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Existing doping detection strategies rely on direct and indirect biochemical measurement
methods focused on detecting banned substances, their metabolites, or biomarkers
related to their use. However, the goal of doping is to improve performance, and yet
evidence from performance data is not considered by these strategies. The emergence
of portable sensors for measuring exercise intensities and of player tracking technologies
may enable the widespread collection of performance data. How these data should be
used for doping detection is an open question. Herein, we review the basis by which
performance models could be used for doping detection, followed by critically reviewing
the potential of the critical power (CP) model as a prototypical performance model that
could be used in this regard. Performance models are mathematical representations
of performance data specific to the athlete. Some models feature parameters with
physiological interpretations, changes to which may provide clues regarding the specific
doping method. The CP model is a simple model of the power-duration curve and
features two physiologically interpretable parameters, CP and W′. We argue that the CP
model could be useful for doping detection mainly based on the predictable sensitivities
of its parameters to ergogenic aids and other performance-enhancing interventions.
However, our argument is counterbalanced by the existence of important limitations and
unresolved questions that need to be addressed before the model is used for doping
detection. We conclude by providing a simple worked example showing how it could
be used and propose recommendations for its implementation.

Keywords: critical power model, W′ balance model, performance models, athletic performance, doping in sports,
performance-enhancing substances, biomarkers, critical velocity

INTRODUCTION

Athletes have long used exogenous substances to enhance performance for personal gain (McHugh
et al., 2005). In the past half-century, sporting federations created regulations and developed
testing programs to detect and discourage this doping to create a level playing field. However,
inconsistencies existed in how doping was addressed across sporting disciplines and regions;
the World Anti-Doping Agency (WADA) was created in 1999 to harmonize these processes
(Ljungqvist, 2014). The original strategy of doping detection was to detect evidence of banned
substances by assaying biological fluids for illicit substances or their metabolites. While such direct
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detection methods have advantages, they are limited in important
ways, especially for substances that are synthetic versions of
naturally occurring endogenous hormones such as growth
hormone (McHugh et al., 2005) and erythropoietin (EPO)
(Pascual et al., 2004). Recently, indirect detection methods, which
test for the biological effects of the substance rather than the
substance itself, have shown both promise and limitations for
detecting blood doping and exogenous EPO use. Accordingly,
new approaches to anti-doping are needed. One strategy is to
infer doping based on performance per se, which is sensible given
that the within-subject coefficient of variation in performance
is relatively low for elite athletes (Malcata and Hopkins, 2014),
and ultimately, performance is the outcome that athletes are
attempting to manipulate.

Herein, we review the potential for, and challenges of,
applying the critical power (CP) model to anti-doping. The
review is divided into five main sections. First, we discuss
current biomarker-based doping control practices and their
limitations. We then discuss in general terms the potential of
performance-based markers as an additional class of evidence
within indirect detection methods. We then narrow our focus
to the CP model and describe in detail its basis and potential
for doping control, followed by a detailed critical appraisal
of its properties, which collectively show the model’s promise,
limitations, and unanswered questions for this application.
We conclude by offering guidelines for its implementation,
recommending future research, and providing a simple worked
example of its implementation. We also briefly review an
extension of the CP model, the W′bal model, which offers unique
insight into performance during intermittent tasks. Because the
CP model has yet to be scientifically evaluated in the context of
doping control, our arguments are theoretical and supported by
indirect evidence. We thus intend for the review to serve as a
catalyst for discussion and to guide future studies in this area.
Overall, we posit that the model holds promise for anti-doping,
but gaps in knowledge and issues with the model must first be
resolved.

EXISTING DOPING CONTROL
PRACTICES

The WADA Code: A Brief Overview
The first comprehensive list of prohibited substances (the
World Anti-Doping Code) was released in 2004. Broadly,
violations are grouped into substances and methods (World
Anti-Doping Agency, 2017b): Substances are classified as (i)
anabolic agents, (ii) peptide hormones, growth factors and
related substances, (iii) β2 adrenergic receptor agonists, (iv)
hormone and metabolic modulators, and (v) diuretics and
masking agents. Additional substances that have not been
approved for human therapeutic use are also prohibited, even
if they are not listed. Three classes of prohibited methods
exist: manipulation of blood and blood components, chemical
and physical manipulation, and gene doping. According to
WADA, a substance or method is prohibited if it meets two
of the following three criteria: (1) it has the potential to

enhance sport performance, (2) it represents a health risk
to the athletes, or (3) it violates the spirit of sport (World
Anti-Doping Agency, 2015). To enforce the Code, WADA
conducts testing to detect doping, and the testing is either
direct or indirect. Direct testing refers to the detection of a
prohibited substance in a biological matrix such as blood or urine
(Vernec, 2014). Indirect methods seek to detect the biological
effects of doping rather than the substance or method itself;
indirect methods have also demonstrated success by leading to
sanctions in the absence of an adverse analytical finding (Vernec,
2014).

Challenges With Enforcing the Code:
Direct Detection
Directly detecting prohibited substances in athletes is challenging
as demonstrated by the many athletes who passed doping tests
throughout their careers only to belatedly confess to doping once
retired (Vernec, 2014). Doping prevalence is estimated to be 14–
39% of athletes, which far exceeds the 1–2% of annual sanctions
for doping (de Hon et al., 2014). These estimates support the
possibility that athletes may be successfully exploiting the time
lag between the act of doping and its resultant detection window
and the delayed but persistent performance benefit.

One example of a substance that is challenging to detect using
direct methods is erythropoietin (EPO), a naturally occurring
hormone that stimulates production of red blood cells by the
bone marrow. Recombinant human EPO (rhEPO) was developed
to treat anemia in clinical populations but has subsequently been
used as an ergogenic aid due to its ability to increase hemoglobin
mass, and hence oxygen carrying capacity of the blood (Clark
et al., 2017). Despite its widespread use in the past (Thevis et al.,
2017), its direct detection remains challenging because it is an
analog of a naturally occurring substance in the body, it features
high interindividual variability in athletes, and its levels change
in response to various natural factors, including health, training
load, altitude and even sleep apnea (Pascual et al., 2004).

For doping purposes, athletes may administer short-half-
life rhEPO intravenously in more frequent smaller (‘micro’)
doses than are used clinically. When taken in this manner,
rhEPO is rapidly eliminated (Martin et al., 2016), such that
a dose taken at night may be eliminated before the athlete is
tested the following morning. Furthermore, rhEPO is typically
used in the period prior to the competition because it has
cumulative effects on hemoglobin mass that persist over the
course of weeks (Clark et al., 2017), with the performance benefits
possibly lasting longer. Therefore, the majority of EPO detection
must occur through out-of-competition (OOC) testing, which
consists of tests administered throughout the year, and which is
logistically cumbersome in low-resource regions. Athletes have
also employed strategies to mask the doping agent and its
detectable metabolites, such as hyperhydration (Martin et al.,
2016) or treatment of urine with proteases (Lamon et al., 2007), to
dilute or degrade the compound prior to testing. Athletes are also
permitted to miss two doping tests per year without triggering
a sanction, which creates an additional loophole to circumvent
OOC testing.
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Challenges With Enforcing the Code:
Indirect Detection
The limitations of direct testing motivated the development
of alternative indirect testing methods. The Athlete Biological
Passport (ABP) is an example of an indirect testing method
that has been effective in doping detection. It consists of two
modules: hematological and steroidal. In the case of rhEPO
detection and blood doping, the hematological profile is used
to monitor several blood biomarkers known to be sensitive to
blood manipulation (Sottas et al., 2006). By shifting from the
detection of the stimulus to its hematological effects, the detection
window is broadened and thus likely to better cover the period
of performance enhancement. Furthermore, the ABP features
a Bayesian model to determine an individualized expected
range of normal values, which is updated over time based
on the trends observed from longitudinal testing. Subsequent
tests are compared to these ranges, and significant intra-
individual deviations outside the individual’s normal range are
flagged. This method improves the sensitivity and specificity
of detection compared to using population norms. With this
strategy, the ABP can be used to prompt direct targeted testing
of athletes and to serve as evidence for establishing “Use” in
pursuing a doping violation without having directly detected a
prohibited substance or method (World Anti-Doping Agency,
2015).

The ABP features several limitations. First, it exhibits a
lack of sensitivity to micro-dose rhEPO regimens that can
raise hemoglobin mass by as much as 10% (Ashenden et al.,
2011). Second, hemoglobin is measured as a concentration,
such that the ABP can be subverted by hyperhydration (Bejder
et al., 2016) and is compromised by natural plasma volume
expansion during periods of heavy exercise load such as cycling
grand tours (Corsetti et al., 2012). Third, concerns have been
raised about the sensitivity, validity, and fairness of sanctions
resulting from the ABP. Specifically, perturbations other than
doping, such as altitude training, medications, bleeding ulcers,
and bleeding hemorrhoids, can each cause blood parameter
irregularities that could confound the ABP (Hailey, 2011). Lastly,
the process by which the expert panel reviews suspect ABP results
has been claimed to lack objectivity and transparency (Hailey,
2011). Additional strategies for doping detection are therefore
sought.

