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Boolean networks with asynchronous updates are a class of logical models particularly

well adapted to describe the dynamics of biological networks with uncertain measures.

The state space of these models can be described by an asynchronous state transition

graph, which represents all the possible exits from every single state, and gives a global

image of all the possible trajectories of the system. In addition, the asynchronous state

transition graph can be associated with an absorbing Markov chain, further providing

a semi-quantitative framework where it becomes possible to compute probabilities for

the different trajectories. For large networks, however, such direct analyses become

computationally untractable, given the exponential dimension of the graph. Exploiting

the general modularity of biological systems, we have introduced the novel concept of

asymptotic graph, computed as an interconnection of several asynchronous transition

graphs and recovering all asymptotic behaviors of a large interconnected system from

the behavior of its smaller modules. From a modeling point of view, the interconnection

of networks is very useful to address for instance the interplay between known biological

modules and to test different hypotheses on the nature of their mutual regulatory links.

This paper develops two new features of this general methodology: a quantitative

dimension is added to the asymptotic graph, through the computation of relative

probabilities for each final attractor and a companion cross-graph is introduced to

complement the method on a theoretical point of view.

Keywords: asynchronous Boolean networks, module interconnection, state transition graph, attractor

computation, biological regulatory networks

1. INTRODUCTION

An intuitive representation of system interactions, an algorithmic description of state transitions,
and the capacity to capture the global dynamics of the system, list some of the advantages of Boolean
models, which remain a powerful tool in the modeling and analysis of biological networks (Wang
et al., 2012; Abou-Jaoudé et al., 2016). Successfully predictive examples of Boolean models cover
complex networks across many different organisms, from cell cycle (Li et al., 2004; Fauré et al.,
2006), to fly or plant morphogenesis (Albert and Othmer, 2003; García-Gómez et al., 2017), and
highly complex networks such as T-cell induction (Mendoza and Xenarios, 2006; Saez-Rodriguez
et al., 2007), leukemia (Zhang et al., 2008) or apoptosis (Calzone et al., 2010).
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In a modular view of a biological organism, each task is
executed by a specific set of interactions among an ensemble
of biological components; in other words, it can be said
that there is a specifc network, or module, for each specific
task (signaling, metabolic, physiological, etc.). These modules
often interact with each other, one task triggering the next
in a chain of events or cyclic phenomena. Examples include
chains of signaling networks such as MAPK cascades, genetic-
metabolic interactions (Baldazzi et al., 2010), or coupled
oscillations (Gérard and Goldbeter, 2012). However, in many
cases, while experimental evidence supports the existence of
links between two modules, their modes of interaction are still
unclear (as in the case of mammalian cell cycle and circadian
clock, see Feillet et al., 2015). In this context, mathematical
tools are necessary to facilitate the analysis of the complex
behavior obtained from the interconnection of two or more
known modules.

One of the challenges in the analysis of Boolean networks
is attractor computation, particularly for high-dimensional
networks. For a network of dimension n, the size of the state
transition graph is 2n. A direct analysis of such a graph may
become computationally costly, in terms of space and time,
when n ≥ 20. This is especially true with asynchronous
updating, which includes numerous dynamical trajectories. Two
very efficient methods have recently been developed: Zañudo and
Albert (2013) compute all attractors of a network (up to n ≈
100), by isolating special properties of the state transition graph’s
components; Veliz-Cuba et al. (2014) compute all singletons
(attractors containing a single state) for networks up to n = 1,000,
by using a computational algebra approach.

In this paper, we propose a methodology aimed specifically at
analyzing the interconnection between several known Boolean
modules. The interconnection between two biological networks
can be very hard to test in vivo: our methodology provides
a platform for hypothesis testing, confirming or disproving
assumptions regarding mutual regulatory effects, simulating
and comparing various forms of interconnection schemes and
corresponding emergent dynamical behavior. Our method relies
on the construction of a new object, the asymptotic graph,
introduced by Tournier and Chaves (2013), which is a directed
graph constructed only from the set of attractors of each
module and that captures all the asymptotic behaviors of the
interconnected network.

After a brief review of Boolean network interconnections,
two improvements to the asymptotic graph are introduced in
this paper, to mitigate two of its known limitations. First,
it was observed that the asymptotic graph may also recover
spurious attractors, in addition to the true attractors of the
full network (Tournier and Chaves, 2013); we introduce an
extension, called the cross graph that solves this issue from a
theoretical point of view. The cross graph is constructed from
the set of strongly connected components of each separate
module, while the asymptotic graph is constructed from terminal
strongly connected components only. Second, to enrich the
traditional ON/OFF representation inherent to Boolean models,
we propose a method to assign probabilities to the edges of the
asymptotic graph, thereby allowing a probabilistic representation

of the various possible trajectories of the composed network.
Our methodology is applied first to a class of general randomly
generated Boolean models and then to two state-of-the-art
biological models in two different organisms: (i) to explore the
interplay between mammalian cell cycle and circadian clock
oscillators and (ii) to test hypotheses on the regulatory links
between budding yeast cell cycle and cell size, where our analysis
suggests that the START signal should come from mitosis phase.

2. INTERCONNECTIONS OF
ASYNCHRONOUS BOOLEAN NETWORKS:
A SHORT REVIEW

Throughout this paper, we will consider Boolean networks under
asynchronous updates. An interconnected Boolean network is,
briefly, the combined network formed by linking together, in
an approriately prescribed way, two or more separate Boolean
modules. In previous works (Chaves and Tournier, 2011;
Tournier and Chaves, 2013) we have introduced a new object,
the asymptotic graph, that characterizes the attractors of the
combined Boolean network in terms only of the attractors of the
separate modules—hence with no need to compute the larger
state transition graph. In the following, the definition of the
main objects needed to introduce the asymptotic graph are briefly
reviewed.

2.1. IO Asynchronous Boolean Networks
and Their Interconnections
Let us start by a brief recall of the definition of an input-
output asynchronous Boolean network (IO ABN), reprising the
notation introduced by Tournier and Chaves (2013). An IO
ABN 6A is characterized by three integers nA, pA, qA (nA > 0
is the dimension of the system, pA, qA ≥ 0 are respectively
the numbers of inputs and outputs) and by two Boolean maps:
f A : {0, 1}pA × {0, 1}nA → {0, 1}nA (the transition function) and
hA : {0, 1}nA → {0, 1}qA (the output function). For any given
input profile u ∈ {0, 1}pA , the asynchronous dynamics of the
network are given by the asynchronous transition graph GA,u,
which is a digraph over the vertex set {0, 1}nA defined as follows:
for any state x = (x1, . . . , xn) ∈ {0, 1}

nA , the set of its successors
are the states (x1, . . . ,¬xi, . . . , xn), for all i ∈ {1, . . . , n} such
that f Ai (u, x) 6= xi. The number of vertices of such a graph is
2nA and its number of arcs, denoted by mA, verifies 0 ≤ mA ≤

nA2nA . It is therefore relatively sparse and can thus be efficiently
stored by a 2nA × 2nA adjacency matrix. In the following, we
will consider that GA,u designates this matrix. Given two integers
i, j ∈ {1, . . . , 2nA}, the (i, j) entry of the adjacency matrix equals
1 if state j is a successor of state i and 0 otherwise. In a classical
abuse of notation, we associate each integer i ∈ {1, . . . , 2nA} with
its binary representation x ∈ {0, 1}nA in lexicographic order, with
the left-most bit being the most significant one; in other words:
i − 1 =

∑nA
k=1 xk2

nA−k. Thus, we will indifferently call state
either an integer i ∈ {1, . . . , 2nA} or its Boolean representation
x ∈ {0, 1}nA .

EXAMPLE 1. Consider the bidimensional single-input, single-
output (SISO) network defined by: f A(u, x1, x2) = (u, x1) and
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hA(x1, x2) = x2. Graphically, this network can be represented as
a simple cascade u → x1 → x2. Its dynamics are characterized
by the two graphs GA,0 and GA,1, represented below in graphical
and matricial forms:

GA,0
:

10 → 11
↓ ↓

00 ← 01









0 0 0 0
1 0 0 0
1 0 0 1
0 1 0 0









,

GA,1
:

01 → 00
↓ ↓

11 ← 10









0 0 1 0
1 0 0 1
0 0 0 1
0 0 0 0









.

In adjacency matrices, by convention the (i, j) entry equals 1 iff
state j is a successor of state i. Here, the four states (rows and
columns of the matrix) are intended in the following order: 00,
01, 10, 11. In GA,0, state 00 does not have any successor, implying
the first row of its adjacency matrix is zero: 00 is a steady state of
the network. Similarly, 11 is a steady state of GA,1. �

Classically, an asynchronous transition graph GA,u is analyzed
by first computing its decomposition into strongly connected

components (SCCs), denoted by A1
u, . . . ,A

NA
u

u , where 1 ≤ NA
u ≤

2n. The set of all SCCs forms a partition of the state space {0, 1}nA

and their computation can be efficiently achieved inO(2nA+mA).
By contracting each SCC to a single vertex, a directed acyclic
graph (dag) is constructed, sometimes called condensation graph
or simply SCC graph. This dag provides a useful description of
key dynamical behaviors of the network; in particular terminal
SCCs (the leafs of the dag) correspond to the attractors of the
network. More details about these graph theoretical tools can be
found, for instance, in the textbook by Cormen et al. (2001).

