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Study objectives: Chronic intermittent hypoxia (CIH), a hallmark feature of obstructive

sleep apnea (OSA), induces accelerated atherogenesis as well as aorta vascular

remodeling. Although the cyclooxygenase (COX) pathway has been proposed to

contribute to the cardiovascular consequences of OSA, the potential benefits of a

widely employed COX-inhibitor such (acetylsalicylic acid, ASA) on CIH-induced vascular

pathology are unknown. Therefore, we hypothesized that a common non-selective COX

inhibitor such as ASA would attenuate the aortic remodeling induced by CIH in mice.

Methods: 40 wild-type C57/BL6male mice were randomly allocated to CIH or normoxic

exposures (N) and treated with daily doses of ASA or placebo for 6 weeks. At the end

of the experiments, intima-media thickness (IMT), elastin disorganization (ED), elastin

fragmentation (EF), length between fragmented fiber endpoints (LFF), aortic wall collagen

abundance (AC) and mucoid deposition (MD) were assessed.

Results: Compared to N, CIH promoted significant increases in IMT (52.58 ± 2.82µm

vs. 46.07 ± 4.18µm, p < 0.003), ED (25.29 ± 14.60% vs. 4.74 ± 5.37%, p < 0.001),

EF (5.80 ± 2.04 vs. 3.06 ± 0.58, p < 0.001), LFF (0.65 ± 0.34% vs. 0.14 ± 0.09%,

p < 0.001), AC (3.43 ± 1.52% vs. 1.67 ± 0.67%, p < 0.001) and MD (3.40 ± 2.73 µm2

vs. 1.09 ± 0.72 µm2, p < 0.006). ASA treatment mitigated the CIH-induced alterations

in IMT: 44.07 ± 2.73µm; ED: 10.57 ± 12.89%; EF: 4.63 ± 0.88; LFF: 0.25 ± 0.17%

and AC: 0.90 ± 0.13% (p<0.05 for all comparisons).

Conclusions: ASA prevents the CIH-induced aortic vascular remodeling, and should

therefore be prospectively evaluated as adjuvant treatment in patients with OSA.

Keywords: intermittent hypoxia, sleep apnea, obstructive, acetilsalicilic acid, cardiovascular diseases, aortic

remodeling
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INTRODUCTION

Obstructive sleep apnea (OSA) is a chronic medical condition
characterized by the presence of increased collapsibility of
the upper airway promoting repetitive partials or complete
occlusions during sleep, which lead to chronic intermittent
hypoxia (CIH). This highly prevalent sleep disorder (Young
et al., 2002; Fuhrman et al., 2012), has been widely associated
with increased risk for cardiovascular morbidity and mortality
(Drager et al., 2005; Marin et al., 2005; Campos-Rodriguez
et al., 2014), along with neurocognitive and mood disorders
(Li et al., 2003; Dalmases et al., 2015), metabolic dysfunction
(Koren et al., 2016), as well as cancer (Almendros et al.,
2012; Vilaseca et al., 2017). It is well established that OSA
can trigger a group of proinflammatory and prothrombotic
pathways that serve as the prelude to the initiation and
propagation of atherosclerosis, the latter increasing the incidence
of cardiovascular diseases (CVD) over time (Shamsuzzaman
et al., 2003; Parish and Somers, 2004; Drager et al., 2011). A
wealth of rodent-based studies has demonstrated that CIH, a
hallmark of OSA, induces inflammation, oxidative stress, and
vascular dysfunction contributing to atherogenesis (Dempsey
et al., 2010; Chihara et al., 2013; Gileles-Hillel et al., 2014; Cortese
et al., 2017). In addition, the increase in the sympathetic outflow
elicited by hyperstimulation of the peripheral chemoreceptors
in the context of CIH has been linked to higher resistance
measurements in both large and small vessels, such as arterioles
(Tahawi et al., 2001), which can account, at least in part for
the elevation of systemic blood pressure following CIH (Fletcher
et al., 1992; Bosc et al., 2010) as well as the hypertension
associated to moderate/severe OSA in patients (Fletcher, 2001).
Furthermore, we recently found marked aortic remodeling as
illustrated by intima-media thickening and elastic fiber network
disorganization, fragmentation, and alterations in the collagen
content as well as mucoid deposition in the extracellular matrix
in mice exposed to CIH for 6 weeks (Castro-Grattoni et al., 2016).