PERFORMANCE AS A MARKER FOR
DOPING DETECTION

Since the primary goal of doping is to enhance performance,
raw performance data, profiles, or derived metrics could serve
as indirect markers of doping (Schumacher and Pottgiesser,
2009; Hopker et al., 2016). Indeed, the effectiveness of doping
for enhancing performance has been shown by retrospective
studies of professional cycling, which reported a period of
rapid improvement in individual and group race speeds among
top 10 finishers following the introduction of rHuEPO in the
late 1980s (El Helou et al., 2010; Perneger, 2010; Lodewijkx
and Brouwer, 2011) and a subsequent decline after 2004 as

anti-doping efforts intensified (Perneger, 2010). Blood data
from 2001 to 2009 corroborates suspected changes in doping
behavior as elevated rates of abnormally high reticulocyte
counts dropped after the introduction of the rHuEPO test in
2002, and the subsequent elevation of rates of abnormally low
reticulocyte counts fell with the implementation of the ABP
in 2008 (Zorzoli and Rossi, 2010). Similarly, improvements
in group mean 5 and 10K running race speeds for the top
10, 20, and 40 performers, and the prevalence of “elite” and
world-record individual performances have stagnated since
2005, coinciding with improved rHuEPO detection (Kruse
et al., 2014). Hence, changes in performance coincided with
trends in doping practices during these periods, such that
performance may therefore serve as a marker for detecting
doping.

Performance markers of doping offer several complementary
advantages to biomarkers. First, performance enhancement
manifests at the time of competition, whereas biomarkers may
only be detectable in the weeks and months prior to competition
when doping agents and methods tend to be used (USADA,
2012). Second, performance markers should be insensitive to
practices used to subvert biologic detection protocols such
as micro-dosing (Ashenden et al., 2011) and hyper-hydration
masking (Russell et al., 2002), thus improving the sensitivity
of testing. Third, statistical techniques for assessing time series
data are well established (Shumway and Stoffer, 2017) and could
be used along with data regarding typical errors of elite athlete
performance, which tend to be relatively low compared to those
of biomarkers (Hopkins et al., 2001; Bagger et al., 2003; Malcata
and Hopkins, 2014). Hence, the underlying framework for an
anti-doping performance test already exists, such that future
developments in analytical approaches should be reasonably
straightforward.

The feasibility of using performance markers for doping
detection is clearest for sports such as track and field,
weight lifting, and swimming in which the competition
settings are relatively standardized, the outcome is a discrete,
objective measurement of distance covered, mass lifted, or time
achieved, and the athlete’s proficiency is highly correlated with
specific physiological characteristics modifiable by doping agents.
The relative standardization of the competition settings help
minimize within-athlete variability (Malcata and Hopkins, 2014),
such that results across competitions are directly comparable,
and observed improvements in performance are likely due to
improved physical capacity.

It is less evident how performance markers could be
established for most other sports because the competition settings
are less standardized and athlete physical capacity may not
be the primary determinant of performance. For example, it
would be less straightforward to detect suspicious performance
of a soccer player. This gap may be addressable owing to the
advent of player tracking technologies in which video systems or
portable sensors are used to quantify player movements (Barris
and Button, 2008; Aughey, 2011). From the changes in a player’s
position over time, velocities and accelerations can be calculated
(Aughey, 2011). In cycling, bicycle-mounted power meters enable
the direct measurement of rider work intensity. The power or
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velocity data for each athlete can be summarized as a “mean
maximal power (MMP) profile” or “record power profile” (Quod
et al., 2010; Pinot and Grappe, 2011) or, equivalently, a mean
maximal velocity profile (Delaney et al., 2015; Roecker et al.,
2017). These profiles are predictive of future performances (Quod
et al., 2010) and evolve as the athlete develops over time (Pinot
and Grappe, 2015), such that unrealistic increases in the powers
sustainable for the indicated durations could serve as evidence for
doping.

Performance data nevertheless feature important limitations.
The primary limitation is that performance data indicate what the
athlete did rather than what they were capable of doing. Factors
such as pacing, tactics, periodization, health, and environmental
conditions will inevitably confound performance data. Another
disadvantage is access to performance data. At the present
time, athletes are not required to share their physiological or
performance data, such that these data must be extracted from
publicly available sources, which may be insufficient in terms
of quality and quantity. The demand for data is particularly
burdensome for generating an athlete’s MMP profile. Raw power
data are needed for all workouts and competitions within the time
frame of interest to ensure that the relevant best performances
are captured (Quod et al., 2010; Pinot and Grappe, 2011,
2015). In addition, individual MMP data points do not predict
performance at other durations. As a result, MMP profiles must
feature sufficient sampling across all durations that may be
of interest. Otherwise, comparisons cannot be made if future
performances happen to occur for durations not already captured
in the profile. Likewise, the MMP profile neither leverages
neighboring MMP data points to reduce prediction errors nor
features prediction intervals. Basing doping detection thresholds
on MMP data alone would thus require population averages
of performance variability, which would be wide compared to
individualized prediction intervals. MMP data should therefore
be supplemented with methods to interpolate performance at
durations not included in the profile itself and to individualize
the uncertainty estimates to the athlete being tested.

Performance Models in Doping
Detection
Performance models are mathematical representations of
performance data and are useful for integrating data, inferring
mechanistic parameters, and for predicting future performance.
Examples of performance models include the CP model, which
models the power-duration relationship, and the impulse-
response model, which models the time course of performance
as a function of daily training (Clarke and Skiba, 2013). The use
of models may help to overcome the limitations of performance
data, profiles, and simple metrics. In particular, performance
models enable one to interpolate performances for values of the
independent variable that were not originally tested. For example,
the CP model reduces MMP data points to two parameters, CP
and W′, which can then be used to predict performance for any
duration within its domain of validity (Morton, 2006).

Importantly, metrics derived from performance models
should in principle conform to the WADA code. According to

WADA, “the ABP can be used to establish ‘Use’ per Code article
2.2 without necessarily relying on the detection of a particular
Prohibited Substance or Prohibited Method” (World Anti-
Doping Agency, 2017a). Additionally, the ABP is not specific
to particular markers because both hematological (Sottas et al.,
2009) and steroid profiles (Sottas et al., 2010) are now in routine
use. Therefore, it is reasonable to suggest that indirect detection
by athlete profiling is a general method and that performance-
based markers should be acceptable under the WADA code. As
such, performance metrics could form the basis of an athlete
performance profile. The performance profile could then be
used in a manner similar to the biological profiles in order
to identify and target athletes for specific analytical testing, to
pursue anti-doping rule violations in accordance with Article 2.2,
to corroborate other analytical or non-analytical evidence (Saugy
et al., 2014), or to monitor group prevalence (Sottas et al., 2011).

Like the WADA code for indirect testing, the Bayesian
model underpinning the ABP is also general (Sottas et al.,
2009, 2010). Detrended performance metrics could therefore
be used as inputs to the Bayesian model and updated
longitudinally at regular intervals to generate prediction intervals
for the model parameters and its outputs. As one potential
scenario, performance metrics could be combined with biological
parameters similar to the OFF-hr score, which combines the
concentrations of hemoglobin and % reticulocytes into a single
score (Gore and Parisotto, 2003), or the abnormal blood profile
(ABPS) score, which consists of seven hematologic parameters
[red blood cell count, hemoglobin, hematocrit, mean corpuscular
(MC) volume, MC hemoglobin, MC hemoglobin concentration,
% reticulocytes] (Sottas et al., 2006). Alternatively, the Bayesian
model of the ABP could be expanded for multiple lines of
evidence. The current form of the Bayesian model features two
variables, D and M, in which D is a binary variable that represents
the state (doped or not doped) and M is a continuous variable that
represents the biomarker. The causal relationship is specified as
follows (Sottas et al., 2009):

P(D|M) =
P(M|D) · P(D)

P(M)
(1)

According to Bayes’ theorem, the model could be expanded as
follows for multiple lines of evidence to find the probability
of doping given both a biomarker (MB) and a performance
marker (MP)

P(D|MB ∩MP) =
P(MB ∩MP|D) · P(D)

P(MB ∩MP)
(2)

Numerous models of the power (or velocity)-duration profile
(“PD models”) have been proposed and are reviewed in detail
elsewhere (e.g., Billat et al., 1999). Compared to other PD
models, the CP model features several advantages for anti-doping
applications. First, the CP model is the most extensively studied
PD model (Morton, 2006; Poole et al., 2016) and has been
validated for use with individual athlete data collected both in
the lab and field (Skiba et al., 2014a; Karsten et al., 2015). Most
other PD models have just been applied to world-record data
(Billat et al., 1999). The CP model is also among the most
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parsimonious of the PD models, featuring just two adjustable
parameters. Models with fewer parameters require less data for
fitting. In the case of the CP model, only two performances at
different durations are minimally required to estimate the model
parameters. Finally, the CP model parameters are physiologically
interpretable, and they change in predictable manners in response
to physiological, nutritional, and ergogenic interventions. This
feature is useful for doping detection because the parameters will
change in a manner consistent with the mechanism of the doping
method, which may thus provide insight into which doping
method was used. In the remainder of the review, we discuss the
suitability of the CP model for use in doping control.

THE CP MODEL: BASIS, PHYSIOLOGY,
AND CURRENT APPLICATIONS

Definition of the Model
A conserved hyperbolic relationship exists between maximally
sustainable power output and duration (Figure 1). This
relationship was first observed by Hill (1925) for world-record
performances, followed by Monod and Scherrer (1965) for
performance of isolated muscle groups (Monod and Scherrer,
1965), and then by Moritani et al. (1981) for whole-body
exercise. Monod and Scherrer codified the CP concept into a
two-parameter mathematical model:

tlim =
a

P − b
(3)

in which tlim is the time to exhaustion, P is the power output
during task performance, b is the asymptote of the curve, and a
is curvature constant of the curve (Monod and Scherrer, 1965).
Both a and b have physiological interpretations: b was called the
“CP” and represents the power output that is sustainable for a
very long time without fatigue (theoretically infinite time), and a
is the total work that can be performed at intensities above CP.