Consider now two IO ABN 6A and 6B, of respective
dimensions (nA, pA, qA) and (nB, pB, qB) and state variables
x ∈ {0, 1}nA and y ∈ {0, 1}nB . Note that all the methods
presented in this paper generalize to more than two modules;
however, in order to maintain a clear exposition of the
results, the definitions are given for interconnections of two
modules. An interconnection scheme of 6A and 6B consists
in two interconnecting functions µA : {0, 1}qB → {0, 1}pA and
µB : {0, 1}

qA → {0, 1}pB mapping the outputs of each module to
the inputs of the other module. For convenience, throughout this
paper we will make the assumption that qB = pA and qA = pB
and that the interconnecting functions are simply identity maps.
Following Tournier and Chaves (2013), with this assumption
the resulting interconnected network is the ABN of dimension
nA + nB, with no input and no output, defined by the following
transition function:

f : {0, 1}nA × {0, 1}nB −→ {0, 1}nA × {0, 1}nB

(x, y) 7−→
(

f A(hB(y), x), f B(hA(x), y)
)

.
(1)

One can then consider the interconnection as a standalone
network: its transition graph G can be constructed from this
transition function f . Alternatively, one can also build the graph
G directly from the set of transition graphs GA,u, u ∈ {0, 1}pA and

GB,υ , υ ∈ {0, 1}pB as follows. Let (x, y) and (x′, y′) be two Boolean
vectors in {0, 1}nA × {0, 1}nB , then (x′, y′) is a (asynchronous)
successor of (x, y) if

• either x = x′ and y′ is a successor of y in GB,hA(x),

• or y = y′ and x′ is a successor of x in GA,hB(y).

It is possible to summarize this definition in a simple matricial
form. First, for each α ∈ {0, 1}qA , introduce the 2nA×2nA diagonal
Booleanmatrix1A,α such that

[

1A,α
]

ii
= 1 if the output of state i

is equal to α and 0 otherwise. Similarly, for module6B introduce
the 2nB × 2nB diagonal Boolean matrices1B,β , with β ∈ {0, 1}qB .
Then, G can be reconstructed by the formula:

G : =
∨

(α,β)∈{0,1}qA×{0,1}qB

(

GA,β ⊗1B,β ∨1A,α ⊗ GB,α) , (2)

where⊗ designates the classical Kronecker product. By replacing
matrices 1 with identity matrices, one may recognize in this
definition of G the notion of Cartesian product of graphs,
first introduced by Sabidussi (1959). To be more precise, (2)
generalizes the notion of Cartesian product to interconnections,
by including only transitions that are consistent with the input-
output scheme.

EXAMPLE 2. Consider module 6A defined in Example 1 and let
the one-dimensional SISOmodule6B defined by f B(υ , y1) = ¬υ
and hB(y1) = y1. Its dynamics are given by

GB,0 =

(

0 1
0 0

)

, and GB,1 =

(

0 0
1 0

)

.

The interconnected network can be reconstructed by using (1),
leading to the 3-dimensional transition function f (x1, x2, y1) =
(y1, x1,¬x2). Alternatively, the transition graph G can also be
computed directly as the interconnection of the dynamics of the
two separated modules by using (2):

G =
(

GA,0 ⊗1B,0) ∨
(

GA,1 ⊗1B,1) ∨
(

1A,0 ⊗ GB,0) ∨
(

1A,1 ⊗ GB,1) ,

=









0 0 0 0
1 0 0 0
1 0 0 1
0 1 0 0









⊗

(

0 0
0 1

)

∨









0 0 1 0
1 0 0 1
0 0 0 1
0 0 0 0









⊗

(

1 0
0 0

)

∨









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0









⊗

(

0 1
0 0

)

∨









0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1









⊗

(

0 0
1 0

)

,

=

























0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1
1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0

























.

In graphical form, this transition graph G of the interconnected
network can be represented as:
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This graph has a unique attractor, composed of six states:
{001, 101, 111, 110, 010, 000}. �

In the present paper, note that we assume the modules and the
interconnection scheme are given. It is also possible to consider
interconnections as a general model reduction technique, where
a large network is first decomposed into a priori unknown sub-
networks. The identification of an efficient decomposition, with
the corresponding interconnecting scheme, would then become
critical. This problem is related to the general problem of graph
partitioning and is addressed elsewhere (Tournier and Chaves,
2013).

2.2. The Asymptotic Graph of an
Interconnection
We can now give the definition of the asymptotic graph (Tournier
and Chaves, 2013). First, list all the terminal SCCs of module
6A:

{

Ai
u, u ∈ {0, 1}

pA , 1 ≤ i ≤ LAu
}

and cut them with respect to
their outputs, ie. define, for each output profile α ∈ {0, 1}qA ,
the set Ai

uα : =
{

x ∈ Ai
u, h

A(x) = α
}

. For some α such a set
may be empty, in that case we will simply omit it. Similarly,

define
{

B
j
υβ , υ ∈ {0, 1}

pB ,α ∈ {0, 1}qB , 1 ≤ j ≤ LBv

}

for module

6B. The asymptotic graph of the interconnection is then defined
as the directed graph Gas = (Vas,Eas) such that the vertex set Vas

is composed of all the cross products Ai
uα × B

j
υβ and the arc set

Eas is constructed as follows:

• Ai
uα × B

j
vβ → Ai′

βα′
× B

j
vβ iff there exist x ∈ Ai

uα , x
′ ∈ Ai′

βα′

such that there exists a path from x to x′ in GA,β ,

• Ai
uα×B

j
vβ → Ai

uα×B
j′

αβ ′
iff there exist y ∈ B

j
vβ , y

′ ∈ B
j′

αβ ′
such

that there exists a path from y to y′ in GB,α .

Finally, introduce the function π as follows: if V = Ai
uα × B

j
υβ ∈

Vas, π(V) : = {(x, y), x ∈ Ai
uα , y ∈ B

j
vβ} and if R ⊆ Vas,

π(R) : =
⋃

V∈R π(V). The interest of the asymptotic graph lies in
the following theorem, a proof of which can be found in Tournier
and Chaves (2013).

THEOREM 1. If Q is an attractor of the interconnected network,
then there exists a terminal SCC R of Gas such that π(R) ⊆ Q.

EXAMPLE 3. Consider the interconnection of Example 2 above.
The asymptotic graph is given by

A1
00 × B101 → A1

11 × B101
↑ ↓

A1
00 × B110 → A1

11 × B110

with:















π(A1
00 × B101) = {001},

π(A1
11 × B101) = {111},

π(A1
11 × B110) = {000},

π(A1
00 × B110) = {110}.

Therefore, Gas is composed of a single terminal SCC R, and
π(R) = {001, 111, 000, 110} is actually included into the (unique)
attractor of the interconnected network. �

Thanks to Theorem 1, the asymptotic graph is a powerful analytic
tool as it recovers all the attractors of an interconnection (without
missing any), by constructing a graph significantly smaller than
the full interconnected graph G (section 4 below provides
numerical results for random interconnections). However, it may
happen that some terminal SCC of Gas does not correspond to
an actual attractor of the interconnection. Such terminal SCCs,
called spurious attractors, appear very rarely and there exist
some sufficient conditions to detect a priori spurious attractors
in certain cases. The most simple one, particularly useful for
biological applications is the fact that when R is a singleton then it
cannot be a spurious attractor. The proof, along with additional
conditions are provided elsewhere (Tournier and Chaves, 2013;
Chaves and Carta, 2015).

3. NEW ANALYSIS TOOLS

This section describes our new contributions. Our first goal
is to improve the asymptotic graph construction to avoid the
generation of spurious attractors (section 3.1) and our second
goal is to update the asymptotic graph by adding quantitative
information (probabilistic) on the state transitions (section 3.2).

3.1. A Theoretical Tool to Recover All the
Dynamics of an Interconnection
The asymptotic graph of an interconnection is constructed only
from the modules’ attractors, generally implying a relatively
manageable size allowing to analyze a wide range of practical
examples of interconnections (see sections 4 and 5). Nevertheless,
ignoring transient dynamical behaviors of the modules also
implies two drawbacks for Theorem 1. First, spurious attractors
may appear, although this phenomenon seems to be relatively
rare as illustrated in section 4. Second, when a terminal SCC
of Gas corresponds to an actual attractor, Theorem 1 only
ensures an inclusion, meaning the predicted attractor may
contain only a small proportion of states that are in the real
attractor. We now propose a new graph, called the cross-graph,
overcoming those two issues and ensuring, at the price of a higher
computational cost, a one-to-one recovery of all the attractors
of the interconnected network. Note that Tournier and Chaves
(2013) already introduced a notion of cross-graph, however the
cross-graph described in the following is significantly improved.
In particular, its size is bounded by the size of the full
interconnected graph, which was not the case for the older
version.