Several reports have proposed that over activation of
cyclooxygenases (COX) may mediate the poor cardiovascular
outcomes observed in OSA patients (Del Rio et al., 2012;
Tual-Chalot et al., 2012; Chihara et al., 2013; Gautier-Veyret
et al., 2013; Beaudin et al., 2014). The COX pathway involves
cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2)
enzymes regulating the synthesis of several prostaglandins (PG)
and a series of downstream metabolites that are functionally
involved in processes such as pain, inflammation and
coagulation. COX-1 is the constitutive isoform, is ubiquitously
expressed in all cells and subserves homeostatic functions,

Abbreviations: AC, aortic wall collagen; ASA, acetylsalicylic acid; CCA-IMT,
common carotid artery intima media thickness; CIH, chronic intermittent
hypoxia, chronic intermittent hypoxia plus placebo; CIH+A, chronic intermittent
hypoxia exposure plus acetylsalicylic acid; COX, cyclooxygenase; COX-1,
cyclooxygenase 1; COX-2, cyclooxygenase 2; CPAP, continuous positive airway
pressure therapy; CVD, cardiovascular diseases; ED, elastin disorganization; EF,
elastin fragmentation; H&E, hematoxylin and eosin; IMT, intima-media thickness;
LFF, length between fragmented fiber endpoints; MD, mucoid deposition; N+A,
normoxia plus acetylsalicylic acid; N, normoxia plus placebo, Normoxia; OSA,
obstructive sleep apnea; PG, prostaglandins.

while COX-2 is the inducible isoform, whose expression and
activity are up-regulated in situations involving inflammation
or stress (Williams et al., 1999; García and Gómez-Reino, 2000).
Accordingly, inhibition of COX-1 enzyme and consequent
targeting of key mediators of platelet activation and aggregation
processes (Angiolillo, 2012) is commonly used in routine clinical
practice for coronary and cerebral vascular disease treatment
and prevention strategies, as illustrated by acetylsalicylic acid
(ASA) monotherapy. In the context of OSA, the potential
role of PG in the CVD morbid consequences associated with
this sleep breathing disorder has been investigated (Dempsey
et al., 2010; Chihara et al., 2013; Gileles-Hillel et al., 2014).
However, only a few studies have tested the effects of selective
or non-selective COX-1 and COX-2 inhibitors in OSA patients
or CIH animal models on the expression of systemic/urine
inflammatory markers (Del Rio et al., 2012; Chihara et al., 2013;
Gautier-Veyret et al., 2013; Beaudin et al., 2014) and their effects
on atherogenesis (Belton et al., 2003; Gautier-Veyret et al., 2013).

Therefore, we hypothesized that COX-targeted
pharmacological treatment could prevent primary CVD
induced by CIH. Here examined the effect of ASA, a worldwide
used, safe, and cheap drug, on the previously reported aortic
pro-atherogenic changes induced by CIH in a murine model of
OSA (Castro-Grattoni et al., 2016). If effective, an ASA-based
pharmacological intervention would be primarily expected to
benefit patients at high CVD risk, such as obese OSA patients,
those with co-existing morbidities, or even those patients who
are non-adherent to continuous positive airway pressure therapy
(CPAP). Specifically, we evaluated the preventive effect of
ASA on CIH-induced aortic remodeling by assessing relevant
histopathological features, namely collagen accumulation, elastin
fiber disorganization/fragmentation, intima-media thickness and
mucoid deposition in the aortic wall, in mice exposed to CIH
or normoxia for a 6-week period while being treated with either
ASA or placebo.