The equation was subsequently restated by Moritani et al.
(1981) in a linearized form:

P =
W
′

t
+ CP (4)

in which P = power output, t = time to exhaustion, CP is critical
power (same as b in equation 1), and W′ is the work that can
be performed above CP (same as a in equation 1) (Figure 1).
Another common approach to expressing the CP model is to
relate the total mechanical work done to CP and W′. This
equation is also linear:

Work = CPt + W′ (5)

Due to the difficulty of directly measuring mechanical power
output for many exercise modalities, velocity is often substituted
for power. The resulting critical velocity model features analogous
parameters to those of the CP model: critical velocity (CV, units
of distance over time) is used in place of CP and D′ in place of
W′. D′ represents the distance that can be covered at intensities
above CV.

The CP model permits clear physiological interpretations of
the parameters but also requires several simplifying assumptions.
Originally, CP was interpreted as the maximum power
sustainable by steady-state aerobic energy provision whereas
W′ was considered to represent the “anaerobic work capacity”
(Moritani et al., 1981), which is defined as the mechanical work
performed during exhausting exercise of sufficient duration to
elicit near-maximal anaerobic ATP yield (Green, 1994). The
assumptions are as follows: First, power output is assumed to be
a function of energy generated from both aerobic and anaerobic
pathways. Aerobic energy supply is not limited in capacity but
rather by rate, and work done at or below CP is thus limited by the
maximum rate of aerobic energy supply. Anaerobic energy supply
cannot be sustained indefinitely and therefore W′ is assumed
to be limited by capacity but not by rate (i.e., no limit to peak
power or speed). W′ is defined as work done above CP to the
limit of tolerance (Poole et al., 2016). When this limit is achieved,
the sustainable power is markedly reduced (typically below CP),
such that no more work above CP accumulates and a maximum
value of W′ is thus achieved. The physiological interpretations
of the CP model parameters enable the CP model to be used for
assessing task-specific aerobic and anaerobic fitness.

Early investigations of the CP model in whole-body exercise
suggested its benefits for athletic performance, based on its
ability to define specific pacing strategies for continuous efforts
(Moritani et al., 1981; Gaesser and Wilson, 1988). The model has
since been extended to model intermittent performance (Morton
and Billat, 2004; Skiba et al., 2012). Given that many sports are
intermittent in nature, we discuss the suitability of the W′bal
model for doping detection in the final section of the review.

Procedures for Estimating the Model
Parameters for an Athlete
The most commonly applied CP test protocol requires the
athlete to perform two or more time-to-exhaustion (TTE) tests.
These tests consist of predetermined constant-work rates (CWR)
that ensure the athlete will achieve exhaustion at particular
durations. The athlete is typically granted 24 h or more of
recovery between each test. The power (y-axis) vs. duration (x-
axis) data from all trials is then fitted to the two-parameter
CP model using ordinary least-squares regression. Early studies
featured protocols consisting of two to seven trials to generate
data for fitting the model (Hill, 1993). In addition, determining
the powers for TTE/CWR tests is typically done using data
from a graded exercise test, which requires an additional testing
session. Therefore, CP testing using the TTE/CWR tests is
time consuming, which limits the practical application of the
method. Furthermore, these tests require control of the work rate,
which is typically achieved using ergometers in laboratory-based
settings.

To improve the time efficiency of CP estimation, Vanhatalo
et al. (2007) proposed a new 3-min all-out test (3AOT) protocol
conducted in a single testing session. This protocol is based on
the assumption that a sufficiently long unpaced maximal effort
(∼3 min) should fully deplete W′, such that the sustainable power
beyond this time should be, by definition, equivalent to CP.
Vanhatalo et al. (2007) validated the 3AOT against a traditional
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FIGURE 1 | Schematic representation of the CP model of the power-duration relationship. Note the hyperbolic shape of the power-duration curve (thick black line)
and that the four rectangles demarcating W′ have the same area, reflecting that W′ is a constant amount of work that can be done above CP.

protocol consisting of TTE/CWR-based tests by showing that
the end-test power from the 3AOT correlated with CP estimated
from the traditional protocol [r = 0.99; standard error of the
estimate (SEE) = 6 W] and the work completed above the end-test
power correlated to W′ (r = 0.84; SEE = 2.8 kJ). The 3AOT has
since been increasingly applied in research studies and in sport
science practice as a time-efficient method to estimate CP and W′.
However, its demanding nature is a disadvantage such that pacing
is likely inevitable (Tsai, 2015) and the test also requires expensive
laboratory-based cycle ergometers. Furthermore, several studies
have reported that the end-test powers from the 3AOT likely
overestimate the “true” CP (McClave et al., 2011; Bergstrom et al.,
2013a,b; Nicolò et al., 2017).

Recently, time trials (TTs) and constant-duration tests have
been increasingly used to estimate the CP model. In TT, the
target distance or energy expenditure is determined and the
athlete attempts to minimize the time to completion. In constant-
duration tests, the trial duration is specified and the athlete
attempts to maximize the average power or velocity over that
time. The advantages of TT and constant-duration tests include
lacking the need for a prior graded exercise test (which are used
to determine the powers for TTE trials) and self-pacing may
foster enhanced performance (Black et al., 2015) by enabling
a fast-start strategy that results in faster V̇O2 kinetics (Black
et al., 2015; Fullagar et al., 2016). Furthermore, TT and constant-
duration tests can be conducted in the field using portable
bicycle-mounted power meters, which enhances the feasibility

and ecological validity of the CP model. Indeed, the need for an
ecologically valid time-efficient protocol led Karsten et al. (2015)
to evaluate a single-day field-based protocol for estimating the
CP model. Their constant-duration protocol involved three trials
of 12, 7, and 3 min in duration presented in this order and
separated by 30 min of recovery. They compared this protocol
to the conventional method of three TTE tests conducted in the
laboratory. CP estimated from the two-parameter linear model
was not statistically different between the two methods (mean
difference = −2 ± 14 W; limits of agreement = −26 to 29 W)
(Karsten et al., 2015). Similarly, W′ was not significantly different
(mean difference = −0.14 ± 3.36 kJ; limits of agreement = −6
to 7 kJ) (Karsten et al., 2015). Similar results were obtained for
CV modeling in running, as CV estimates from single-day field-
based protocols featuring 30- and 60-min recoveries between the
TT were not statistically different from those estimated using
constant-velocity TTE tests, whereas the estimates for D′ were
different (Galbraith et al., 2014). Hence, field-based, single-day
protocols based on constant-duration tests can provide valid
estimates for CP (or CV) but possibly not for W′ (D′). Indeed,
estimates of W′ tend to be highly variable compared to those
from TTE-based protocols (Table 1). The practical applicability
of constant-duration trials would be further enhanced by
minimizing the number of trials. A recent study compared CP
and W′ estimates from protocols featuring either two or three
constant-duration trials and found no difference in CP estimates
(Parker Simpson and Kordi, 2016). These results corroborate
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TABLE 1 | Critical power (CP) test protocol properties.

Property CP test protocol

Constant work rate
(power)/time to
exhaustion
(CWR/TTE)

3-min all-out Constant-duration Time trial (constant
work or distance)

Field data (akin to
constant-duration)

Independent variable Power (ergometer) or
velocity (treadmill)

Time (3 min) Time (e.g., 3, 7, 12 min) Measured times to
completion for set work
or distance trials

Time (e.g., 3, 7, 12 min)

Errors in IVa Precision of power for
cycle ergometers:
0.6–3.2% (Woods
et al., 1994)
Accuracy of cycle
ergometers: variable,
often large systematic
errors (∼10%) due to
calibration, drift during
the trial (Maxwell et al.,
1998; Paton and
Hopkins, 2001)
Accuracy of treadmill
velocity: one group
observed accuracy
within 0.02 m s−1 of
desired speed
(Galbraith et al., 2014)

Negligible Negligible Ergometer – total work:
precision should be
similar to that of power
Distance: e.g., of a road
course as measured by
Jones counter or
method of similar
precision: ∼0.1%
(International
Association of Athletics
Federations [IAAF] and
Association of
International Marathons
and Distance Races
[AIMS], 2008;
Georgopoulos et al.,
2012)

Negligible

Dependent variable TTE Power vs. time curve Mean power Power (constant-work)
or velocity (constant
distance) calculated
from the times to
completion for the set
work or distance trials

Highest average
powere

Typical errors of the
dependent variables of
the testb

Cycling TTE (durations
2–20 min):
CV(%)d = 10–19
(Hopkins et al., 2001;
Currell and
Jeukendrup, 2008)
TTE converted to
power:
CV(%) = 1.5–2.7%
(Hopkins et al., 2001)
Running TTE:
(durations 2–20 min)
CV(%) = 10 (Billat et al.,
1994)
CV(%) = 13–15
(Laursen et al., 2007)

See typical errors of
end-test powers (ETP)
below

Mean power cycling,
trial durations
2–60 min:
CV(%) = 1.5-3.5
(Currell and
Jeukendrup, 2008)
Mean velocity running,
trial durations
2–60 min:
CV(%) = 2.7
(Schabort et al., 1998)

Mean power cycling,
trial distances 5–20 km
(∼6-25 min):
CV(%) = ∼1–2%
(Hopkins et al., 2001;
Currell and
Jeukendrup, 2008)
Mean velocity running,
trial distances
1,500–5,000 m
(∼6–20 min)
CV(%) = 1–3%
(Driller et al., 2017;
Currell and
Jeukendrup, 2008)

Typical errors for these
types of data have yet
to be published
Accuracy of on-board
power meters, which
can vary based on
conditions (e.g.,
temperature):
∼ ± 2.5%
(Paton and Hopkins,
2001; Gardner et al.,
2004; Abbiss et al.,
2009)