Let 6A and 6B be two IO ABN of respective dimensions
(nA, pA, qA) and (nB, pB, qB). As before, suppose for convenience
that pA = qB, pB = qA and the interconnecting maps are
simply identity maps. We also assume that each module has been
separately analyzed: the transition graphs GA,u, u ∈ {0, 1}pA

and GB,υ , υ ∈ {0, 1}pB have been constructed and decomposed
into strongly connected components

{

Ai
u, 1 ≤ i ≤ NA

u

}

for each

u ∈ {0, 1}pA and
{

B
j
υ , 1 ≤ j ≤ NB

u

}

for each υ ∈ {0, 1}pB . Let G
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denote the full transition graph of the interconnected network, of
size 2nA+nB . It can be computed thanks to (2), by interconnecting
the modules’ transition graphs. The idea behind the cross-graph
is to generalize formula (2) in order to interconnect directly the
SCCs of those graphs instead of the whole graphs themselves,
thus potentially saving a significant amount of space when
constructing the dynamics of the interconnection.

First, observe that the strongly connected components
{

Ai
u, 1 ≤ i ≤ NA

u

}

form a partition of the state space {0, 1}nA of
module6A (NA

u are integers verifying 1 ≤ NA
u ≤ 2nA ). Therefore,

for u varying in {0, 1}pA we obtain 2pA partitions of the same
finite set � = {0, 1}nA . Let P� denote the set of all partitions
of �. Given two partitions P1, P2 ∈ P�, P1 is said finer than
P2, denoted by P1 ≤ P2 if, for each element p in P1 there is an
element q in P2 such that p ⊆ q (in other words, partition P1 is a
fragmentation of partition P2). The set (P�,≤) has the structure
of a geometric lattice (see eg. Birkhoff, 1940). Consequently, for
any set S ⊆ P�, there exists a (unique) greatest lower bound of S
denoted by

∧

S ∈ P�. Coming back to the SCC decompositions,
introduce the following partition:

ZA
: =

∧

u∈{0,1}pA

{

Ai
u, 1 ≤ i ≤ NA

u

}

,

=
{

A1, . . . ,ANA
}

,

which is the coarsest partition of {0, 1}nA that is finer than every
SCC decomposition of all the transition graphs GA,u. Once this
partition is constructed, following the same idea as before it is
further refined by cutting each set Ai according to their outputs:
Ai
α : =

{

x ∈ Ai, hA(x) = α
}

, with the convention that such
sets are simply omitted when they are empty. Therefore, we
finally obtain a partition ZA

h
=

{

Ai
α , 1 ≤ i ≤ NA,α ∈ {0, 1}qA

}

of the state space {0, 1}nA that is compatible with every
SCC decompositions of the dynamics of modules 6A. By
construction, the number of elements in this partition, denoted
by MA, verifies 1 ≤ MA ≤ 2nA . Applying the exact same
procedure for module 6B, one obtains a similar partition

ZB
h
=

{

B
j
β , 1 ≤ j ≤ NB,β ∈ {0, 1}qB

}

of the state space {0, 1}nB ,

containingMB elements.
Once partitions ZA

h
and ZB

h
are defined, the construction of the

cross graph closely resembles the one of the asymptotic graph.
The cross graph is the digraph Gcr = (Vcr ,Ecr), where the vertex

set Vcr is composed of all cross-products Ai
α ×B

j
β and the arc set

is constructed as follows:

• Ai
α×B

j
β → Ai′

α′
×B

j
β iff there exist a ∈ Ai

α , a
′ ∈ Ai′

α′
such that

there is a transition from a to a′ in graph GA,β ,

• Ai
α×B

j
β → Ai

α×B
j′

β ′
iff there exist b ∈ B

j
β , b
′ ∈ B

j′

β ′
such that

there is a transition from b to b′ in graph GB,α .

There is also a matricial form for the definition of Gcr . First,
project each transition graph GA,u onto ZA

h
, leading to 2pA

graphs, represented by their MA ×MA adjacency matrices HA,u,
u ∈ {0, 1}pA . These projections can be rather straightforwardly
achieved since ZA

h
is a fragmentation of the SCC decomposition

of GA,u. Second, for each α ∈ {0, 1}qA , introduce the MA × MA

diagonal matrix 1A
α such that entry

[

1A
α

]

ii
= 1 if the output of

the i-th element of ZA
h
is equal to α and 0 otherwise. Once similar

objects HB,υ and 1B
β have been constructed for module 6B, the

cross-graph is simply defined by a generalization of formula (2):

Gcr
: =

∨

(α,β)∈{0,1}qA×{0,1}qB

(

HA,β ⊗1B,β ∨1A,α ⊗HB,α) . (3)

EXAMPLE 4. To illustrate this definition, let us consider two 2-
dimensional, single-input single-output modules 6A and 6B,
defined by their transition graphs given in Figure 1A and their
output functions hA(x) = x2, hB(y) = y1. The full transition
graph of the interconnection, built from (2), is depicted in
Figure 1B and the cross-graph is depicted in Figure 1C: it is
constructed from the two partitions ZA

h
= {{00, 10}, {01, 11}} =

{{∗0}, {∗1}} and ZB
h
= {{00}, {10}, {01}, {11}}. �

The interest of the cross-graph lies in the following theorem,
establishing the one-to-one correspondence between the
terminal SCCs of Gcr and the attractors of the interconnected
network.

FIGURE 1 | Comparison between the cross graph of an interconnection and

the full transition graph. (A) Transition graphs of two SISO modules (see

Example 4); (B) full transition graph G of the interconnection; (C) cross graph

Gcr of the interconnection. For each graph, dotted regions denote strongly

connected components. There is a bijection between the SCC decomposition

of the two graphs G (16 vertices) and Gcr (8 vertices), illustrating Theorem 2.
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THEOREM 2. Graphs G and Gcr have the same decomposition into
strongly connected components. Furthermore, terminal SCCs of
Gcr fully recover the attractors of the interconnected network.

A proof of Theorem 2 is given in appendix. The size of the
cross-graph is MA × MB, which by construction is always less
or equal than 2nA+nB , the size of the full interconnected graph G.
The difference in size between the two graphs may vary greatly,
and strongly depends on (i) the SCC decompositions of the
two modules and (ii) as for the asymptotic graph, the numbers
of inputs and outputs (and therefore the general modularity of
the initial network). Part 4 proposes a brief evaluation of the
performance of the method for a set of randomly generated
interconnections. Although the interest of the cross-graph is
mainly theoretical, in certain practical cases the full graph G can
be too big to be stored easily while Gcr could.

Two possible extensions of the cross-graph method are noted
here. First, Bérenguier et al. (2013) proposed a compression of the
SCC graph of a network, called the hierarchical transition graph
(HTG). As the cross-graph is constructed from a combination
of the modules’ SCC decompositions, it would be possible
to consider similarly a combination of the modules’ HTG
decompositions. Benefiting from the compactness of HTGs, such
a construction would be even more compact than the cross-
graph. Second, note that both the cross graph and the asymptotic
graph methods require prior analysis of the modules’ dynamics
and the computation of their attractors, implicitly implying the
dimensions of the modules are manageable. For a large network,
Zañudo and Albert (2013) proposed an efficient characterization
of attractors with the notion of “stable motifs,” based on the
network’s interaction graph (see also Klarner et al., 2015). When
considering interconnections of large modules, the investigation
of the stable motifs of an interconnection would therefore
constitute an interesting extension of Theorem 2.

3.2. A Probabilistic Asymptotic Graph
One of the limitations of Boolean models is the lack of
quantitative details: while the state transition graph describes all
possible dynamical behaviors, it gives no indication as to which
trajectory is more likely to be observed under a given set of
initial conditions. To circumvent this problem, Boolean models
can be combined with probabilistic frameworks that account
for biological perturbations and variability in the logical rules
(Shmulevich et al., 2002; Mori et al., 2015). Another approach
is to exploit the Markov chain description of the transition
graph associated to the asynchronous Boolean model (Calzone
et al., 2010; Stoll et al., 2017). Based on this description, Stoll
et al. (2017) developed the MaBoSS software, which then applies
Gillespie algorithm to produce continuous time trajectories.

We also use the Markov chain description to assign
probabilities to the edges of the asymptotic graph, an
approach which will lead to a more quantitative analysis of
the interconnected network’s dynamics. The output of our
probabilistic asymptotic graph is thus the set of attractors of
the full network, under a particular interconnection scheme,
together with a relative probability for each of them (e.g., “there

is a probability p1 that phenotype Q1 is the outcome of this
experiment”).

The originality of our approach consists in assigning incidence
probabilities to the attractors of each separate module, which
can be obtained through the biological observations and
measurements available for each module. The goal is to include
biological information as an input and provide predictions that
can be confronted to biological observations and therefore lead
to validate or disprove the given interconnecting scheme.

3.2.1. Initializing Incidence Probabilities
Each transition in the asymptotic graph depends on two factors:
which module is first “updated” (A or B) and, in response to an
input change, how frequently does a switch occur from Ai

uα to

Ak
ũα̃ (or from B

j
υβ to Bk

υ̃β̃
). These quantities may be represented

by probabilities, defined a priori, from known data, experimental
observations, or other modeling considerations.