METHODS

The study was performed on 40 pathogen-free (C57BL/6, 6-
week-old, male) mice (Charles River Laboratories, Saint Germain
sur L’arbresle, France). The animals were maintained on a 12-
h light/dark cycle, and fed with a regular diet chow and tap
water ad libitum. All experimental procedures were approved by
the Ethical Committee for Animal Research at the University
of Barcelona. Mice were randomly assigned into 4 groups (10
mice per group): (1) CIH exposure + ASA (CIH+A); (2) CIH
exposure + placebo (CIH) or (3) normoxia + ASA (N+A) and
(4) normoxia + placebo (N). Intermittent hypoxia was applied
for 6 h·day−1 during the light period (10:00–16:00 h) for a total
of 6 weeks.

The experimental setting has been previously described
(Almendros et al., 2012), and was used to subject mice
to CIH at a rate of 60 events·h−1, each event consisting
of 20 s of 5% O2 followed by 40 s of room air. Briefly,
a continuous flow of gas was circulated through a box
(26 cm long, 18 cm wide and 6 cm high) by means of a
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distribution system based on multiple orifices. A pneumatic
valve placed near the inlet of the box cyclically switched
from a room air entrance (40 s) to a gas reservoir of
hypoxic air at an oxygen fraction of 5% (20 s) for CIH,
or room air for normoxia. At the end of the experiment,
the mice were anesthetized (urethane 20%, 1 g/kg) and
euthanized by exsanguination. Then, the mid-thoracic aorta
was excised, perfused with phosphate-buffered saline, fixed
with 4% paraformaldehyde and paraffin-embedded for further
histological analysis.

In the groups exposed to CIH and N and treated with
ASA, mice were administered a daily dose of 75 mg/kg
body-weight. To this end, a granulated formulation of ASA
(Aspirin Bayer R© 500mg) was dissolved into their drinking
water obtaining a concentration of 500 mg/L. Considering that
each animal drinks of 3mL of water per day on average,
this would correspond to 1.5mg ASA per day for a mouse
of 20 g of weight. This dose was selected based on previous
reports showing this dosage’s ability to suppress platelet COX
in mice (Praticò et al., 2000; Armstrong et al., 2011). The
animals in the CIH and N groups with placebo received tap
water.

The samples obtained from paraffin blocks were stained with
hematoxylin and eosin (H&E, Master Diagnostica, Granada,
Spain), Gomori trichrome stain (Artisan Link Special Staining
System; DAKO, Santa Clara, California, United States) or
Alcian blue (Alcian blue 2.5; Bio-Optica, Milano, Italy).
Furthermore, the images obtained for measurement analysis
(from four consecutive sections per sample) were processed
using Image J (National Institutes of Health) and Adobe
Photoshop CS6 (Adobe Systems Inc) software. For image
capture, a digital microimaging network instrument (Leica-
DMD-108; Leica Microsystems) was used, and aortic auto-
fluorescence was visualized using a fluorescence microscope
(Olympus-BX51; Olympus) (Castro-Grattoni et al., 2016). The
intima media thickness (IMT) was quantified from H&E
preparations (300 measurements from each animal). Elastic
fiber analysis was performed using aortic auto-fluorescence
to quantify: elastic fragmentation (EF) (i.e., the complete
fragmentation of one elastic fiber), length between fragmented
fiber endpoints (LFF) (adjusted by total aortic area and shown
as percent space without fiber) and elastin disorganization (ED).
Finally, for mucoid deposition (MD) and aortic wall collagen
(AC), the integrated density of the Alcian blue and Gomori
trichrome stains respectively, were quantified and adjusted to
the corresponding aortic area (Castro-Grattoni et al., 2016). An
investigator blinded to the experimental group performed all of
the analyses.

Data are reported as mean ± standard deviation. Shapiro-
Wilk tests were performed to ensure normal distribution of
samples prior to analysis. Data from N, N+A, CIH, and CIH+A
groups were compared using Two-Way Analysis of Variance.
CIH vs. N exposures and ASA administration vs. placebo
constituted the variables. Student-Newman-Keuls post hoc test
was used for multiple comparisons. A p value less than 0.05 was
considered as the cut-off for statistical significance.

RESULTS

At baseline, body weights were similar among all groups. After
6 weeks of CIH, mice experienced significant weight loss,
corresponding to ∼10.8% from baseline (p < 0.001). However,
ASA treatment did not have any effect on animal body weight in
normoxia or CIH.