Appropriate
mathematical
expression (based on
the assigned
independent and
dependent variables)

Non-linear (equation 3) CP = end-test power
(ETP) = mean power
from final 30 s of
the test
W′ = numerically
integrated AUC of
power vs. time curve
bounded by ETP at
bottom

Linear (equation 4) Linear (equation 5,
solved for t)

Linear (equation 4)

Typical errors in CP
model parameter
estimatesc

Cycling:
CP – CV(%) = 2–8%
W′ – CV(%) = 7–14
(Hopkins et al., 2001)

Cycling:
CP – CV(%) = 1–7
W′ – CV(%) = 28
(Johnson et al., 2011;
Wright et al., 2017)

Cycling:
CP – CV(%) = 2–3
W′ – CV(%) = 46
(Experiment 1, Karsten
et al., 2015)

Running:
Critical velocity –
CV(%) = < 1–4%
D′ – CV(%) = 9–18%
(Galbraith et al., 2011,
2014; Nimmerichter
et al., 2015)

Cycling:
CP – CV(%) = 3–4
W′ – CV(%) = 15–18
(Experiment 3, Karsten
et al., 2015)

(Continued)
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TABLE 1 | Continued

Property CP test protocol

Constant work rate
(power)/time to
exhaustion
(CWR/TTE)

3-min all-out Constant-duration Time trial (constant
work or distance)

Field data (akin to
constant-duration)

Pacing/variable power No – constant,
enforced by ergometer
or treadmill

Theoretically no –
maximum effort
throughout; however,
some pacing is likely

Yes Yes Yes

Time to complete test
protocol

Hours (if trials on same
day) to days

3 min for the test itself Hours (if trials on same
day) to days

Hours (if trials on same
day) to days

Data collected over
days-weeks

aErrors in the independent variable reflect systematic and random error of the instrument and operator error. bErrors in the dependent variable reflect the biological
variability of performance, systematic and random errors of the instruments used to measure both the independent and dependent variables, and operator error. cErrors
in CP and W′ reflect the integration of errors propagated from the independent and dependent variables. dCV(%) = coefficient of variation = standard error of the
measurement/mean × 100. eHighest average power outputs from field training, and racing/time trial data recorded by an onboard power meter.

those from earlier studies using TTE-based protocols, which
showed that as few as two trials could be used to obtain accurate
CP and W′ estimates (Hill, 1993). Therefore, two maximal-
effort tests separated by as little as 30 min of recovery may
represent an acceptable method for accurately modeling CP
in the field. However, since the CP model has two adjustable
parameters, a downside to protocols consisting of only two
tests is that goodness-of-fit metrics and residuals cannot be
computed.

A final strategy for estimating the CP model is to extract
mean-maximal power (MMP) profiles from power-meter data
collected during all training and racing. MMP profiles are
generated by extracting the highest average powers across a
range of durations (Pinot and Grappe, 2011). Portions of these
data can then be used to fit the CP model. CP models fit this
way using MMP for 3, 7, and 12 min did not differ from
models fit using laboratory-based constant-duration trials of the
same durations (Fullagar et al., 2016). Similarly, CV models for
athletes in timed sports such as swimming and running can
be fit from race results over different distances (e.g., Dekerle
et al., 2006; Jones and Vanhatalo, 2017). While convenient, CP
models from race results can be confounded by issues such
as the time between the sessions that led to the maximum
powers for each duration, pacing and tactics, uncertainty as
to whether maximal effort was applied, and environmental
conditions.

Physiological Interpretations
Monod and Scherrer (1965) originally described the CP of
a muscle as corresponding to “the maximum rate it can
keep up for a very long time without fatigue.” Thus, the
physiological interpretation of both CP and W′ can be framed
with reference to the mechanisms of fatigue. Accordingly,
Poole et al. (2016) stated that “CP may be regarded as
a ‘fatigue threshold’ in the sense that it separates exercise
intensity domains within which the physiological responses to
exercise can (<CP) or cannot (>CP) be stabilized.” Therefore,
CP represents the highest intensity of exercise for which
muscle metabolic homeostasis can be sustained. Since steady-
state energy metabolism reflects matching between “wholly

aerobic” energy supply and total energy demand, exercise
performed at or below CP is not associated with rapid
accumulation of fatigue inducing metabolites and is therefore
sustainable for long duration. In contrast, exercise performed
above CP requires a greater contribution of substrate-level
phosphorylation to meet energy demand, which leads to a
progressive depletion of PCr, increased [Pi] and [H+], decreasing
metabolic efficiency, and continuously increasing V̇O2, until
V̇O2max is attained (Grassi et al., 2015). Consequently, CP
represents the boundary between achievable steady-state and
non-steady-state aerobic metabolism, which corresponds to the
heavy- and severe-intensity domains, respectively (Figure 1;
Burnley and Jones, 2007). Many studies have sought to
validate CP using physiological data. CP correlates with
the power output at maximal lactate steady state (Pringle
and Jones, 2002) and respiratory compensation point (Keir
et al., 2015), both of which are classified as “second” or
“anaerobic” thresholds (Binder et al., 2008). Furthermore,
V̇O2 achieves steady state for exercise at or below CP, but
inexorably increases to V̇O2max during exercise slightly above
CP (Poole et al., 1988; De Lucas et al., 2013; Murgatroyd
et al., 2014; Vanhatalo et al., 2016). In each study, participants
achieved task failure markedly sooner for exercise slightly
above CP.

W′ was originally considered to represent an energy
reserve for mechanical work for power above CP (Monod
and Scherrer, 1965). This energy reserve was thought to be
from anaerobic sources (Moritani et al., 1981), such that
W′ was subsequently conceptualized as a metric of anaerobic
work capacity (Bulbulian et al., 1986; Nebelsick-Gullett et al.,
1988; Housh et al., 1990). However, this terminology was
deemed inappropriate for several reasons. First, the inexorable
increase in V̇O2 until task failure means that oxidative
phosphorylation contributes to the total energy supply for
power above CP, such that W′ cannot be fully anaerobic in
origin. Second, estimates of W′ were lower when modeled
from trials performed in hyperoxia compared to normoxia
(Vanhatalo et al., 2010a), suggesting that it is sensitive to
oxygen availability and thus has an aerobic component. Third,
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after exhaustive exercise, the reconstitution of W′ is slower
than the recovery of V̇O2 but faster than lactate (Ferguson
et al., 2010). This result implies that the kinetics of W′
reconstitution are not a unique function of phosphocreatine
concentration, lactate concentration, or anaerobic energy per se.
Lastly, it was found that skeletal muscle blood flow increases
disproportionately during exercise above CP (Sarelius and
Pohl, 2010). These authors concluded that increased muscle
blood flow implies higher rates of oxidative metabolism, which
is a characteristic of type-I muscle fibers. Hence, increased
recruitment of type-I muscle fibers may help to protect
against a progressive reduction in efficiency at or above CP
(Murgatroyd and Wylde, 2011). Therefore, the three main
mechanisms of energy production (PCr, glycolysis, oxidative)
increase their energy output during exercise above CP and hence
contribute to the energy store known as W′ (Grassi et al.,
2015).

Although W′ is not uniquely determined by anaerobic
capacity, it nevertheless correlates to various indices thereof,
including to biochemical estimates from muscle biopsies
(r = 0.73; Green et al., 1994), the mean power from the Wingate
test (r = 0.74; Nebelsick-Gullett et al., 1988), accumulated work
in high-intensity intervals (r = 0.74; Jenkins and Quigley, 1991),
and maximal accumulated oxygen deficit (MAOD; W′ and
MAOD were not different, Hill and Smith, 1993; r = 0.65,
Muniz-Pumares et al., 2016). As discussed below, W′ is
also sensitive to manipulations expected to change anaerobic
capacity. Accordingly, anaerobic capacity is an important but
not sole determinant of W′, such that W′ is potentially useful
for detecting doping methods that seek to manipulate this
capacity.

Applications in Sport
The CP model has long been applied to analyzing and optimizing
athletic performance. The model enables performance
prediction, informs pacing tactics, and helps with the design
of interval-training workouts (Pettitt, 2016). Furthermore, CP
represents the boundary between heavy and severe-intensity
exercise, such that it informs the training zones used by coaches
in prescribing training intensity (Clarke and Skiba, 2013).
The related W′bal model enables the real-time monitoring
of energy available for severe-intensity exercise, which could
inform tactical decisions during competitions. The CP model
has been used to derive insights into world-record performances
(Dekerle et al., 2006). The model is applicable to diverse
sports; it has previously been applied to individual sports
such as cycling (Moritani et al., 1981; McClave et al., 2011;
Karsten et al., 2015), running (Hughson et al., 1984; Hill
et al., 2011), swimming (Wakayoshi et al., 1992; Toubekis
and Tokmakidis, 2013), and rowing (Kennedy and Bell, 2000;
Morton, 2009; Kendall et al., 2011), team sports such as rugby
sevens (Clarke et al., 2014) and soccer (Clark et al., 2013)
and racquet sports such as table tennis (Zagatto et al., 2008).
The model has yet to be applied for doping detection, and
this application would represent the most stringent test of its
properties.

EVALUATION OF THE CP MODEL FOR
DOPING DETECTION: PROMISE AND
CHALLENGES

The CP model could be used in three ways to suspect doping:
(1) unrealistically high CP or W′ values compared to population
norms, (2) unrealistic increase in one or both of the model
parameters, CP or W′, within a given time frame, or (3)
unrealistic performance compared to the prediction of an existing
CP model within a given time frame. In each case, thresholds of
suspicion must be established. These thresholds in turn would
need to be based on scientifically justified abnormal values or
rates of change that exceed the typical error of the measurement
with high probability.