Define

̺A = P(updating module A first).

Assume Boolean module 6A has a total of LA same-output
attractor-sets and6B a total of LB same-output attractor-sets,

{A[i]
: Ai

uiαi
, i = 1, . . . , LA}, {B

[j]
: B

j
υjβj

, j = 1, . . . , LB},

and each of these has a given incidence probability (meaning that
it is observed with a certain frequency) defined as

P(A[i]) = wi
A, i = 1 . . . LA, P(B[j]) = w

j
B, j = 1 . . . LB.

The probabilities wi
A and w

j
B may be assigned in different ways,

for instance using experimental observations, or setting uniform
probabilities (wi

A = 1/LA for all i), or else from the size of their
respective basin of attraction

wi
A =

#basini
∑

i #basin
i
, (4)

but in any case they should satisfy
∑LA

i=1 w
i
A = 1. Using these

initial probabilities, a joint incidence probability may similarly be
defined for each product of attractor-sets:

P(A[i] × B[j]) = wi
Aw

j
B, ⇒

LA
∑

i=1

LB
∑

j=1

P(A[i] × B[j]) = 1.

3.2.2. Transition Probabilities in the Asymptotic Graph
The probability of switching between two attractor-sets of the
same module, but different inputs, can be defined in terms of
conditional probabilities: define sikA to be the probability that
attractor A[k] is reached, conditional to the fact that the initial
state is some ai ∈ A[i]. In other words, wk

A must be weighted by
the probability of ai reaching any attractor in GA,uk :

sikA = P(A[k]|[ai ∈ A[i]]) =
P(A[k])

∑

j∈J P(A[j])
=

wk
A

∑

j∈J w
j
A

, (5)
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where J = {j : uj = uk and ai  A[j]} means that there exists a
path in GA,uk leading from ai to A[j], where A[j] is an attractor of
GA,uk . A similar definition holds for sikB .

Next, we can define the probability associated to an edge of
Vas as:

P(A[i] × B[j]→ A[k] × B[j]) = ¯̺As
ik
A ,

P(A[i] × B[j] → A[i] × B[k]) = (1− ¯̺A)s
jk
B , (6)

with an “effective” probability ¯̺A, computed based on the set of
all ougoing edges from node A[i] × B[j]:

¯̺A =







0, A[i] ≡ A[k]

1, B[j] ≡ B[k]

̺A, otherwise.
(7)

In other words, ¯̺A = 0 if all outgoing edges have a fixed A-
attractor, A[i] × B[j] → A[i] × B[k]; ¯̺A = 1, if all outgoing edges
have a fixed B-attractor A[i] × B[j] → A[k] × B[j]; ¯̺A = ̺A if
outgoing edges may be of both types.

Note that these definitions ensure that the probabilistic
asymptotic graph matrix has the property that all rows add up
to 1:

∑

k

P(A[i] × B[j]→ A[k] × B[j])

+
∑

k

P(A[i] × B[j]→ A[i] × B[k])

=
∑

k

¯̺As
ik
A +

∑

k

(1− ¯̺A)s
jk
B = ¯̺A + (1− ¯̺A) = 1

since both
∑

k s
ik
A = 1 and

∑

k s
jk
B = 1.

3.2.3. Relative Probabilities of the Attractors of an

Interconnection
If the asymptotic graph Gas has two or more attractors,
in addition to the transition probabilities, another useful
information is the frequency of observing a given attractor, or
in other words the relative probability of each attractor of the
interconnection. This probability can be computed from the SCC
graph GSd = (VSd,ESd) corresponding to Gas, which is an
acyclic graph and can be represented by an absorbing Markov
chain. By definition, VSd is composed of the strongly connected
components of Gas. Let C ∈ VSd contain LC elements of Vas.
Define the incidence probability of observing C as:

P(C) =
LC
∑

ℓ=1

P(A[i(ℓ)] × B[j(ℓ)]) =
LC
∑

ℓ=1

w
i(ℓ)
A w

j(ℓ)
B .

Moreover, a probability of transition can also be associated
to each edge of ESd, P(Ci → Cj), computed by adding all
the probabilities of the edges in Eas that link elements of Ci

to elements of Cj. Suppose there are m strongly connected
components, |VSd| = m, and let them×mmatrixM withMij =

P(Ci → Cj), be the absorbing Markov chain associated with the

graph GSd. SupposeM has r absorbing states, {Ck
a : k = 1, . . . , r},

these are also the attractors of GSd. Matrix M can be written in
the following canonical form (Feller, 1970):

M =

[

Q R
0 Ir

]

,

where Ir is the r×r identitymatrix,Q is the (m−r)×(m−r)matrix
of transitions between transient states and R is the (m − r) × r
matrix of transitions from transient states to absorbing states.
SinceM is irreducible, it follows that (I−Q) has an inverse (where
I is the (m − r) × (m − r) identity matrix). Then the probability
that there exists a path from a given state to one of the r absorbing
states is given by the probability of being absorbed by r:

Mabsorp = (I − Q)−1R,

where Mabsorp(i, k) is the probability that transient state i
converges to absorbing state k.

If, in addition, we wish to weigh these absorption probabilities
by the incidence probabilities of observing Ck

a, we can define the
relative probability of an attractor of the asymptotic graph:

Prel(C
k
a) = P(Ck

a)+
m−r
∑

i=1

Mabsorp(i, k)P(C
i), k = 1, . . . , r (8)

where Ck
a denotes each attractor and P(Ck

a) is the incidence
probability of Ck

a.

4. PERFORMANCE ON RANDOM
NETWORKS’ INTERCONNECTIONS

In this part we propose a series of computational experiments to
assess the efficiency of the asymptotic graph and the cross graph
to recover the attractors of random interconnected Boolean
networks. Following the general idea of inputs/outputs at the core
of this paper, we start with a brief description of the algorithm
used to generate random IOmodules.We then present numerical
results computed on random interconnections with varying
connectivity, showing the respective advantages and limitations
of the two methods in practice.

4.1. Generation of Random IO Networks
With Varying Connectivity
The NK-model, introduced by Kauffman (1969), is a general
statistical model to represent random Boolean networks by
controlling their dimension N and their inner connectivity K.
It is used for instance by Zañudo and Albert (2013) and Veliz-
Cuba et al. (2014). Here it is slightly adapted to include inputs
and outputs. Let 6 be an IO Boolean network of dimension
(n, p, q), of transition function f : {0, 1}p × {0, 1}n → {0, 1}n and
output function h : {0, 1}n → {0, 1}q. A usual way to depict such
a network is by its wiring diagram, showing the dependencies
between the different variables of the network. Equivalently, the
wiring diagram can be represented by a (n+q)× (p+n) Boolean
matrix

M =

[

A B

0 D

]

,
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where submatrices A (n× p), B (n× n) and D (q× n) are defined
as follows:

aij =

{

1 if function fi depends explicitly of input variable uj,
0 otherwise,

bij =

{

1 if function fi depends explicitly of variable xj,
0 otherwise,

dij =

{

1 if output function hi depends explicitly of variable xj,
0 otherwise.

Let C designate the matrix [A|B]. The sum of the i-th row of C is
the number of essential variables of logical function fi, also called
the connectivity of fi. Given integers n > 0, p, q ≥ 0 and a real
number Kmean ∈ [1, n], we construct a random IO network of
dimension (n, p, q) and of average connectivityKmean by applying
the following procedure, which generates a dependency matrix
M:

1. Let D : = 0. For each 1 ≤ i ≤ q, pick at random j ∈ {1, . . . , n}
and set dij : = 1.

2. Generate n integers ki in {0, . . . , n+p} according to a binomial
distribution of parameters n + p (number of trials) and Kmean

n+p

(probability of success).
3. Let C = [A|B] : = 0. For each 1 ≤ i ≤ n, pick a

random combination (j1, . . . , jki ) ∈ {1, . . . , n + p}ki (without
replacement) and set ci,jl : = 1 for all 1 ≤ l ≤ ki.

4. Check that each column of A is non-zero; while it is not the
case, repeat step 3.

5. SetM : =

[

C

0 D

]

.

Step 4 ensures the generated module actually depends of every
inputs. Once the dependency matrix M is obtained, the last step
consists in generating the n + q Boolean functions according to
M. A Boolean function of k variables is picked randomly among

the 22
k
possibilities; in case it is degenerate (i.e., at least one of the

k variables is not essential), another one is chosen so as to ensure
exact compatibility withM.

4.2. Complementarity of the Cross and
Asymptotic Graph Methods
With this algorithm, it is possible to generate a IO module
by controlling its inner connectivity, that is the number of
actual dependencies in the wiring diagram. Thus, it becomes
possible to generate random interconnections with varying
degrees of modularity, according to the average connectivity
of each module. We used this algorithm to generate 2,000
interconnections of two modules 6A and 6B of dimensions
(nA, pA, qA) = (nB, pB, qB) = (10, 2, 2):

6A ⇉

⇇
6B , (9)

where the mean connectivity of 6A and 6B varies in {1, . . . , 10}.
For each interconnection, both 10-dimensional modules were
analyzed separately (including the computation of the transition
graphs, their SCC decompositions and the computation of their
attractors), then the cross graph and the asymptotic graph were

computed and compared. The main results are presented in
Figure 2 and summarized below. All computations were made
with Matlab R2016b, The MathWorks, Inc.