Elastin Disorganization, Elastin
Fragmentation and Length Between
Fragmented Fiber End-Points
The aortas of mice exposed to CIH showed increased ED (25.29
± 14.60%) compared to those under normoxia (4.74 ± 5.37%,
p < 0.001). Moreover, a marked increase of EF (number per
section) index emerged in mice exposed to CIH (5.80 ± 2.04) in
comparison with normoxia (3.06 ± 0.58, p < 0.001). Similarly,
an increase of LFF was observed in mice exposed to CIH (0.65
± 0.34 %) versus normoxia (0.14 ± 0.09 %, p < 0.001). All
these histological alterations were significantly attenuated in
the CIH+A group when compared with CIH (Figure 1), such
that ASA treatment prevented the CIH-induced alterations, as
follows: ED 10.57± 12.89 %, p< 0.007; EF 4.63± 0.88, p= 0.047
and the LFF 0.25± 0.17 %, p < 0.003 (Figure 1).

Aortic Fibrosis
A pro-fibrotic process in the aortic wall was induced after 6 weeks
of CIH exposure, as indicated by the increased AC positive area
(3.43 ± 1.52%) in comparison with normoxia (1.67 ± 0.67%, p
< 0.001). ASA treatment prevented the increases in AC positive
area of the aortic wall induced by CIH (0.90± 0.13%, p= 0.034)
(Figure 2).

Intima-Media Thickness
The application of CIH promoted increases in IMT (52.58 ±

2.82µm) when compared to mice under normoxic conditions
(46.07 ± 4.18µm; p < 0.003). IMT alterations induced by CIH
were prevented by ASA treatment (44.07 ± 2.73µm; p < 0.001;
Figure 3).

Mucoid Deposition
The histological quantification of the positive blue area in the
aortic intima-media following Alcian Blue staining revealed
increases in MD within the aortic interlaminar space of mice
exposed to CIH (3.40± 2.73µm2) in comparison with normoxia
(1.09 ± 0.72 µm2, p < 0.006). However, ASA treatment under
CIH conditions did not significantly alter MD (1.66± 0.68 µm2,
p= 0.188; Figure 4).

DISCUSSION

This study in amouse model of OSA shows, for the first time, that
ASA treatment concurrent with CIH exposures attenuated the
development of well-established early features of atherosclerosis
(as summarized by Figure 5). Therefore, the present findings
strongly suggest that the COX pathway plays an important role
in the vascular consequences of OSA, and most importantly, that
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FIGURE 1 | Elastin network morphological remodeling associated with CIH and ASA treatment. (A) Quantification of EF per section, and LFF adjusted by total aortic

wall area (B) (shown as %). (C) ED area in the aortic wall adjusted by total area (shown as %). (D) Representative images of the elastic network (scale bar = 50µm),

revealed by auto-fluorescence, with arrows indicating fragmented elastic fiber end points. (*p < 0.05; **p < 0.01; ***p < 0.001).

the administration of a non-selective COX inhibitor such as ASA
may help prevent the damage on the vascular wall induced by
CIH during the rest period.

The repetitive episodes of hypoxia and re-oxygenation in
OSA patients can occur more than 60 times per hour (Song
et al., 2015), and the experimental model employed here
reliably reproduced these conditions. After 6 weeks of CIH,
the histopathological analysis of the aortas revealed elastin fiber
and collagen remodeling, with increased IMT and MD in mice,
as previously described (Castro-Grattoni et al., 2016) and in
accordance with other reports (Dematteis et al., 2008; Xu et al.,
2015). These results are also concordant with data from clinical
studies describing that in patients with OSA, IMT is increased in
the common carotid artery (Minoguchi et al., 2005; Hui et al.,
2012; Gunnarsson et al., 2014), a finding that is considered as
an independent risk factor for CVD (Pignoli et al., 1986; O’Leary
et al., 1999; Touboul et al., 2007). In addition to IMT increases
in CIH, histomorphological changes of the elastin network
organization around the vascular smooth muscle cells in the
aortic wall have been described in response to CIH (Chatzizisis
et al., 2007). Alterations in the continuity of the elastic network
with disruption of the elastic fiber arrangements have been
previously implicated in the early phases of atherosclerosis in
pathogen-free Sprague-Dawley rats (Xu et al., 2015) as well as in
mice (Castro-Grattoni et al., 2016) exposed to CIH. As illustrated
by current findings, the elastic fiber staining showed an irregular
pattern of elastic fiber distribution after CIH. Furthermore,
the accumulation of extracellular matrix proteins, particularly