The severe consequences of doping sanctions on athletes,
which include bans up to 4 years for first offenses and up to
lifetime for second offenses, necessitates that any classification
method used as evidence for sanctions must be highly specific
for doping. The method must also be sufficiently sensitive to
serve as a significant deterrent. Sensitivity and specificity are
properties that express the ability of a continuous measurement
to appropriately classify a subject in terms of a discrete
feature or property; these properties are often visualized as
receiver–operator characteristic (ROC) curves. Sensitivity is
the true positive rate (dopers correctly classified as dopers)
while specificity is the true negative rate (non-dopers correctly
classified as non-dopers). In the case of CP-model-based
doping detection, the continuous measurement would be the
athlete’s CP, W′, or observed performance, which if outside
a threshold value would classify the athlete as “suspected
to be doping.” To be acceptable as a method for doping
detection, a classifier based on the CP model would have to
feature specificity greater than 99%, as required by WADA
(World Anti-Doping Agency, 2014), and a sensitivity greater
than the 10–20% estimated for existing detection methods
(de Hon et al., 2014). The sensitivity and specificity of the
CP model to classify dopers have yet to be scientifically
studied.

Although no direct evidence yet exists pertaining to its
properties as a classifier for doping detection, at least two indirect
lines of evidence enable the evaluation of its potential for use
in doping detection and to identify challenges to be resolved.
These lines of evidence include (1) the sensitivity of the CP
model parameters to performance-modifying manipulations and
(2) the accuracies of the model parameter value estimates and
the accuracy of the model predictions. In the discussion that
follows, we employ the following definitions. Accuracy refers to
the degree to which the estimate is different from the “true”
value. It is analogous to criterion validity; however, we prefer
“accuracy” rather than “validity” because of difficulties with
interpreting the latter (Sechrest, 2005; cf. Newton and Shaw,
2013).

Additional concepts important to this discussion are
reliability, minimally detectable change, and precision. Reliability
is the reproducibility of the values measured in repeated trials
conducted under the same conditions (Hopkins, 2000; Weir,
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2005). Reliability is assessed through repeated measurements on
the same subjects and is typically expressed in either relative or
absolute terms. Relative reliability is expressed as the intraclass
correlation coefficient and absolute reliability is expressed as the
standard error of the measurement (SEM) (Weir, 2005). Absolute
reliability is also commonly expressed as a coefficient of variation
or typical error, which is the ratio of the SEM and the mean
value of the repeated measures (Hopkins, 2000; Weir, 2005).
Furthermore, the SEM determines the minimally detectable
change, which is the smallest difference between measurements
that can be considered real and not due to random error (Weir,
2005). Precision refers to the goodness-of-fit of a model to
data, and is expressed as the R2 or model standard error of
the estimate, and is reflected by the confidence intervals of the
parameter estimates. While precision and reliability are not
synonymous, reliability is intertwined with the precision of single
measurements (Hopkins, 2000; Weir, 2005). Good precision and
reliability are necessary for model accuracy.

Another important property is the typical variation in
performance. While variation in athletic performance depends
on the nature of the sport, the within-season coefficients of
variation in race times across several sports are typically less
than 2.5% (Table 2). Furthermore, within-athlete performance
variabilities are similar across seasons; for example, skeleton,
rowing, and cross-country skiing performance variations in race
times were 0.5, 1, and 1.3%, respectively (Malcata and Hopkins,
2014). The potential usefulness of the CP model as a doping
detection tool depends on its ability to detect performance gains
beyond these predictable seasonal performance gains. Since the
typical variations in performance tend to be small, and that these
performance data are used to estimate the CP model, the typical
errors of the CP model parameter estimates are likely to be small
as well, as will their subsequent minimally detectable changes.
The discussion that follows corroborates this expectation: the
CP model is sensitive to the administration of performance-
modifying substances and strategies.

Sensitivity of CP and W′ to
Performance-Modifying Manipulations
The CP model parameters are sensitive to performance-
modifying manipulations, such as training, different environ-

ments, and ergogenic manipulations (Table 3). Importantly, CP
and W′ tend to be sensitive to manipulations that are consistent
with their physiological interpretations, which can provide clues
as to the nature of the doping substance or method. Specifically,
CP tends to be sensitive to substances and methods that improve
oxygen transport whereas W′ tends to be sensitive to substances
and methods that improve strength and power.

Training
Critical power increases in response to both low-intensity
continuous training (Gaesser and Wilson, 1988) and high-
intensity interval training (Gaesser and Wilson, 1988; Poole et al.,
1990; Jenkins and Quigley, 1993). Low-intensity, continuous
training decreases W′ while the effects of high-intensity interval
training on W′ remain controversial (Table 3). Resistance
training reduces CP (Bishop and Jenkins, 1996; Sawyer et al.,
2014) and improves W′ (Jenkins and Quigley, 1993; Sawyer et al.,
2014).

Environmental Variables
Critical power increases with exposure to acute hyperoxia (70%
O2, 30% N2) compared to normoxia, whereas W′ decreases
(Vanhatalo et al., 2010a). The opposing responses of CP and
W′ in this experiment may have been artifactually caused
by the hyperbolic form of the model (see section below
on “Model Bias and Artifacts”). In contrast, acute hypoxia
treatment to simulate various altitudes decreases CP (Parker
Simpson et al., 2014; Townsend et al., 2017) in a dose-
response manner consistent with observed decrements in
V̇O2max (Townsend et al., 2017). Specifically, CP decreased
in proportion to simulated altitude, with significant reduction
evident at 1,250 m. W′ was less sensitive to altitude change than
CP as it was significantly reduced only at a simulated altitude of
4,250 m.

Ergogenic Aids
Ergogenic aids are substances or methods used to improve
athletic performance. The effects of several ergogenic aids
including caffeine, ephedrine, creatine, and bicarbonate have
been tested for their effects on the CP model. An acute ingestion
(60 min pre-workout) of caffeine (6 mg kg−1) significantly
increased W′ (∼23%, effect size = 0.8) while CP was unchanged

TABLE 2 | Examples of typical variation in race times for elite athletes.

Activity type Distance/event Season variation Reference

Running <3 km Men: 0.8%
Women: 1%

Hopkins, 2005

Running 3–10 km Men: 1.1%
Women: 1.1%

Hopkins, 2005

Track cycling individual pursuit 4 km Men: 1%
Women: 1.2%

Flyger, 2009

Cycling road racing Tour de France and World Cup (top eighth) Men: 0.4–0.7% Paton and Hopkins, 2006

Cycling time trials Tour de France (top eighth) and International (top half) Men: 1.3–1.7% Paton and Hopkins, 2006

Triathlon Olympic distance, total time for top-10% of finishers Men: 1.1% Paton and Hopkins, 2005

Mountain biking World cups (top quarter) Men: 2.4%
Women: 2.5%

Paton and Hopkins, 2006
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TABLE 3 | Effects of performance-modifying interventions on CP model estimates.

Intervention Dosage/exposure Duration Participants Effect sizea Reference

Hypoxia FiO2: 20% (∼250 m)
vs. 12% (∼4,250 m)

Single exposure 9 trained male cyclists CP: 2.98 ↓
W′: 1.19 ↓

Townsend et al., 2017

FiO2: 21% (sea level)
vs. 15.5% (∼2,500 m)

Single exposure 11 well-trained male
cyclists

CP: 0.68↓
W′: 0.068 ↓

Shearman et al., 2016

Hyperoxia FiO2: 70% vs. 21%
(sea level)

Single exposure 7 habitually active
males

CP: 0.77↑
W′: 0.81↓

Vanhatalo et al., 2010a

Caffeine 5 mg · kg−1 body mass 2 non-consecutive days 9 males CP: 1.05↑
W′: 1.3↑

Silveira et al., 2017

6 mg · kg−1 body mass 4 non-consecutive days 8 males CP: 0.16↓
W′: 0.8↑

Moreira Gonalves et al., 2010

Creatine 20 g · day 5 consecutive days 8 healthy males CP: 0.32 ↓
W′: 0.98↑

Miura et al., 1999

20 g · day 5 consecutive days 10 physically active
women

W′: 0.77↑ Eckerson et al., 2004

20 g · day 5 consecutive days 19 participants CP: 0.81↑ Jacobs et al., 1997

20 g · day 5 consecutive days 15 untrained university
students

CP: 0
W′: 0.4↑

Smith et al., 1998

10 g · day 4 weeks 42 recreationally active
men

CP: 0.26↑
W′: 0

Kendall et al., 2009

Bicarbonate 0.3 g·kg−1 body mass 5 consecutive days 8 trained male cyclists
and triathletes

CP: 0.9↑ Mueller et al., 2013

0.3 g · kg−1 body mass Single trial 8 habitually active
participants

CP: 0.06↑
W′: 0.11↓

Vanhatalo et al., 2010b

0.3 g · kg−1 body mass 2 trials 11 trained cyclists Normoxia
W′: 0.4↑
Hypoxia
W′: 0.53↑

Deb et al., 2017

“Pre-workout”
supplement

10 g · day 3/per week /3 weeks 24 moderately trained
recreational athletes

CV: 0.5↑
W′: 0

Smith et al., 2010

Erythropoietin Meta–analysis of 17
laboratory studies

n/a Aerobic
performance:
0.41–0.49 ↑

Lodewijkx and Brouwer, 2011

Human Growth
Hormone and
Testosterone:

HGH: daily doses up to
30 µg · kg−1 body
mass
Testosterone: 100 mg;
once a week

12 weeks 14 middle-aged men V̇O2max: 0.76 ↑
Anaerobic
threshold: 0.68
↑

Work rate max:
0.6 ↑
Total work:
0.29 ↑
Maximum
power output:
0.27 ↑

Zając et al., 2014

Ephedrine 0.8 mg · kg−1 body
mass

Single day 10 males, 2 women Time to
completion:
0.43 ↓

Bell et al., 2002

1 mg · kg−1 body mass Single day 16 males Power output
5 s Wingate
test: 0.18↑
Time to
Exhaustion-
MAOD: 0.35 ↑

Bell et al., 2001

Training Low intensity
continuous exercise
training/ high intensity
interval training

6 weeks 14 males CP: low
intensity 1.8 ↑
High intensity:
2.5 ↑
W′: low
intensity: 0.56↓

Gaesser and Wilson, 1988

High intensity:
0.58↓

(Continued)

Frontiers in Physiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 643

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00643 June 4, 2018 Time: 14:18 # 12

Puchowicz et al. Critical Power Model in Anti-doping

TABLE 3 | Continued

Intervention Dosage/exposure Duration Participants Effect sizea Reference

High intensity interval
training

7 weeks 8 males CP: 1.67 ?
W′: 0.13 ?

