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The transient receptor potential (TRP) ion channel family consists of a broad variety of
non-selective cation channels that integrate environmental physicochemical signals for
dynamic homeostatic control. Involved in a variety of cellular physiological processes,
TRP channels are fundamental to the control of the cell life cycle. TRP channels from the
vanilloid (TRPV) family have been directly implicated in cell death. TRPV1 is activated by
pain-inducing stimuli, including inflammatory endovanilloids and pungent exovanilloids,
such as capsaicin (CAP). TRPV1 activation by high doses of CAP (>10 µM) leads to
necrosis, but also exhibits apoptotic characteristics. However, CAP dose–response
studies are lacking in order to determine whether CAP-induced cell death occurs
preferentially via necrosis or apoptosis. In addition, it is not known whether cytosolic
Ca2+ and mitochondrial dysfunction participates in CAP-induced TRPV1-mediated
cell death. By using TRPV1-transfected HeLa cells, we investigated the underlying
mechanisms involved in CAP-induced TRPV1-mediated cell death, the dependence
of CAP dose, and the participation of mitochondrial dysfunction and cytosolic Ca2+

increase. Together, our results contribute to elucidate the pathophysiological steps that
follow after TRPV1 stimulation with CAP. Low concentrations of CAP (1 µM) induce
cell death by a mechanism involving a TRPV1-mediated rapid and transient intracellular
Ca2+ increase that stimulates plasma membrane depolarization, thereby compromising
plasma membrane integrity and ultimately leading to cell death. Meanwhile, higher doses
of CAP induce cell death via a TRPV1-independent mechanism, involving a slow and
persistent intracellular Ca2+ increase that induces mitochondrial dysfunction, plasma
membrane depolarization, plasma membrane loss of integrity, and ultimately, cell death.

Keywords: TRPV1, capsaicin, cell death, mitochondria, necrosis, calcium

INTRODUCTION

Transient receptor potential (TRP) channels belong to a polymodal family of ion channels that act
as molecular transducers and integrators of a variety of environmental physicochemical stimuli,
such as temperature, osmotic pressure, mechanical stress, and exogenous and endogenous ligands
(Ramsey et al., 2006; Latorre et al., 2007, 2009). TRP channels play an essential role in multiple
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physiological and pathological cellular processes, such as
proliferation, differentiation, and death progression (Shimizu
et al., 2004; Shirakawa et al., 2008; Carrasco et al., 2018).
Deregulated activation of TRP channels from the vanilloid
(TRPV) family has been directly implicated in cell death (Macho
et al., 1999; Amantini et al., 2009; Chen et al., 2012). TRPV1 has
been detected in a variety of organs, such as the brain, testes,
lungs, and heart. (Hayes et al., 2000; Randhawa and Jaggi, 2018).
TRPV1 is widely expressed in dorsal root ganglion (DRG) and
trigeminal neurons.

TRPV1 is activated by pain-inducing stimuli, including
inflammatory endovanilloids, TNF-α, TGF-β, heat (37–42◦C),
acids (pH < 6.3), and pungent exovanilloids, such as capsaicin
(CAP) or resiniferatoxin (Caterina et al., 1997; Tominaga et al.,
1998; Jordt et al., 2000; Olah et al., 2001, 2002; Latorre et al.,
2007; Ma et al., 2011; Utreras et al., 2013; Rozas et al., 2016).
TRPV1 activation by CAP is antagonized by the synthetic
organic compound capsazepine (CPZ). At the cellular level,
TRPV1 activation by high doses of CAP leads not only to
necrotic processes with membrane bleb formation (Pecze et al.,
2013; Wu et al., 2014) but also to apoptosis through caspase-
3 activation and mitochondrial membrane potential attenuation
(Ziglioli et al., 2009; Sun et al., 2014; Çiğ and Nazıroğlu, 2015).
However, CAP dose–response studies are lacking in order to
understand whether CAP-induced cell death occurs preferentially
via necrosis or apoptosis. Thus, the relationship between CAP
concentration and CAP-induced TRPV1-mediated cell death is
not completely understood.