collagen and fibronectin in the vascular media has also been
reported as a characteristic feature indicative of the development
of atherosclerosis (Lan et al., 2013). In this regard, the exposure
to CIH can also trigger an increased collagen deposition in the
tunica media (Philippi et al., 2010), consistent with our results.
However, contrary to the present study no differences on IMT
were found after CIH (Lan et al., 2013). The deposition of
mucoid material within the intima and media of the arterial wall
has also been described, and assumed to reflect a precipitating
factor underlying vascular wall weakening and increased risk for
aneurysm formation (Katz et al., 2008). Indeed, Arnaud et al.
evaluated aorta remodeling caused by CIH and showed enhanced
mucoid accumulation between sub-intimal elastic fibers, which
could result from elastin degeneration or mucoid degenerating
vascular smooth muscle cells (Arnaud et al., 2011).

There is increasing evidence that chronic inflammation and
oxidative stress participate in the increased risk of cardiovascular
pathophysiology in the context of OSA. This notion has been
mainly supported by in vitro and in vivo studies describing
the activation of inflammatory pathways in response to CIH
(Nanduri and Nanduri, 2007; Dematteis et al., 2008; Lavie and
Polotsky, 2009; Lévy et al., 2009; Ryan and McNicholas, 2009;
Arnaud et al., 2011; Tuleta et al., 2015; Xu et al., 2015; Chen
et al., 2016; Liu et al., 2018). Furthermore, we have recently
shown that the inflammatory effects of CIH exposures during
sleep lead to the recruitment of activated macrophages to the
aortic wall initiating and propagating the atherogenesis cascade
(Cortese et al., 2017). In addition, CIH enhances peripheral
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FIGURE 2 | (A) Representative images of Gomori trichrome stain to measure

aortic wall fibrosis (scale bar = 50µm; collagen in green). (B) Collagen-positive

area of the intima-media (%). (*p < 0.05; ***p < 0.001).

chemoreceptor reflexes, fostering enhanced tonic and reactive
sympathetic outflow responses that foster increased vascular
resistance, thereby contributing to the hypertension associated
with OSA (Fletcher, 2001). Taken together, these inflammatory
and vasoactive effects of CIH could, if left untreated, promote
the emergence of adverse cardiovascular events, as manifested
by early hemodynamic alterations along with histologic vascular
remodeling (Dematteis et al., 2008; Castro-Grattoni et al., 2016).
Among these pathways, there are some laboratories that have
pointed to the development of cardiovascular injury in the
context of increased activation of the COX pathway (Jelic et al.,
2008; Lévy et al., 2009; Ryan et al., 2009; Tuleta et al., 2015;
Micova et al., 2016). In a recent study by Gautier-Veyret and
collaborators, COX-1 was activated in mice exposed to CIH, and
treatment with a specific COX-1 inhibitor reduced themagnitude
of CIH-induced lesions in the aorta (Gautier-Veyret et al., 2013).
Increased levels of COX metabolites have been consistently
reported in response to cyclic hypoxia by several cell types
including endothelial cells (Li et al., 2003; Daneau et al., 2010;
Tang et al., 2014), vascular smooth muscle cells (Tang et al., 2014)
and immune cells (Campillo et al., 2017). Furthermore, clinical

FIGURE 3 | (A) Representative images of the aortic wall with H&E staining for

each group (scale bar = 50µm). (B) Histomorphometric analysis of IMT

(shown as µm), H&E: hematoxylin and eosin. (**p < 0.01; ***p < 0.001).