First, we compare the respective sizes Ncr and Nas of the
cross and the asymptotic graphs (ie. their number of vertices).
Figures 2A,B show respectively the evolution of log2(N

cr) and
log2(N

as) with respect to the connectivity of the two modules.
Obviously, both Ncr and Nas are below N = 220, which is the size
of the full transition graph of the interconnected network. The
cross graph, which captures both the transient and the asymptotic
dynamics of the interconnection is relatively large, however
its size seems to vary greatly with the modules’ connectivity.
When the connectivity increases, implying a highly modular
interconnection, the ratio Ncr/N can reach very small values,
emphasizing the interest of the cross graph to efficiently store
the dynamics of large, modular interconnected networks. On
the other hand, the asymptotic graph is always much smaller,
several orders of magnitude under the size of the full transition
graph. Contrary to the cross graph, it is particularly small when
the modules have lower connectivity, making it particularly well
adapted for biological networks. Interestingly, its size seems to
reach a plateau when the mean connectivity is above n

2 = 5.
Another way to compare the two approaches is by studying

their average execution times. The times shown in Figure 2C

include the analysis of the two 10-d modules and of the cross and
asymptotic graph methods. The latter comprise the construction
of Gcr (respectively, of Gas), the SCC decomposition of Gcr

(respectively, of Gas) and the reconstruction of the attractors
(respectively, of π(R) for all terminal SCCs R of Gas). For the
cross graph, the majority of the time is taken by the SCC
decomposition of Gcr while for the asymptotic graph, the most
time-consuming step is the construction of Gas itself (data
not shown). For comparison, we also computed the complete
dynamics of the 20-d interconnected network by using formula
(2); on average, such direct method amounted to around 83
seconds (dotted line). Therefore, both methods are faster than
the direct analysis of the full interconnected network. As before,
the asymptotic graph is particularly efficient for low connectivity
modules, while the cross graph is more efficient when the
modules have high connectivity. Interestingly, for connectivity
Kmean = 5 and higher, when both graphs have roughly the same
size, the cross graph method becomes even more rapid than the
asymptotic graph.

Finally, since both graphs were computed it was possible
to evaluate the quality of the asymptotic graph predictions.
Recall that according to Theorem 1, the asymptotic graph has
two drawbacks. First, it may predict spurious attractors and
second, when it identifies a true attractor it only predicts a
subset π(R) of the states lying in the attractor Q. The ratio
|π(R)|
|Q| is called the accuracy of the prediction. Among the 2,000

interconnections, 11 presented spurious attractors that is only
0.55% of the total. In all but one case, only one spurious
attractor was detected. This result confirms the rarity of the
appearance of spurious attractors. In total, we identified 3,693
true attractors. Among them more than 73% were completely
recovered (see Figure 2D); overall, the mean accuracy is about
0.86, exhibiting the excellent predictive power of the asymptotic
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FIGURE 2 | Computational results for 2,000 interconnections of two 10-dimensional modules [according to (9)], split into ten groups of 200 sorted along Kmean, the
mean connectivity of the modules. (A,B) Evolution of the sizes of the cross graph and of the asymptotic graph, log2(N

cr ) and log2(N
as) with respect to the modules’

connectivity (obtained with the routine boxplot of Matlab’s Statistics toolbox). (C) Mean execution time in seconds of the cross and asymptotic graph methods

(logarithmic scale). The dotted line represents the average time of the direct method (analysis of the full interconnected network). (D) Histogram of the accuracies of all

the attractors predicted by the asymptotic graph (3,693 attractors in total).

graph when it comes to uncover the asymptotic behaviors of an
interconnection.

4.3. A Powerful Tool to Analyze Large
Interconnections of Biological Networks
According to the previous results, the asymptotic graph seems
particularly well adapted when the mean connectivity of the
modules is low (≤ 5), which is arguably where biological
networks generally operate (Zañudo and Albert, 2013; Veliz-
Cuba et al., 2014). Therefore we decided to test it further with
higher dimensional interconnections, including four modules
6A,6B,6C,6D of dimension n = 15, with Kmean ∈ {1, . . . , 5},
pA = qA = pD = qD = 1 and pB = qB = pC = qC = 2:

6A →

←
6B →

←
6C →

←
6D (10)

When Ncr < 107, the cross graph was also constructed and
analyzed, in order to check the existence of spurious attractors.
Since the global state space is 260 > 1018, we skipped the last
treatment (identification of the attractors in {0, 1}60) to avoid
possible explosions. Therefore, we only computed the terminal
SCCs of Gas and, when available, the terminal SCCs of Gcr . The
results are presented in Table 1. When Gcr could be analyzed,

we were able to detect spurious attractors in Gas: none were
found. If the cross graph method is not practical for small Kmean,
the asymptotic graph was always manageable, confirming its
practical interest to analyze large biological networks, as long
as they can be expressed as interconnections of modules with a
reasonable number of inputs and outputs.

5. TWO BIOLOGICAL APPLICATIONS

The asymptotic graph construction and its probabilistic
interpretation are now applied to two biological examples,
centered on the mammalian and yeast cell cycles. Both
cases illustrate the asymptotic graph concept, its informative
description of a composite system, and its usefulness for testing
biological hypotheses.

5.1. Mammalian Cell Cycle, Circadian
Clock and Their Interconnection
There are two basic cellular oscillators in mammalian cells:
cell cycle describes the different phases of cellular growth
and division, while circadian clock decribes the mechanism
responsible for anticipating environmental changes and adapting
the organism to deal with these changes (most notably, day-night
differences). The interactions between these two oscillators are
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TABLE 1 | Computational results for 200 interconnections of four 15-dimensional modules [according to (10)], split into five groups of 40, sorted along the mean

connectivity of the modules.

Kmean log2(N
cr ) Time (s) log2(N

as) Time (s)

mean std mean std #treated/(#exp.) mean std mean std #spurious/(#treated)

1 57.3 2.3 − − 0/40 8.5 1.4 9 2 −

2 52.2 4.1 − − 0/40 9.8 1.1 9 7 −

3 42.4 5.7 − − 0/40 11.0 1.4 63 185 −

4 29.6 5.9 493 361 6/40 11.3 1.1 40 51 0/6

5 20.9 4.7 176 223 28/40 11.0 1.0 27 38 0/28

The cross graph is treated (constructed and analyzed) only when Ncr < 107 (log2 (10
7) ≈ 23.25). The column #treated/(#exp.) indicates the number of times it was treated over the

total number of experiments. When it is treated, we further verify the presence of spurious attractors in the asymptotic graph. The column #spurious/(#treated) indicates the number of
times the asymptotic graph predicts a spurious attractor over the number of times the cross graph could be treated. Symbol — indicates that the corresponding value could not be
computed.

still not fully understood, but recent works by Feillet et al. (2014)
and Bieler et al. (2014) have uncovered unexpected bi-directional
links between the two modules. Successful mathematical models
for the cell cycle and clock have been developed, as well as some
studies on their interactions (Gérard and Goldbeter, 2012), but
many questions remain (Feillet et al., 2015).

5.1.1. Mammalian Boolean Modules
At the discrete level, a reference model of the cell cycle was
developed and discussed by Fauré et al. (2006) (see Figure 3). It
comprises 10 variables:

(CycD,Rb,E2F,CycE,CycA, p27,Cdc20,Cdh1,Ubc,CycB),

where CycX (X ∈ {A,B,D,E}) represent four cyclins, each
roughly corresponding to one of the four phases of the cell cycle.
This constitutes our module 6A, and its rules can be found in
the Supplementary Material. The clock model (module 6B) has
7 variables and is based on the work of Comet et al. (2012). To
account for transcription shutdown during mitosis, the input v
negatively affects all mRNAs:

BMAL+ = ¬PCnuc

mPER+ = ¬υ ∧ BMAL

mCRY+ = ¬υ ∧ BMAL

pPER+ = mPER (11)

pCRY+ = mCRY

PC+ = pPER ∧ pCRY

PCnuc+ = PC.

In the clock model,mX and pX denote mRNA and protein coded
by gene X, while PC denotes the complex formed by the proteins
PER and CRY, and PCnuc denotes this complex in the nucleus.

A well established link between these two oscillators is
that protein BMAL acts on the cell cycle, possibly at different
stages (Feillet et al., 2015). In our analysis, we will consider BMAL
acting during G1 phase. Although no conclusive evidence exists
on how the cell cycle may affect the clock, we have considered
that during cell division (or mitosis phase) gene expression is
stopped (in the model, mitosis can be modeled as Cdc20 ∧ CycB,

FIGURE 3 | The interconnected mammalian cell cycle (Left, adapted

from Fauré et al., 2006) and clock (Right, adapted from Comet et al., 2012).