Increased TRPV1 activity induces high levels of cytosolic
Ca2+, generating mitochondrial membrane depolarization and
decreased cell viability (Thomas et al., 2007). Furthermore,
TRPV1 activation triggers apoptotic cell death in neuron-rich
cultures from rat cerebral cortex via Ca2+ channels opening,
allowing Ca2+ influx (Shirakawa et al., 2008). However, it is not
known whether cytosolic Ca2+ and mitochondrial dysfunction
participate in CAP-induced TRPV1-mediated cell death. Thus,
we focused on investigating the underlying mechanisms involved
in CAP-induced TRPV1-mediated cell death, the dependence of
CAP dose, and the participation of mitochondrial dysfunction
and cytosolic Ca2+ increase.

Using an analytical three-state model (O’Neill et al., 2011)
to describe the mechanistic sequential progression from a state
of health to a state of death, we found that TRPV1 stimulation
with 10 µM CAP significantly induces necrosis-like cell death
characterized by extensive cell membrane damage but without
affecting mitochondrial function. Interestingly, 100 µM CAP
induced a different pattern for cell death, characterized by
mitochondrial dysfunction and is independent of TRPV1 activity,
resembling an apoptosis-like death pattern. Furthermore, we
found that TRPV1 stimulation with 1 µM CAP induces a
TRPV1-dependent fast and transient intracellular Ca2+ increase,
while 10 µM CAP induces a fast and persistent increase,
which can be explained by the combination of two intracellular
Ca2+ signals, a TRPV1-dependent fast and transient increase
that is inhibited by CPZ, and a slow, persistent, and TRPV1-
independent rise of intracellular Ca2+. Finally, we demonstrated
that 10 µM CAP induces plasma membrane depolarization

via an influx of Ca2+ and Na+ from the extracellular
space.

Our results show further mechanistical insights detailing
how CAP induces TRPV1-dependent and independent cell
death. Low concentrations of CAP (1 µM) induce a fast
and transient increase in intracellular Ca2+, which leads to
plasma membrane depolarization, thereby compromising plasma
membrane integrity, and ultimately driving cell physiology
to a state of death but without mitochondrial dysfunction.
Meanwhile, 10 and 100 µM CAP induce a slow but persistent
increase in intracellular Ca2+, which leads not only to plasma
membrane depolarization but also to mitochondrial dysfunction,
and ultimately cell death. Thus, CAP is shown to activate two
independent pathways of Ca2+ homeostasis leading to cell death
by necrosis or apoptosis.

MATERIALS AND METHODS

Cell Culture
HeLa cells were obtained from ATCC (Manassas, VA,
United States). The culture medium used was Dulbecco’s
Modified Eagle Medium/F12 supplemented with 10% fetal
bovine serum and 50 U/ml penicillin–streptomycin. Cells were
incubated in a conventional incubator at 37◦C and a 95% air/5%
CO2 atmosphere.

HeLa Cells Stably Transfected With
TRPV1 (st-TRPV1 HeLa Cells)
HeLa cells were cultured at 70–80% confluence and then
were transfected with pcDNA3.1 containing the full length
of rat TRPV1 (GenBankTM accession no. NM031982) using
Lipofectamine (ThermoFisher). Transfected cells were selected
using Geneticin (Sigma-Aldrich, St. Louis, MO, United States,
800 mg/mL) to generate a stable cell line encoding TRPV1. Stable
TRPV1 expression was checked by RT-PCR and flow cytometry
weekly (Supplementary Figure S1).

Analysis of Quantitative Cell Death by
Flow Cytometry
HeLa cells were exposed to different experimental conditions
in Dulbecco’s Modified Eagle Medium /F12 supplemented with
1% bovine serum albumin instead of fetal bovine serum.
Cellular death was determined as described in the literature
(Darzynkiewicz et al., 1982) and analyzed according to a three-
state model of cell death (O’Neill et al., 2011). Briefly, cell cultures
were stained with 10 µM rhodamine 123 (Rho123, Invitrogen,
Carlsbad, CA, United States) to assess mitochondrial membrane
potential, and propidium iodide (PI, 10 µg/ml (Sigma-Aldrich,
St. Louis, MO, United States) to assess plasma membrane
integrity. Both measures were analyzed by flow cytometry
(FACScalibur, BD Biosciences, CA, United States). A minimum
of 10,000 cells/sample were analyzed to evaluate mitochondrial
function and membrane permeability. Fluorescence intensity
analysis was performed using FlowJo software (Tree Star,
Inc., Ashland, OR, United States). Cell state was operationally
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defined with the following first-order rate process: Alive (A)↔
Vulnerable (V)↔ Dead (D). To determine probability for the A
state (PA), data were normalized with respect to internal controls
using the following equation: PA = X – CD/CA − CD, where
X corresponds to living cells in each experimental condition,
CD corresponds to living cells in the presence of 10% ethanol
to induce cell death, and CA corresponds to living cells without
treatment.

