (Wilson et al., 2013). Thus, a ligand that
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triggers biased signaling at one heterodimer receptor type may
in turn impact signaling of the second receptor type. This type
of lateral allosterism may be at play in HF since carvedilol, and
not metoprolol, is a weak agonist of βarrestin-signaling,(Wisler
et al., 2007) which could be contributing to ventilatory
overdrive.

In summary, the current GPCR signaling paradigm suggests
that a single ligand can trigger more than one signaling pathway
downstream of a particular receptor (G protein and βarrestin
pathways), that these signaling pathways are not necessarily
equally activated (biased signaling) and that signaling at one
receptor can modulate the signaling at a second receptor family
(heterodimer transmodulation). Regulation of GPCR signaling
is extremely complex and our current understanding of how
most pharmacologic drugs, including those used in this study,
impact βarrestin-dependent-, biased- and heterodimer-signaling
is incomplete, as is the cell specificity of the drug effects.
Moreover, how the ratio of monomer to heterodimer receptors
may impact pathology (or vice-versa) is largely unexplored in
the context of drug design. Although a daunting task, the
design of novel molecules that have pluridimensional efficacies
holds great promise for treatment of multiple morbidities

associated with complex diseases such as HF and diaphragmatic
myopathy.

CONCLUSION

The Foster et al., study significantly advances our understanding
of diaphragmatic myopathy and helps to reconcile why
various drugs with comparable cardiovascular effects can have
differing benefits on symptomatology and mortality and reveal
potential pathways for early intervention and future translational
investigations.
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