studies have associated COX-activity with common carotid artery
intima media thickness (CCA-IMT). Wohlin et al. performed
a backward-stepwise regression analysis, and found that PG-
F2α was independently associated with CCA-IMT in their
cohort (Wohlin et al., 2007). Similarly, Beloqui and colleagues
found significant associations between PG-E2 and CCA-IMT,
after adjustments for cardiovascular and inflammatory risk
factors (Beloqui et al., 2005). In this regard, the murine studies
examining the COX pathway in the context of CIH have
undoubtedly provided compelling evidence on the putative role
of COX in CIH-induced vascular remodeling. However, these
studies used pharmacological agents targeting COX that are
seldom used in clinical practice. Here, we purposefully opted
instead for the administration of the commonly used COX
inhibitor, ASA, in light of its well established beneficial role in
the prevention of cardiovascular outcomes (Kwok and Loke,
2010). Although ASA is typically viewed as a non-specific COX
inhibitor, it is highly selective for COX-1 vs. COX-2 (Ornelas
et al., 2017). ASA treatment effectively prevented CIH-induced
aortic remodeling changes on nearly all the measures that were
evaluated. However, we should also note that this work has some
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FIGURE 4 | Aortic extracellular matrix remodeling induced by CIH and ASA

treatment. (A) Representative images of Alcian blue staining from the mid

thoracic aorta to detect aortic wall MD (scale bar = 50µm; mucins in blue). (B)

Intima-media MD shown as the ratio of the total blue density to the total aortic

wall area (µm2). (**p < 0.01; n.s = non-significant).

limitations that will need to be explored in further studies: (i)
Chronic ASA treatment could also be beneficial and attenuate
the hypertension induced by CIH (Fletcher et al., 1992; Bosc
et al., 2010), as recently reported in hypertensive rats (Maji et al.,
2018). The occurrence of such sustained elevation of systemic
blood pressure could be also an important contributor to the
aortic remodeling induced by CIH. In addition, a recent study
showed the divergent roles of COX-1 and COX-2 in modulating
vascular responses to IH, whereby human subject exposed to
acute IH manifested increases in arterial blood pressure, which
were abrogated by selective COX-2 inhibition (Beaudin et al.,
2014). However, we should remark that (ii) treatment with ASA
can result in an irreversible acetylation of the COX promoter
resulting in a quasi-permanent inhibition of platelet function.
Indeed, the inactivation of COX-1 by ASA leads to long-lasting
suppression of thromboxane (TX) A2 production and TXA2-
mediated platelet activation and aggregation (Patrono, 2015).
In addition, the production of other prostanoids by other cell
types could be also modulated by cell-specific ASA responses,

FIGURE 5 | Changes induced on histopathological measurements (EF, LFF,

ED, AC, IMT, and MD) in response to CIH (red bar) and CIH+ASA (yellow bar)

normalized to the normoxia group. Dashed blue line represents the

normoxia+placebo reference normalized value). All CIH-induced changes

(except in MD) were significantly prevented by ASA treatment.

pharmacokinetics and ASA differential selectivity for COX-1 vs.
COX-2 (Warner et al., 2011).

Considering the lasting and sustained CVD-related benefits
derived from routine low-dose ASA treatment, treatment options
that limit the activity of the COX pathway in patients with OSA
could be highly relevant for the prevention and treatment of their
enhanced CVD risk. Of note, the activity of the COX pathway,
production of PG, their metabolites and the efficacy of COX
inhibitors have yet to be comprehensively evaluated in patients
with OSA. Considering that more than 30% of patients with OSA
either do not tolerate CPAP treatment or become non-adherent
(Weaver and Grunstein, 2008; Wozniak et al., 2014), failure
to implement any alternative intervention would maintain the
elevated risk of CVD in these patients. We propose that in light
of the safety profile and extensive experience with low dose ASA
in clinical settings, addition of ASA to the therapeutic regimen of
all OSA patients, and particularly to those at high risk of CVD
morbidity or those not receiving CPAP should be contemplated,
critically evaluated, and possibly implemented.

In conclusion, the present study reveals the positive and
dampening effect of a common non-selective COX inhibitor
such as ASA on the aortic remodeling induced by CIH in mice.
These findings do not only corroborate the role of COX-related
pathways in the pathophysiology of vascular disease in OSA, but
also point to the potential benefits of pharmacological treatment
targeting this pathway in patients with OSA, particularly in those
at high risk for cardiovascular disease.
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