Ca2+ Imaging
Cell cultures were loaded with Fura-2 AM (Molecular Probes,
Eugene, OR, United States) for 30 min at room temperature in
buffer solution [130 mM NaCl, 5.4 mM KCl, 2.5 mM CaCl2,
0.8 mM MgCl2, 5.6 mM glucose, 10 mM HEPES, pH 7.4 (adjusted
with Tris base)], rinsed, and allowed to equilibrate for 5–10 min.
Next, HeLa cells were cultured on 12-mm glass cover slips in
a recording chamber mounted on an epifluorescence Olympus
IX81 microscope (Olympus, Japan) equipped with a multiple-
excitation filter wheel. CAP-induced activity was recorded for
a minimum recording time of 2 s. Maximum resolution was
obtained with a Plan Apo 40X 1.3 NA oil objective lens.

Membrane Potential Measurement
Cell cultures were equilibrated using DiBAC4(3) [Molecular
Probes, Eugene, OR, United States] as described previously
(Kunz et al., 2006). This anionic fluorescent dye is distributed
across the plasma membrane relative to the membrane potential
following Nernst’s equation (Olivero et al., 2008). DiBAC4(3)
(200 nM) was applied extracellularly for approximately 20 min
to ensure dye distribution across the cell membrane. Changes
in fluorescence intensity were monitored by sampling every 10 s
for 30 min with a 515 nm excitation filter and an emission filter
of at least 600 nm. Fluorescence data were transformed to mV
using a calibration curve from HeLa cells as described previously
(Krasznai et al., 1995).

RT-PCR
Total RNA from parental HeLa cells and cells transfected with
TRPV1 was extracted with TRIzol (Invitrogen, Carlsbad, CA,
United States), and reverse transcription was performed to create
a cDNA library using reverse transcriptase M-MLV (Invitrogen,
Carlsbad, CA, United States). An equal amount of RNA was
used as template in each reaction. The PCR reactions were
performed using GoTaq Master Mix (Promega Corp., Madison,
WI, United States) following the manufacturer’s instructions.

Immunodetection by Flow Cytometry
HeLa cells were collected by trypsinization and fixed with 4%
paraformaldehyde for 30 min. Next, the cells were blocked
and permeabilized using a PBS solution with 5% bovine serum
albumin (Merck KGaA, Darmstadt, Germany) and 2% Tween-20
(Merck KGaA, Darmstadt, Germany) for 1 h and then incubated
with an anti-TRPV1 antibody (Santa Cruz Biotechnology, Inc.,
United States, 1:200) in blocking solution overnight at 4◦C.
After washing with PBS, the cells were incubated with anti-
goat biotinylated secondary antibody (Jackson ImmunoResearch,

United States, 1:500) for 1 h at 37◦C. The cells were washed with
PBS and incubated in the dark with streptavidin-Alexa Fluor 488
(Jackson ImmunoResearch, United States, 1:200) for 1 h at 37◦C.
The Alexa Fluor signal was measured with a 530/30 bandpass
filter using an argon laser at 488 nm integrated into a FACScalibur
flow cytometer (BD, Biosciences, CA, United States). Debris
and duplets were excluded from the analysis, and a minimum
of 10,000 cells were acquired in each experiment. Data were
analyzed with FlowJo software (Tree Star, Inc., Ashland, OR,
United States).