Square symbols represent messenger RNAs. Solid blue arrows denote

input/output connections.

see Figure 3). The interconnection betweenmodules is thus given
by:

u = hB(b) = BMAL, υ = hA(a) = Cdc20 ∧ CycB,

so that u = 0 (resp., u = 1) represents absence (resp., presence)
of BMAL and υ = 1 represents mitosis. In the cell cycle
model, BMAL affects negatively the G1 phase, leading to a logical
equation for cyclin E of the form cycE+ = ¬u∧ (E2F∧¬Rb) (see
Figure 3 and Supplementary Material).

Module 6A has a total of six, and module 6B has a total of
three, same-output attractor sets. For algorithmic convenience,

these are labeled using the lexicographic convention, that is A
j

ûα̂
for û, α̂ ∈ {1, 2}, where “decimal 1 = logical 0” and “decimal 2 =
logical 1.” The attractors for both modules are as follows:

GA,u=0
: A1

11 = {0100010100}, A
2
11(80 states), A

3
12(32 states),

GA,u=1
: A4

21 = {0100010100}, A
5
21(40 states), A

6
22(16 states),

GB,v=0
: B111(57 states), B

2
12(63 states),

GB,v=1
: B322 = {1000000}.
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In the case u = 0, module 6A becomes exactly the original
model constructed by Fauré et al. (2006). Therefore, as expected,
the attractors found for GA,u=0 correspond exactly to those listed
by Fauré et al. (2006). Attractors A1

11 and A4
21 correspond to

a steady state where the only expressed proteins are Rb, p27,
and Cdh1, hence representing the quiescent cell state. The (full)
attractor A2

11 ∪ A3
12 is a cyclic attractor containing 112 distinct

states and corresponds to the known G1/S/G2/M cell cycle
progression (Fauré et al., 2006). Similarly, A5

21 ∪ A6
22 is a cyclic

attractor of the graph GA,u=1, with 56 states. It tends to describe
the cell cycle progression, with the difference that u = 1 implies
CycE ≡ 0. In either of the cyclic attractors, the attractor-sets A3

12
and A6

22 contain states representing mitosis, that is, the output of
any state a ∈ A6

22 ∪ A
3
12 satisfies h

A(a) = Cdc20 ∧ CycB = 1.
The clock mechanism admits a cyclic attractor with 120 states,

B111 ∪ B212, which corresponds to regular circadian oscillations in
the case υ = 0. At mitosis, represented by υ = 1, the clock
network admits a single steady state attractor (B322 = {1000000}),
where all gene expression is arrested.

5.1.2. Asymptotic and Cross Graphs
The asymptotic graph for the interconnection of the two
mammalian oscillators has 18 nodes and two attractors, with
separate basins of attraction (Figure 4):

R1 = {A
1
11 × (B111 ∪ B

2
12),A

4
21 × (B111 ∪ B

2
12)}

R2 = {(A
2
11 ∪ A

3
12)× B111,A

2
11 × B212,A

5
21 × (B111 ∪ B

2
12),

(A5
21 ∪ A

6
22)× B322,A

6
22 × B212,A

3
12 × B322}.

The cross graph contains 54,272 nodes (compare to the full size
of the interconnection, 217 = 131072) and confirms the existence
of exactly two cyclic attractors for the interconnected system and
returns all their elements: attractor R1 is composed of 120 states
and R2 is composed of 13,552 states.

Our methodology predicts two distinct operating modes for
the coupled oscillators: R1 corresponds to a quiescent cell with
oscillatory clock, since it is the product of state 0100010100
representing a quiescent cell in module6A and of cyclic attractor
B111 ∪ B212 representing regular clock oscillations. The attractor
R1 is thus in agreement with observations by Plikus et al. (2013)
(hair cells in quiescent phase seem to have a running clock). In
contrast, R2 represents joint oscillations of the cell progression
cycle (A2

11 ∪ A3
12) and clock (B111 ∪ B212) (see Figure 4 for the

dynamics withinR2). The cell cycle and clockmay jointly oscillate
and alternate states with a regular cycle of cyclin E (which is
present mostly through S phase and mitosis) or eventually switch
to a joint cycle with absence of cyclin E (A5

21×B
1
1· → A2

1·×B
1
11 →

A2
11 × B212 → A5

21 × B11·). However, at mitosis (A3
12), the clock

may switch to its arrested steady state (A3
12 × B111 → A3

12 × B322),
which leads directly to a full degradation of cyclin E in the cell
cycle (A5

2· × B322).
To assign transition probabilities to the asymptotic graph,

there are essentially two elements to define: ̺A which is the
probability of updating first the component from module 6A;
and the incidence probability of each attractor from eachmodule,

wi
A and w

j
B. To compute the incidence probabilities wi

A and w
j
B,

we have used the size of the original basins of attraction of Ai
uα

in 6A and B
j
υβ in 6B, as in (4). However, for both modules, each

attractor can be reached from any state, implying that the joint

incidence probabilities, P(A[i]×B[j]) = wi
A×w

j
B, are equal for all

nodes of the asymptotic graph with: wi
A = 1/6 (i = 1, . . . 6) and

w
j
B = 1/3 (j = 1, . . . 3).
Figure 4 shows the transition probabilities obtained for two

different values of the updating probability ̺A. These two graphs
are very similar, differing only on the most frequent transitions
(bold arrows, above 0.5). As should be expected, whenever the
probability of first updating components from6A is larger (̺A =
0.6), the cell cycle oscillations dominate the global dynamics:
most of the bold transitions in Figure 4 (bottom) concern
switches between attractor-sets of6A. In contrast, circadian clock
oscillations are dominant for ̺A = 0.2 (Figure 4, top). The
evolution frommitosis phase toward cell cycle progression (A3

12×

B322 → A5
21 × B322 or A

3
12 × B322 → A6

22 × B322) is equally probable
for either ̺A.

Computation of the relative probabilities (8) of reaching one
of the attractors of the interconnected network yields

Prel(R1) = 0.333, Prel(R2) = 0.667,

independently of the updating probability ̺A. An interpretation
of these relative probabilities is that, in a typical population of
cells, about one third are arrested in quiescent G0 state while
the other two thirds follow the normal cell cycle progression
G1/S/G2/M.

5.2. Budding Yeast Cell Growth and Cell
Cycle START
Cell cycle and division is intimately linked with cell growth: a
cell cannot divide into two daugther cells if its size is too small.
There are many other factors that play a role in cell division
(concentration of certain proteins, volume), but it remains
unclear how a cell is able to perceive its own size and evaluate
whether all conditions are in place for cell division (Turner et al.,
2012).

In budding yeast, cell cycle is triggered by a START signal
which is dependent on cell size. Li et al. (2004) propose a Boolean
model that accurately describes cell cycle progression, taking
START as an external input and stopping at a G1 phase steady
state. One of the most important proteins involved in START
is cyclin Cln3, which in involved in the G1-S phase transition
and initiates cell cycle in the model of Li et al. (2004). Cyclin
Cln3 forms a complex with another protein Whi3 but, in order
to initiate cell cycle, Cln3 must be folded and released from this
complex, which is achieved with the help of a chaperon protein
Ydj1. Recent work by Aldea et al. (2017) suggests that cell size is
growth rate dependent and thatYdj1 is one of themost important
factors relating growth rate to cell size at START.

5.2.1. Budding Yeast Boolean Modules
A reference discrete model for the cell cycle was developed by Li
et al. (2004). It comprises 11 variables:

(START,MBF, SBF,Cln1,Cdh1, Swi5,Cdc20,Clb5, Sic1,Clb1,Mcm)′
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FIGURE 4 | The probabilistic asymptotic graph for the interconnected mammalian oscillators. Orange colored nodes belong to an attractor: R1 at right and R2 at left.

Bold arrows represent transitions with probability ≥ 0.5. (Top) ̺A = 0.2. (Bottom) ̺A = 0.6.

with START given by Cln3 (see Figure 5; the Boolean rules can
be found in the Supplementary Material).

To describe cell size dependence on growth rate Aldea et al.
(2017) proposes a model where Cln3 competes with a second
hypothetical protein Prot for binding with Ydj1 for folding:

Prot + Ydj1⇌ YP→ ProtF + Ydj1

Cln3+ Ydj1⇌ YC→ Cln3F + Ydj1,

and Prot would be a growth rate dependent protein. Here,
we propose a basic Boolean network of this model, where the
dependence on growth rate is modeled by an input υ :

Ydj1+ = YP ∨ YC ∨ ¬(Prot ∧ Cln3)

YP+ = Ydj1 ∧ Prot

YC+ = Ydj1 ∧ Cln3

Prot+ = υ (12)

ProtF+ = YP

Cln3+ = ¬Whi3

Cln3F+ = YC

Whi3+ = υ .

The competition of Prot and Cln3 for Ydj1 is represented by
the term ¬(Prot ∧ Cln3) in the rule for Ydj1 meaning that, in
the absence of both Prot and Cln3, “free” protein Ydj1 will be
available. Both Prot andWhi3 depend on growth rate, here given
by input υ . Later on, υ will be computed as an output from the
cell cycle model.