Poole et al., 1990

High intensity interval
training

8 weeks 19 males CP: 0.56 ?
W′: 2.43 ?

Jenkins and Quigley, 1993

Resistance training 6 weeks 16 males CP: 0.87 ↓ Bishop and Jenkins, 1996
High intensity interval
training (with/without
creatine
supplementation)

6 weeks 42 active men CP (Cr): 0.26 ↑
CP (Placebo):
0.165↑
W′ (Cr): 0.17 ↓
W′ (Placebo):
0.49 ↑

Kendall et al., 2009

Resistance training 8 weeks 14 males CP: 0.05 ↓
W′: 1.02 ↑

Sawyer et al., 2014

aEffect size was calculated as Cohen’s d, whereby ES =
−

x1 −
−

x2
SD where

−

xi is the mean for the ith group and SDpool =

√
S2

1+S2
2

2 where Si is the standard deviation for the ith
group.

(Moreira Gonalves et al., 2010). However, a recent study found
that a similar caffeine supplementation (5 mg kg−1, 60 min prior
to the workout) significantly improved both W′ (effect size = 1.3)
and CP (effect size = 1.5) (Silveira et al., 2017). Increases in
both CP and W′ in response to experimental treatments are
uncommon.

By comparison, acute ingestion of ephedrine (0.8 mg/kg)
significantly decreased 10-km run times by approximately 48 s
(Bell et al., 2002). Furthermore, ephedrine ingestion increased
power output during the early phase of the Wingate test (effect
size = 0.18), increased TTE (effect size = 0.35), and blood lactate,
glucose, and catecholamine levels (Bell et al., 2001). Similar effect
sizes were therefore observed for ephedrine intake and caffeine on
performance measures reflecting aerobic and anaerobic fitness.

Creatine supplementation enhances the resynthesis of
phosphocreatine (Williams and Branch, 1998), hence it is
reasonable to expect that it might affect W′. Indeed, creatine
supplementation (20 g for 5 days) significantly improved W′
[effect sizes = 0.98 and 0.74] (Miura et al., 1999; Eckerson et al.,
2004). In contrast, the effect of creatine on CP is uncertain. Some
studies have revealed small effects of creatine supplementation
on CP (Jacobs et al., 1997; Smith et al., 1998), while creatine
supplementation combined with high-intensity interval training
was reported to significantly improve CP (Kendall et al., 2009).
In the latter study, the duration of creatine supplementation
exceeded those of previous studies by more than five fold
(28 days vs. 5 days), which may explain the difference in the
results.

Three types of bicarbonate supplementation protocols are
typically employed: acute (single dose of∼0.3 g· kg−1 60–90 min
before competition), chronic (∼0.5 g· kg−1 per day divided into
2–3 portions), and multi-day acute supplementation (one dose
per day before competition for all days of the competition).
A multi-day (5 days) acute bicarbonate supplementation in
well-trained endurance athletes significantly increased W′ (effect
size = 0.9) compared to placebo (Mueller et al., 2013). Acute
bicarbonate supplementation (0.3 g·kg pre-exercise) did not
affect W′ and CP in one study (Vanhatalo et al., 2010a)

but significantly improved W′ in both hypoxic and normoxic
environments (effect sizes = 0.4 and 0.53, respectively) in another
study (Deb et al., 2017). This improvement was possibly due
to enhanced buffering capacity that delays exercise-induced
acidosis and enhances anaerobic energy supply (Deb et al.,
2017).

Taken together, the effect sizes of performance-modifying
treatments on CP and W′ are similar to those observed for
doping agents (Table 3). These results therefore support the
potential utility of the CP model for detecting doping in
individuals. However, three caveats limit this claim. First, the
study volunteers were not elite athletes and in some cases
were untrained, such that the potencies of the ergogenic aids
may be different than those observed in elite athletes. Second,
the reported effect sizes of prohibited methods and substances
are similar to those caused by legal performance-enhancing
methods and substances, such that doping thresholds should
exceed these effects to enhance detection specificity (i.e., avoid
false positives). We note that anecdotally reported effects of
doping typically exceed those reported in studies. Third, doping
is always done in conjunction with other strategies to optimize
performance, such that the observed changes to the model
parameters in response to doping per se may be substantially
less than those of isolated factors. At least one study examined
the effects on CV of a supplement that contained several of
the ergogenic aids listed above. Specifically, supplementation
of participants with Game Time R© (Corr-Jensen Laboratories
Inc., Aurora, CO, United States), which contains whey protein,
cordyceps sinensis, creatine, citrulline, ginseng, and caffeine,
was found to increase CV relative to placebo (+2.9%, effect
size = 0.5) when combined with high-intensity interval training
(Smith et al., 2010). Similarly, caffeine and ephedrine offered
no additional benefit over ephedrine alone (Bell et al., 2001,
2002). The apparent lack of additive effects of performance-
enhancing supplements reported in these studies suggest that
higher sensitivity may be necessary to detect small additive
or synergistic changes of prohibited agents on top of training
effects.
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Accuracies of Model Parameter
Estimates and Predictions of
Performance
The accuracies of CP model parameter estimates and predictions
of performance using the model represent a second line of
indirect evidence for evaluating the potential of the model to
detect dopers. Inaccurate models would be difficult to justify for
use in anti-doping.

Accuracy of the Parameter Estimates
The accuracy of CP model parameter estimates is challenging to
directly assess because there is no gold-standard measurement
against which to compare them. In the past, the accuracy of
the CP model was assessed according to its definition as the
“maximal power that can be sustained without fatigue for a very
long time” (theoretically infinite time). The accuracy of CP was
accordingly assessed using TTE tests completed at CP, and CP
was found to be sustainable for 20–60 min depending on the
study (Hill, 1993; Vandewalle et al., 1997). The accuracy of CP
was best when it was estimated from protocols featuring test
durations that were well spaced in the domain of durations and
that included a longer-duration test (e.g., >20 min; Vandewalle
et al., 1997). Nevertheless, CP is inevitably inaccurate based on
its original mathematical definition because the definition reflects
the simplifying assumption that fatigue is solely caused by W′
depletion, which is physiologically untrue. Instead, assessing the
accuracy of the CP estimates should be in light of its physiological
definition, i.e., the maximum power at which muscle metabolic
variables achieve steady state (Poole et al., 2016). To fulfill this
criterion, participants should exercise at various powers near
CP, during which measurements of physiological and metabolic
variables are collected. Such studies (Poole et al., 1988; Jones
et al., 2008; De Lucas et al., 2013; Murgatroyd et al., 2014)
feature protocols in which exercise was performed at an intensity
5–10% above CP, the responses to which were compared to
those of exercise at or slightly below CP. Steady states in
physiological variables were achieved for exercise at or below CP
but not for exercise above CP. The estimates of CP are therefore
accurate at least to within 5–10% of the “true” physiological
CP. These studies have typically featured specialized equipment
that is inaccessible to most athletes; instead, emerging techniques
such as portable near-infrared spectroscopy to measure muscle
oxygenation may prove useful as a criterion measure.

As with CP, there is no gold-standard physiological measure
of W′ that can be used to assess its accuracy. In the past,
when W′ was conceptualized as the anaerobic work capacity,
several groups tested the relationship between W′ and commonly
used indirect measures of anaerobic capacity, such as Wingate
tests and MAOD (discussed in the Section “Physiological
Interpretations”). Subsequent studies showed higher correlations
between W′ and MAOD when the W′ estimates had lower
standard errors or when the estimates of W′ from the three
common mathematical expressions of the two-parameter CP
model (see equations 3, 4, and 5) were more similar (Hill
and Smith, 1994). These precision criteria were then proposed
as means to assure the accuracy of W′ estimates (Hill and

Smith, 1994). However, the validity of this approach is limited
because indirect measures of anaerobic capacity are themselves
inaccurate. All indirect measures of anaerobic capacity are
confounded by the contributions of aerobically produced energy
and compromised by assumptions regarding efficiency of energy
conversion (Green, 1994). The current definition of W′ is the
mechanical work completed above CP until the limit of tolerance
(Poole et al., 2016), and any future attempts to establish its
accuracy must be in accordance with this definition.

Accuracy of the Model Predictions
While the accuracies of the parameter estimates are difficult
to evaluate, the accuracy of performance prediction is more
straightforward to evaluate because predicted performances
can be compared to observed performances. For example,
the CP model accurately predicted 2,000-m rowing-ergometer
performance (Kennedy and Bell, 2000), and predicted marathon
running performance better than V̇O2max and ventilatory
threshold (Florence and Weir, 1997). In general terms, the CP
model is accurate for predicting performances when interpolated
from within its domain of validity and is less accurate outside of
that domain (Vandewalle et al., 1997), the reasons for which are
described in more detail below.