Reagents
Cyanide-4-(trifluoromethoxy)phenylhydrazone, FCCP,
ionomycin, rodamine123, and PI were obtained from Sigma-
Aldrich (St. Louis, MO, United States). CAP and CPZ were
obtained from Tocris Bioscience (Bristol, United Kingdom).
Buffers, ethanol, and salts were purchased from Merck
(Darmstadt, Germany).

Data Analysis
All results are presented as the mean ± SD from at least three
independent assays for each experimental condition. Fisher’s least
significant difference test and an ANOVA test followed by the
Bonferroni post hoc test were used to compare multiple groups
using Statgraphics Plus 5.0 (GraphPad Software, Inc., San Diego,
CA, United States). A p-value < 0.05 was used to indicate
statistical significance.

RESULTS

TRPV1 Expression Increases
CAP-Induced Cell Death
The participation of TRPV1 expression and activity to sensitize
cells to CAP-induced death was tested using a three-state cell
death model. The three-state model [alive (A), vulnerable (V),
and dead (D)] was established by means of flow cytometry
dot plot analysis to determine cell death with or without
mitochondrial involvement. Wild-type HeLa (wt-HeLa) cells
were exposed to 10 µM FCCP (Figure 1A) for 0, 30, and 120 min,
and 10% ethanol (Figure 1B) for 0, 1, and 12 h. The three-state
cell death model displayed a pronounced progression from A
(PIlowRho123hi), to V (PIlowRho123low, or PIhiRho123hi), to D
(PIhiRho123low; Figures 1A,B). The induction of an intermediate
PIlowRho123low V-phenotype indicates loss of mitochondrial
membrane potential without plasma membrane disruption
(Figure 1A), while PIhiRho123hi V-phenotype indicates plasma
membrane disruption, but without loss of mitochondrial
membrane potential (Figure 1B). Cell phenotype did not remain
constant, and the proportion of cells in the three states varied
over time. Cells achieved a full phenotype shift toward the D
state after 3 h of exposure to FCCP (Figure 1C) and after
9 h of exposure to 10% ethanol (Figure 1D). Cells reached the
intermediate V state at approximately 1 h of exposure to either
FCCP or 10% ethanol, and PA was greater for cells exposed
to FCCP than to 10% ethanol. Therefore, HeLa cell physiology
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FIGURE 1 | Three-state model of cell death. Representative flow cytometry dot plot output depicting 24-h exposure of non-transfected wt-HeLa cell phenotype
exposed to 10 µM FCCP (A) and 10% ethanol (B). Cell death progression was evaluated using PI (to assess plasma membrane integrity) and Rho123 (to assess
mitochondrial membrane potential). Cell state progression is symbolized as A (alive), V (vulnerable), and D (dead). Replicate experiments [from (A,B)] were performed
for different times between 0 and 24 h, and were normalized against PA = 1 to determine the probability for cell state [(C,D) respectively]. Data are shown as
mean ± SEM (n = 9).

appeared more sensitive to mitochondrial dysfunction than to
plasma membrane disruption, as shown with PA progression
curves.

Once the three-state cell death model was established, we
investigated the effect of TRPV1 expression in HeLa cells stably
transfected with TRPV1 (st-TRPV1). Transfection efficiency
in generating the st-TRPV1 was confirmed at the mRNA
level by RT-PCR and at the protein level by flow cytometry
(Supplementary Figure S1). Flow cytometry analysis revealed that
in the absence of CAP, wt-HeLa cells predominantly exhibited a
phenotype consistent with the A state (PIlowRho123hi), without
plasma membrane disruption or mitochondrial dysfunction
(Figure 2, upper-left panel). Similar results were observed for
st-TRPV1 HeLa cells in the absence (Figure 2, upper-middle
panel) or presence of CPZ (Figure 2, upper-right panel), and