Computation of the graphs GA,u and GB,v yields the following
attractors:

GA,u=0
: A1

11 = {00000000000}, A
2
11 = {00000000100},

A3
11 = {00001000000},

A4
1∗ = {00001000100}, A

5
11 = {00110000000},

A6
11 = {01000000100},

A7
1∗ = {01001000100},

GA,u=1
: A8

2∗ = {10110110011}, A
9
2∗ = {11000111011},

A10
2∗ = {11110110011},

A11
2∗ = {11110111011},
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FIGURE 5 | The interconnected yeast cell cycle (Left, adapted from Li et al., 2004) and cell size network (Right, adapted from Aldea et al., 2017). Square symbols

represent messenger RNAs. Solid blue arrows denote input/output connections.

GB,υ=0
: B112 = {10100110},

GB,υ=1
: B221 = {11011001}.

The symbol ∗ inAi
1∗ orA

i
2∗means that the output of this attractor

depends on the function hA(a): three different forms for hA(a)
will be tested (see 13–15 below). For instance, we have hA(A4

1∗) =
2 whenever hA(a) is given by (15), so we should write A4

12; but
hA(A4

1∗) = 1 in the other two cases, hence A4
11.

In the case u = 0, the yeast cell cycle model is exactly
the one studied by Li et al. (2004) hence, as expected, the
seven attractors Ai

1∗ of G
A,u=0 are those listed in Table 1 of this

reference. According to Li et al. (2004), attractor A4
1∗ represents

the G1 steady state and has the largest attraction basin. Attractor
A2
11 is also close to G1 phase and has the second largest attraction

basin. Using the size of the attractions basins, the incidence
probabilities wi

A have been computed according to Equation (4)
and they are listed in Table 2.

5.2.2. Network Interconnection, Asymptotic and

Cross Graphs
To establish a scheme of interconnection, observe that the cell
size model acts on the cell cycle by triggering the start signal, that
is START is given by (folded/free) protein Cln3F. Conversely, the
input of the cell cycle to the cell size module is still unknown,
the combination of variables and/or quantities used by the cell
to detect its own size is a question for further analysis. As an
hypothesis, we will assume that growth rate is detected through
cell phase, since the cell cycle model provides this information.

TABLE 2 | Interconnection of yeast models.

Attractor Boolean representation wi
A

A111 00000000000 0.0802

A211 00000000100 0.0882

A311 00001000000 0.0792

A41∗ 00001000100 0.0893

A511 00110000000 0.0669

A611 01000000100 0.0472

A71∗ 01001000100 0.0490

A82∗ 10110110011 0.0921

A92∗ 11000111011 0.1290

A102∗ 11110110011 0.0749

A112∗ 11110111011 0.2039

Attractor Boolean representation wi
B

B112 10100110 0.5

B221 11011001 0.5

Attractors and incidence probabilities, proportional to the size of each basin of attraction.
For module 6B, there exists a unique attractor for each v, hence w1

B = w2
B. The symbol ∗

means that the output of this attractor depends on the function hA (a): we have A4
12 with

a G1 indicator but A4
11 in the other two cases.

To explore the plausibility of this hypothesis, we will thus
consider three different indicators of the cell cycle phase (M, S,
and G1 phases) and compare the asymptotic graphs of the three
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corresponding interconnection schemes:

M-phase : u = hB(b) = Cln3F, υ = hA(a) = Swi5 ∧ Cdc20,(13)

S-phase : u = hB(b) = Cln3F, υ = hA(a) = Clb5, (14)

G1-phase : u = hB(b) = Cln3F, υ = hA(a) = Cdh1 ∧ Sic. (15)

In the case of growth measured by M phase (hA(a) = Swi5 ∧
Cdc20), the asymptotic graph has a unique, cyclic, attractor
(Figure 6, top):

RM1 =
{

A11
22 × B112,A

11
22 × B221,A

2
11 × B121,A

2
11 × B112,A

4
11×

B221,A
4
11 × B112

}

This information is confirmed and complemented by
computation of the cross graph, which has 524,288 nodes
(= 219). Attractor RM1 is composed of 116,520 states.

Interestingly, although neither 6A nor 6B have periodic
orbits, in this case the interconnected network does exhibit an
oscillatory orbit: at stationary G1 (A4

11) the START signal (B112) is
received and the module6A performs one cell cycle:

A4
11 × B221 → A4

11 × B112 → A11
22 × B112→ A11

22 × B221,

setting Cln3 back to its OFF state (B221) and ending “near” M
phase (A11

22). At this point, the system returns to stationary G1
and repeats the cycle, waiting for cell to grow and again send

FIGURE 6 | The probabilistic asymptotic graphs for the interconnected yeast network, with growth rate measured by different indicators of the cell cycle. Orange

colored nodes belong to an attractor. (Top) M phase indicator, there is exactly one (cyclic) attractor. (Middle) S/G2 phase indicator, there are two single state

attractors and one cyclic attractor. (Bottom) G1 phase indicator, there are six single state attractors.
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the start signal. Two alternative paths are proposed for the cell
cycle, with G1-phase described either by A4

11 or similar state A2
11.

Since Gas contains a unique attractor, its relative probability Prel
is necessarily 1.

In the case of growth rate measured by S phase (hA(a) =
Clb5), the asymptotic graph (Figure 6, middle) has three
attractors, two single steady state and one cyclic attractor:

RS1 =
{

A11
22 × B112,A

11
22 × B221,A

2
11 × B121,

A2
11 × B112,A

4
11 × B221,A

4
11 × B112

}

RS2 =
{

A8
21 × B112

}

RS3 =
{

A10
21 × B112

}

In this case, however, computation of the cross graph shows that
RS1 is a spurious attractor, implying that the asymptotic graph has
lost some information on transient pathways. In practice, the full
graph contains pathways eventually leading from RS1 to either RS2
or RS3. This example shows the importance of verifying whether
any of the asymptotic graph’s attractors is spurious, and hence the
usefulness of a complementary method as the cross graph. In this
situation, the probabilistic interpretation of the asymptotic graph
is unclear. The relative probabilities computed according to (8)
yield equal probabilities for reaching attractors RS2 and RS3 (see
Table 3). In contrast, RS1 must now be interpreted as a transient
set of states.

In the case G1 is used as measure of growth rate, we have
hA(a) = Cdh1∧ Sic and the asymptotic graph (Figure 6, bottom)
has six single state attractors but no cyclic attractor:

RG11 = A4
12 × B221, RG12 = A7

12 × B221,

RG13 = A8
21 × B112, RG14 = A9

21 × B112,

RG15 = A10
21 × B112, RG16 = A11

21 × B112.

All these attractors are confirmed by the cross graph.
Computation of relative probabilities shows that the single steady

TABLE 3 | Attractors of the yeast interconnected system and their relative

probabilities, Prel (Ri ), for different updating probabilities ̺A.

Case S-phase output

Attractor ̺A = 0.2 ̺A = 0.5 ̺A = 0.7

A821 × B112 0.1125 0.0938 0.0813

A1021 × B112 0.1125 0.0938 0.0813

RS1 0.7750 0.8125 0.8375

Case G1-phase output

Attractor ̺A = 0.2 ̺A = 0.5 ̺A = 0.7

A412 × B221 0.1042 0.1266 0.1415

A712 × B221 0.0454 0.0401 0.0365

A821 × B112 0.0829 0.0691 0.0599

A921 × B112 0.1779 0.1585 0.1456

A1021 × B112 0.0674 0.0562 0.0487

A1121 × B112 0.5221 0.5495 0.5678

state A11
21 × B112 is more frequently observed (with a percentage

of around 54%, see Table 3). In this state all proteins of the cell
cycle are expressed except for Cdh1 and Sic1, which characterize
stationary G1 phase. The cell growth module is in a state where
Cln3F is available, thus setting START to 1. The interconnected
system is thus locked in a steady state where the interaction
links are fixed: A11

21 × B112 = 11110111011× 10100110, since the
output of each attractor is equal to the input of the other.

5.2.3. Hypotheses Discrimination
These results appear to support a model for START signal of the
form (12), as suggested by Aldea et al. (2017). Indeed, if cell size
triggers START, then it can be assumed that there is a “critical
size” which will be attained most probably at the end of G2 phase.
And, in fact, the interconnected system exhibits an oscillatory
cycle only in the case of M phase used as cell size indicator. This
cycle is in agreement with cell cycle progression, meaning that the
cell size module is able to trigger the START signal.

In contrast, when G1 or S phases are used as cell size indicator,
the interconnected system has no oscillatory behavior. For the
G1 case, the most frequent steady state (A11

21 × B112) represents
a configuration where the cell size module permanently sets
Cln3F = 1, and does not admit cell size to reset to zero. Note
that G1 is the beginning of the cell cycle and a misleading
indicator of “critical” size; in this case, the “critical” size is so
small that the cell size module sets START permanently to 1
thus preventing the cell cycle to reset to zero and initiate a new
cycle. Cells are locked in a steady state near mitosis and before
early G1.

In conclusion, our analysis shows that neither G1 nor S
phases are reliable cell growth indicators, but components
from M phase are plausible candidates for detecting cell
growth. We point out that the cell size Boolean network
and the feedback interconnection points may admit several
improvements, which are outside the scope of our paper.
Nevertheless, we believe this first approach provides useful hints
on how to further investigate and model the START signal
in yeast.