Precision and Reliability
The precision of CP model fits to power-duration data tends to
be excellent, with values of R2 typically well above 0.9. The typical
errors of CP and W′ are respectively low and high (Table 1). An
explanation for these observed typical errors is the hyperbolic
relationship between power and duration: small increases in
sustainable power at a given duration lead to large changes in
TTE at the prior sustainable power. CP is relatively insensitive
to errors in TTE, whereas W′ is highly sensitive to such errors
(Vandewalle et al., 1997; see Figure 5 in that paper).

Model Bias and Artifacts
The assumed hyperbolic form of the power-duration curve
introduces artifacts that bias estimates and predictions
(Vandewalle et al., 1997). The departure of power-duration
data from the hyperbolic curve is easily visualized (Figure 2) and
demonstrates that the CP model will overpredict performance
for trials whose durations are outside the range of those used
in estimating the model (Pepper et al., 1992; Vandewalle et al.,
1997). The physiological basis for this lack of fit is that numerous
fatigue mechanisms operate to decrease sustainable power as
duration increases (Burnley and Jones, 2007), whereas the CP
model assumes that fatigue occurs solely during exercise above
CP due to W′ depletion. The tendency for the CP model to
overpredict performance represents a clear limitation of the
CP model for doping detection. In addition, model lack-of-fit
may manifest even within its valid domain, as non-uniformity
of model residuals has been observed (Hinckson and Hopkins,
2005). The extent and implications of this lack-of-fit should
encourage more authors to report residual diagnostics when
using the CP model, which is standard procedure in statistical
modeling for assessing model goodness-of-fit and validating the
model assumptions (Morton and Hodgson, 1996).
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FIGURE 2 | The domain of validity for the critical power model is defined by the durations of the exercise trials used to determine the power-duration relationship.
The data were obtained from TTE trials for 10 participants, each of whom performed several trials at different power outputs. In both panels, the dependent variable
is mechanical work accomplished in each trial (Wlim) normalized to critical power (b) and is thus expressed in units of time (min). The independent variable is tlim,
which is the duration of the trial (min). Black points denote data that were used to construct the regression line. (A) Data from all trials. The white points are data from
TTE trials conducted at CP. (B) Data from the short-duration (0–15 min) trials. White points represent work accomplished during TTE trials lasting less than 3.5 min.
Between the two plots, the times at which the white points deviate from the regression line indicate that the valid domain of the model ranges from approximately
3–40 min. The figure was reprinted by permission of Edizioni Minerva Medica from: The Journal of sports medicine and physical fitness (1997) 37, 89–102.

Another possible artifact of the CP model is the anti-
correlation of changes in CP and W′ in response to
experimental treatments (Gaesser and Wilson, 1988;
Jenkins and Quigley, 1993; Vanhatalo et al., 2010a; Poole
et al., 2016). While the decrease in W′ might be real in some
circumstances, at least two plausible explanations for this
observation exist. First, the artifact might arise from the
assumption of no rate limitation in W′ expenditure, which
ignores the physiological reality that peak power is finite.
This finite peak power may constrain improvements to short-
duration performance in response to increased CP. In modeling
improved CP, the hyperbolic function may compensate for
these constraints by rotating counterclockwise, which results in
reduced W′. Second, the artifact may result from learning effects
affecting longer-duration TTE tests disproportionately compared
to short-duration TTE tests (Hill, 1993). That is, learning
effects may cause the study participants to improve more in the
longer-duration tests than in the shorter duration ones over the
course of repeated administrations of the tests. Improvements
in the long-duration trials but not in the short-duration trials
would artifactually increase CP and decrease W′. The impact
of this potential anti-correlation artifact is unclear: on the one
hand it points to a limitation of the model; on the other hand,
simultaneous increases of CP and W′ may represent a potential
standalone criterion for doping suspicion given that such changes
are rarely observed in response to legal performance-enhancing
strategies.

Finally, the precision and accuracy of CP model parameters
and predictions are sensitive to the methods used for estimating
the model. Several options are available for estimating the CP
model, including the test protocol type (e.g., TTE, 3AOT, etc.;

Table 1), the specific intensities or durations of the trials, and
the mathematical expression used to fit the data (non-linear,
linear power vs. inverse duration, linear work vs. time) (Table 1).
The choice of the mathematical model depends in part on
how the test was conducted and which variables are considered
independent and dependent. For example, if TTE tests are used,
the independent variable is the power and the dependent variable
is duration. Conversely, if a TT is employed, then the distance is
the independent variable and duration is the dependent variable.
These assignments matter because the statistical procedures used
to regress the variables feature assumptions about the errors of
the variables. For linear regression, the independent variable is
assumed to have no error; if it does, errors-in-variables models
should be used because the estimates may be biased otherwise
(Raboud, 2005). Hence, the common procedure of using the
linearized form of the CP model for fitting TTE tests may lack
statistical rigor, although the consequences of its use will depend
on the magnitude of the errors in the TTE data.

Summary: Potential for and Limitations of the
CP Model for Use in Doping Detection
Power-duration models are useful in anti-doping because of
their ability to describe MMP data. Of existing power-duration
models, the CP model holds particular promise for use in doping
detection because its properties have been well studied, the
model is simple (i.e., it features just two parameters) and thus
requires relatively few data to estimate, and the physiological
interpretations of the parameters mean that doping strategies
will specifically enhance either CP or W′ depending on their
mechanisms of action. From a statistical standpoint, the model
can be used to detect doping if the doping effects cause changes
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to the CP model parameters or its performance predictions that
exceed their typical errors and seasonal fluctuations due to legal
performance enhancement strategies (e.g., training, ergogenic
aids). The typical errors for CP are low, especially for constant-
duration tests, TTs, and field data, while those for W′ are high
(Table 1). The accuracy of CP estimates is also unknown but
is at least within 5–10% of the “true” physiological CP. The
accuracy of W′ estimates is doubtful given its large typical
error. Hence, thresholds for detection for CP and predicted
performance would be relatively narrow while the threshold for
detection based on W′ would be relatively wide. Furthermore,
the CP model is sufficiently sensitive to detect average changes
in performance in response to treatments applied to groups
of people and competitive performances of highly trained
elite athletes are relatively invariant within and across seasons
(Table 2). Accordingly, large increases in performance due to
doping should be detectable using the CP model.

The promise of the CP model for anti-doping is
counterbalanced by several limitations. A main limitation
arises from the simplifying assumption that power-duration data
are well described by a hyperbolic curve. Indeed, such data are
well approximated by the curve within the domain of durations
of the trials used to generate the data to estimate the model.
Outside of that domain, the model will overpredict performance.
A second limitation is the high typical error of W′ estimates.
The importance of this limitation depends on the duration of
the predicted performance because the relative influence of W′
decreases with duration as its contribution to total energy supply
relative to CP diminishes. A third limitation is that the parameter
estimates are sensitive to how the data were collected. The degree
to which these limitations affect the ability of the model to detect
doping is currently unknown.

IMPLEMENTING THE CP MODEL IN
DOPING DETECTION:
RECOMMENDATIONS REGARDING
METHODOLOGY AND FUTURE
RESEARCH

The preceding discussion motivates three methodological
recommendations regarding implementing the CP model for
doping detection. First, data of the highest quality should be
used. Data for fitting CP models could come from several types
of sources, such as from power or velocity data curated from
athlete-monitoring devices or video tracking, or from publicly
available databases of race results. It is also conceivable that the
CP model estimates could come from laboratory-based testing.
Regardless of the source, data from the same source should be
used for longitudinal comparisons because of the sensitivity of
the CP model to the test protocol and statistical procedure used
to fit it. Furthermore, the limitations of a given data source
must be acknowledged and explicitly accounted for. For example,
field data from training and competitions represents what the
person did and not necessarily what they were capable of doing,
which could lead to artifactually large differences in CP and

W′ estimates at different points in time. Second, the statistical
procedure used to fit the model should suit the data source due
to the potential bias that could be introduced if the independent
variable has errors and the statistical procedure does not account
for them. In addition, rigorous statistical procedure demands
that the model residual diagnostic tests be performed for all
model fits and confidence or prediction intervals be calculated
for the model parameters and predicted performance. Finally,
detection decisions must be insensitive to the consequences of
the model’s simplifying assumptions. Power-duration data are
well approximated by the hyperbolic function but lack-of-fit is to
be expected. Detection thresholds must be sufficiently wide such
that the lack-of-fit does not lead to false positives; however, wider
detection thresholds reduce the sensitivity of the method.

The preceding discussion also revealed several open questions
that must be resolved through new research. Most critically, the
classification properties of the CP model (sensitivity, specificity)
with regards to discriminating dopers and non-dopers must
be characterized. The data showing the sensitivity of the CP
model to individual treatments are insufficient in isolation
because the model will have to detect performance enhancements
due to doping that are inevitably confounded with those
caused by legal performance enhancements due to training and
use of ergogenic aids. A first study could involve applying
the model to retrospective longitudinal velocity/power-duration
data from a group of athletes that includes convicted dopers.
A successful model-based doping detection approach should
identify suspicious performances in the known doper cases.

Before such a study is possible, the method used to set the
detection thresholds must be established. The simplest approach
is to leverage existing statistical approaches for detecting changes
in athletic performance (Hopkins, 2000, 2004; Bagger et al., 2003;
Weir, 2005). These approaches have yet to be evaluated in their
abilities to detect non-random changes in CP or W′ estimates.
Even if these methods were found to be suitable, it would be
best to integrate CP-model-based detection into the existing
ABP framework because it is unclear whether doping sanctions
could be assigned based on performance data alone. Instead,
performance data should be included in the ABP as an additional
independent source of evidence. How the CP model should be
integrated into the ABP is currently unclear. The ABP works by
monitoring biomarkers over time and comparing their values to
thresholds that are set according to previously observed variation.
The expected mean and variance of the biomarker is determined
using a Bayesian approach in which an athlete’s values are first
compared to a distribution generated from population norms
and subsequently updated by the integration of the athlete’s
own values. However, normative cross-sectional data are not yet
available for the CP model, such that future studies employing
meta-analyses of published data and cross-sectional studies
of athlete populations are needed to estimate the population
distributions of the CP model parameter values. Such studies
should be supplemented with longitudinal monitoring studies of
individuals to estimate the expected seasonal variations in CP and
W′ (e.g., Passfield et al., 2017), which could further inform the
prior distributions. Longer term studies of the trajectories of CP
and W′ throughout athlete careers would provide information
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on the usual rates of improvement in these parameters as a
function of athlete age and training experience. Suspicious rates
of improvement could then be used as an additional variable for
doping detection.

Finally, we recommend a third line of research in which the CP
model statistical properties are studied. It would be beneficial to
express the CP model as a formal statistical model that includes all
the important sources of variance. Such a model would enable the
study of how errors in the data collection propagate to the model
parameter estimates, which in turn may enable the optimization
of data collection protocols to minimize the uncertainties of the
CP and W′ estimates. The data presented in Table 1 could be
useful for parameterizing such models.

IMPLEMENTING THE CP MODEL IN
DOPING DETECTION: AN ILLUSTRATION

We offer a simple example of how a CP-model-based detection
method could be implemented. We extracted the data of Pinot
and Grappe (2015), which features longitudinal MMP data from
a professional grand tour cyclist, and added simulated doping
effects for selected years. The dataset contains MMPs for each of
the years from 2003 to 2008, of which the data corresponding

to the 300, 600, 1,200, and 1,800 s durations were used to fit
CP models, because these durations are within the valid domain
of the CP model. In addition, the MMP data exhibited a log-
linear increasing trend that is typical for a cyclist developing from
age 18 to 23. For simplicity of this illustration, we removed this
trend from the MMP values using log-linear regression so that
we could fit the CP model to data from across multiple years
in a manner similar to how the ABP is applied. In years 2007
and 2008, we increased by 5% all the MMP values to simulate
“doped” performances while the MMP curves from 2003 to 2006
were left unchanged to represent baseline “clean” performances.
In the absence of population norms for the CP model, we
assumed that utilizing three or more years of baseline data (12
or more MMP data points) would generate individualized CP
model thresholds comparable to a fully Bayesian implementation.
This assumption is supported by previous work showing that
z-score thresholds generated from an individual athlete’s data
alone converge with the ABP model thresholds and demonstrate
comparable classification performance once both models are
trained on sufficient baseline data (Sottas et al., 2007). We
thus chose to condition the CP model on years 2003–2005 to
generate 99% prediction intervals that were used as the basis of
comparison for the MMP data from 2006. Similarly, the data
from years 2003–2006 were used to compare data from 2007,

FIGURE 3 | Example of the “CP Passport” for doping detection. (A–C) Scatter plots of MMP data (black circles) from the indicated year are plotted against the CP
model predictions (black lines) and 99% prediction intervals (red lines) conditioned on the preceding years. Note that the MMP data for 2007 and 2008 contain
simulated doping effects. Performances that exceed the upper red lines would be considered suspicious. (D,E) Scatter plots feature the estimated W′ or CP (D,E,
respectively; black circles) plotted against the predicted parameter values (black lines) from the indicated year and 99% confidence intervals (red lines) conditioned
on the MMP data from the preceding years. CP and W′ values in each plot were obtained by applying linear regression to the power vs. inverse duration data. The
regression was computed using the “lm” function in R (version 3.4.0). The model curve and 99% prediction intervals were generated with the “predict” function. W′

and CP were estimated directly from the regression coefficients and 99% confidence intervals were estimated with the “confint” function. CP and W′ values that
exceed the upper red lines would be flagged as suspicious.
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and data from years 2003–2007 were used to compare data from
2008.

We observed that the “clean” 2006 performances all fell within
the prediction interval (Figure 3A), such that the performance
would not evoke suspicion. In contrast, two out of four “doped”
2007 performances fell outside the intervals (Figure 3B), which
would be classified as suspicious. Inspection of the parameter
estimates revealed that the W′ and CP estimates for “clean”
year 2006 both fell within the 99% interval, while the CP
but not W′ fell outside the interval in the 2007 “doped” year
(Figures 3D,E). The significant change in CP but not W′ can help
predict the nature of the doping agent because changes to CP are
consistent with the use of doping substances that increase oxygen
transport but not muscular strength. Interestingly, neither
the performances (Figure 3C) nor the parameter estimates
(Figures 3D,E) for “doped” 2008 fell outside the prediction
intervals. This result highlights a limitation in “passport-type”
detection methods in which the “doped” 2007 data were included
in the model training and biased the means and increased the
variance such that the “doped” 2008 performances and parameter
estimates were not statistically detected.

CRITICAL REVIEW OF THE W′
bal

MODEL

This review has focussed on utility of the CP model to doping
detection; however, a limitation in the model’s utility is that
performance predictions are for continuous exercise, whereas
many sports are intermittent in nature. An important extension
of the CP model is the “W′ balance” or “work-balance” (W′bal)
model, which predicts W′ levels over time during intermittent
exercise featuring bouts of severe-intensity exercise alternated
with bouts of recovery (Skiba et al., 2012). This model offers
unique information for doping detection that complements that
of the CP model, such that it deserves discussion.

The empirically derived W′bal model stipulates that the
remaining amount of W′, or “balance” of W′ (W′bal), is the
total W′ (W′o) subtracted by the product of W′ expended in a
prior bout of severe-intensity exercise (W′exp) and a decreasing
exponential function of time, with time constant, τw ′ :

W
′

bal =W
′

0 −

∫ t

u
W
′

expe
−

(
t−u
τw′

)
dt (6)

τw ′ = 564e−0.01D
CP + 316 (7)

where DCP is the difference between CP and the power during the
recovery. The decreasing exponential diminishes to zero in time,
causing its product with W′exp to decline as well, such that this
function models the recovery of W′bal to W′o. To determine the
nature of τw ′ , the model was used to simulate W′bal in response
to four protocols involving intermittent interval exercise to
exhaustion. The four protocols featured 60-s severe-intensity
exercise alternating with 30-s of recovery exercise, the intensity
of which was different for each protocol (20 W, moderate, heavy,
and severe intensities). τw ′ was then fit to cause the modeled W′

to equal zero when the subject was exhausted. τw ′ was observed to
increase (i.e., recovery took longer) as a function of the recovery
intensity. Subsequent studies further revealed the sensitivity of
τw ′ to work and recovery bout durations (Skiba et al., 2014a) and
to environmental conditions (Townsend et al., 2017).

The W′bal model adds unique information that could be
used as evidence for doping detection. First, the model is useful
for describing stochastic exercise featuring bouts of intermittent
high- and low-intensity exercise, such as could be expected
in tactical races and field-based sports. Since the point of
exhaustion during a maximal bout of intermittent exercise should
theoretically coincide with complete expenditure of W′ (i.e.,
W′bal has reached 0 kJ), suspicion of doping might arise from
W′bal repeatedly declining well below zero and the lower bound
of the model’s prediction interval, which would be physiologically
implausible. Alternatively, it is possible that unrealistically high
values for τw ′ are observed, which would signify implausibly fast
recovery kinetics from high-intensity efforts.

The promise is counterbalanced by issues regarding the
accuracy of the model and its sensitivity to different conditions.
First, the model takes as input W′, which is difficult to accurately
estimate as discussed above. Furthermore, τw ′ is determined in
part by CP, and both CP and W′ are sensitive to environmental
conditions such as altitude (Shearman et al., 2016; Townsend
et al., 2017), which serve to reduce the accuracy of the W′bal
model if such factors are left unaccounted for. In addition, the
depletion and recovery kinetics are dependent on task features
such as work and rest durations (Skiba et al., 2012, 2014b)
and pacing strategy. While the W′bal model might be suitable
for predicting when a rider is approaching exhaustion (Skiba
et al., 2014a), it is questionable as to whether it can provide
quantitative predictions of athlete performance capabilities with
the stringency required for doping detection. Future research is
recommended that focuses on modifying the W′bal model in a
manner that improves its accuracy for predicting performances
across a broad range of intermittent exercise protocols.

CONCLUSION

Herein we reviewed the potential of the CP model for use
in anti-doping. We conclude that the model, or improved
versions thereof, hold promise for doping detection because
of its sensitivity to performance-enhancing manipulations, its
physiological interpretability, the low data burden, and its
suitability for use in established statistical frameworks for
monitoring of individuals and/or the ABP. We caution, however,
that important limitations exist in applying CP-model-based
doping detection. First, the discriminative abilities of the CP
model for classifying dopers and non-dopers has yet to be directly
studied and only indirect evidence is available to support its use.
Second, the simplifying assumption of the hyperbolic function for
approximating the power-duration relationship introduces biases
and artifacts that reduce the model’s accuracy. Third, the model
parameter estimates are sensitive to the source of the data and
the data quality; W′ estimates are especially imprecise. Given the
severe consequences of a positive doping test, these limitations
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ought to be addressed prior to the adoption of the CP model as
an anti-doping tool.
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