6. DISCUSSION AND CONCLUSIONS

Our work illustrates a new concept for the analysis of an
interconnection of Boolean networks: the goal is to study the
coupled behavior of two or more modules, using only the
dynamics of each separate module. A new methodology has been
discussed, based on construction of the asymptotic and cross
graphs both representative of the full network transition graph
and guaranteed to compute all attractors of the interconnected
network. The two graphs have different properties but also
complement each other. The cross graph provides exact results,
in the sense that it contains all transient and asymptotic behaviors
of the interconnected network. The asymptotic graph is a lighter
construction containing a minimal number of nodes while
recovering all attractors. In contrast to the cross graph, no
bijection with the full network transition graph is guaranteed,
implying that spurious attractors may appear; however, this
happens at an extremely low rate (less than 1%).
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Construction of the two graphs for random input/output
networks with varying connectivity reveals their
complementarity in terms of modules’ connectivity: for low
connectivity (Kmean ≤ 5), the asymptotic graph is much
smaller (on average 0.01% of the full graph, against 28%
for the cross graph; Figure 2B) and faster to compute; in
contrast, for high connectivity (Kmean > 5), the size of the
cross graph drastically reduces to 0.04% of the full graph
(Figure 2A) becoming even faster to analyze than the asymptotic
graph (Figure 2C). In addition, even though the asymptotic
graph involves a drastic simplification of the state space,
it has an unexpectedly high rate of accuracy, as shown in
Figure 2D.

The practical advantages of ourmethodology are illustrated by
the study of two well known biological networks. Among other
useful characteristics, the asymptotic graph can greatly reduce
the size of the state space, especially in the case of single-input
single-output modules. For instance the mammalian and yeast
interconnected networks, with an average connectivity of K =
2.76 and K = 2.68 respectively, have asymptotic graphs of only
18 and 22 nodes (compared to 217 or 219).

The analysis of the coupling between cell cycle and circadian
clock shows that, according to experimental observations (for
instance by Plikus et al., 2013), the asymptotic graph predicts
that mammalian cells in the quiescent state may have a working
clock. Furthermore, under general hypotheses, the probabilistic
approach predicts that one third of cells are arrested in the
quiescent state but still have circadian oscillations, while the other
two thirds follow a normal cell cycle progression intertwined
with circadian oscillations. In the budding yeast example, we
have explored a recent hypothesis by Aldea et al. (2017) for a
mechanism to trigger the START signal and initiate cell cycle. The
mechanism is based on cell size detection through cell growth

rate. Our analysis supports such a mechanism as a possible
START trigger, and suggests that cell size indicator should come
from an element during M phase.

The advantages of our analysis tools are multiple and
particularly suited to the modeling of biological regulatory
networks: by manipulating existing models as building blocks,
the presented tools allow to rapidly simulate, compare, and
test different coupling schemes or hypotheses on mutual
regulatory effects, and therefore advance in the understanding
of highly modular regulatory networks. The probabilistic
interpretation and the analysis of transient behaviors emerge as
two noteworthy directions for future developments in logical
models.
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APPENDIX

Proof of Theorem 2
Let G = (V, E) be a digraph and let ν, ν′ ∈ V be any two vertices
of G. Introduce the following notation:

• ν →G ν′ means that there is an edge from ν to ν′ in G, i.e.,
(ν, ν′) ∈ E (ν′ is a successor of ν).
• ν ⊲G ν′ means that there exists a path from ν to ν′ in G, i.e.,

there exist k ≥ 0 vertices ν1, . . . , νk such that ν = ν1 →G
ν2 →G . . .→G νk = ν

′ (ν′ is a descendant of ν).
• ν ∼G ν

′ means that there exists a path from ν to ν′ and a path
from ν′ to ν in G (ν and ν′ are mutually reachable from each
other). The relation∼G is an equivalence over V× V.

Remark that according to the definition of partition ZA
h
, any Ai

α

is included in a SCC of each graph GA,u, in other words:

∀a, a′ ∈ Ai
α , ∀u ∈ {0, 1}

pA , a ∼GA,u a′.

For convenience, we introduce the two following maps π and
ψ , establishing relationships between the two vertex sets Vcr and
� = {0, 1}nA+nB .

• For V = Ai
α × B

j
β ∈ Vcr , let π(V) : = {(a, b)| a ∈ Ai

α , b ∈

B
j
β} ⊆ �; and for Q = {V1, . . . ,Vk} ⊆ Vcr , define π(Q) : =

⋃k
l=1 π(Vl) ⊆ �.

• For x = (a, b) ∈ �, by definition of ZA
h
,ZB

h
there is a unique

Ai
α and a unique B

j
β such that Ai

α ∋ a, B
j
β ∋ b. Let ψ(x) : =

Ai
α × B

j
β ; by extension, for S ⊆ �, define ψ(S) : = {ψ(x)| x ∈

S} ⊆ Vcr .

Theorem 2 is a consequence of the two following lemmas.

LEMMA 1. Let x, y ∈ � such that x ⊲G y, then either ψ(x) =
ψ(y), or ψ(x) ⊲Gcr ψ(y).

PROOF: Suppose first that x →G y, that is to say either (i):
x = (a, b) →G (a′, b) = y where a →

GA,h
B(b) a′ or (ii):

x = (a, b) →G (a, b′) = y where b →
GB,h

A(a) b′. These two
cases being perfectly symmetrical, consider for instance case (i).

Let Ai
α , A

i′

α′
and B

j
β be respectively the (unique) sets such that

a ∈ Ai
α , a
′ ∈ Ai′

α′
and b ∈ B

j
β . Two cases are to be considered.

Case 1: suppose Ai
α = Ai′

α′
, then ψ(x) = Ai

α × B
j
β = ψ(y).

Case 2: suppose Ai
α 6= Ai′

α′
. Then according to the definition of

Gcr , from a →GA,β a′ we deduce that ψ(x) = Ai
α × B

j
β →Gcr

Ai′

α′
× B

j
β = ψ(y).

Suppose now that x ⊲G y, ie., x = x1 →G x2 →G . . .→G xk = y.
By applying successively the previous result along that path, we
deduce that either ψ(x) = ψ(y) or ψ(x) ⊲Gcr ψ(y), which
concludes the proof.

LEMMA 2. Let V ,V ′ ∈ Vcr be two vertices of the cross graph.

(i) ∀x, y ∈ π(V), x ∼G y.
(ii) If V ⊲Gcr V

′, then for all x ∈ π(V) and y ∈ π(V ′), x ⊲G y.

PROOF: Let start with assertion (i). Let V = Ai
α × B

j
β , x =

(a, b) ∈ π(V) and y = (a′, b′) ∈ π(V). Since a and a′ both belong
to the same Ai

α , a ∼GA,β a′. In the same way, b ∼GB,α b′. From
there it is easy to verify that (a, b) ∼G (a′, b) ∼G (a′, b′), so x ∼G y.
Let us prove the second assertion. Suppose first that V →Gcr V

′.

For instance, let V = Ai
α × B

j
β and V ′ = Ai′

α′
× B

j
β with

Ai
α ∋ a1 →GA,β a2 ∈ Ai′

α′
(the symmetrical case can be

treated completely analogously). Let x = (a, b) ∈ π(V) and
y = (a′, b′) ∈ π(V ′). Since a and a1 both belong to the same
Ai
α , we have a ∼GA,β a1. Similarly a′, a2 ∈ Ai′

α′
, implying a′ ∼GA,β

a2. Therefore we have a ∼GA,β a1 →GA,β a2 ∼GA,β a′, hence
(a, b) ⊲G (a′, b). Now, since b and b′ both belong to the same

B
j
β b ∼

GB,α
′ b′, which proves that (a′, b) ⊲G (a′, b′), therefore

x ⊲G y.
Suppose now that V ⊲Gcr V ′, ie., V = V1 →Gcr V2 →Gcr

. . . →Gcr Vk = V ′. By applying successively the previous result
along that path, we deduce that x ⊲G y for any x ∈ π(V) and
y ∈ π(V ′).

Lemmas 1 and 2 establish an exact correspondence between
the paths in G and the paths in Gcr . The proof of the
theorem becomes rather straightforward. Indeed, suppose Q =
{V1, . . . ,Vk} is a SCC of Gcr . Then Lemma 2 implies that π(Q) is
included in a SCC S of G. Suppose now that π(Q) ( S, ie. there
exists y ∈ S\π(Q) such that ψ(y) /∈ Q. For any x ∈ π(V) ⊂ S,
we have x ∼G y (with Lemma 1), implying ψ(y) ∈ Q which is a
contradiction. Therefore,π(Q) = S. Reciprocally, suppose S ⊆ �
is a SCC of G. Then lemma 1 implies that ψ(S) is included in
a SCC Q of Gcr . Lemma 2 further yields ψ(S) = Q. By using
a similar kind of reasoning, it is easy to show that there is an
exact one-to-one correspondence between the terminal SCCs of
Gcr and the attractors of G.
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