in wt-HeLa cells exposed to 10 µM CAP (Figure 2, middle-
left panel). However, st-TRPV1 HeLa cells exposed to 10 µM
CAP showed a phenotype (PIlow−hiRho123hi) predominantly
indicative of plasma membrane loss of integrity without
mitochondrial dysfunction (Figure 2, middle-middle panel), a
phenotype that resembles a necrosis-like cell death. Interestingly,
st-TRPV1 HeLa cells pre-treated with 10 µM CPZ and then
treated with 10 µM CAP exhibited a cell phenotype consistent
with the A state (Figure 2, middle-right panel), suggesting
that 10 µM CPZ is able to prevent cell death. Wt-HeLa cells
exposed to 100 µM CAP showed a phenotype (PIhiRho123low)
predominantly indicative of plasma membrane loss of integrity
and severe mitochondrial dysfunction (Figure 2, lower-left
panel). Similarly, st-TRPV1 HeLa cells exposed to 100 µM CAP
exhibited a phenotype (PIhiRho123mid) consistent with the D
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FIGURE 2 | TRPV1 expression increases CAP-induced cell death. Representative flow cytometry dot plot output and quantification depicting wt-HeLa cells and
st-TRPV1 HeLa cells exposed to 0, 10, and 100 µM CAP for 24 h in the presence or absence of 10 µM CPZ. Cell death progression was evaluated using PI (to
assess plasma membrane integrity) and Rho123 (to assess mitochondrial membrane potential). Cell state progression is symbolized as A (alive), V (vulnerable), and
D (dead). Data are shown as mean ± SEM (n = 6).

FIGURE 3 | Dose- and time-response of CAP-induced cell death. (A) Probability of cell state A (PA) of wt-HeLa cells and st-TRPV1 HeLa cells in the presence or
absence of 10 µM CPZ exposed to several concentration of CAP (1·10−3 to 1·10−8 M) for 24 h. (B) Probability of cell state progression of st-TRPV1 HeLa cells
exposed to 10 µM CAP for 0, 1, 3, 6, 12, and 24 h. Data are shown as mean ± SEM (n = 5). ∗p < 0.01.

state with both plasma membrane disruption and mitochondrial
failure (Figure 2, lower-middle panel), indicative of an apoptosis-
like cell death. Notably, pre-treatment with 10 µM CPZ of
st-TRPV1 HeLa cells exposed to 100 µM CAP was not effective

protecting the cells from CAP challenge, showing a phenotype
(PIhiRho123mid) consistent with the D state (Figure 2, lower-
right panel). Thus, these results indicate that 10 µM CAP induces
TRPV1-mediated cell death without affecting mitochondrial
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FIGURE 4 | TRPV1 expression increases intracellular calcium level in response to CAP. (A) Dose–response curve of ratiometric assay recordings for [Ca2+]I in
wt-HeLa cells and st-TRPV1 HeLa cells exposed to 0.1, 0.25, and 1 µM CAP for 60 min. Representative experiments from five independent experiments.
(B) Dose–response curve of ratiometric assay recordings for [Ca2+]I in st-TRPV1 HeLa cells exposed to 1 and 10 µM CAP in the presence or absence of 10 µM
CPZ for 20 min. Representative experiments from five independent experiments. 10 µM ionomycin was added at the end of experiments (A) and (B) as positive
control. (C) Cross-sectional ratiometric [Ca2+]I in st-TRPV1 HeLa cells exposed to 1 and 10 µM CAP at times 2 and 10 min after CAP exposition, in the presence or
absence of 10 µM CPZ or Ca2+-free condition. Data are shown as mean ± SEM (n = 15). ∗p < 0.01.

physiology, while 100 µM CAP induces cell death in a
TRPV1-independent fashion, characterized by mitochondrial
potential dysfunction and plasma membrane disruption. Phase-
contrast images highlighting the main morphological features
of each condition for wt-HeLa and st-TRPV1 HeLa cells were
documented and summarized in Supplementary Figure S2.

To investigate the dose–response effect of CAP, st-TRPV1
HeLa cells were exposed to increasing doses of CAP for 24 h. The
results showed that CAP has a sensitizing effect over st-TRPV1
HeLa cells, decreasing the PA when compared to wt-HeLa cells
(PA50 from ∼3.5·10−5 to ∼4.5·10−6 µM CAP). Interestingly,
addition of the TRPV1 competitive antagonist CPZ (which blocks
CAP-induced Ca2+ uptake through TRPV1) to CAP treated st-
TRPV1 HeLa cells completely overturned the original sensitizing

effect of CAP, contributing to cell resistance to a level close to
wt-HeLa cells response (Figure 3A). As a next step, we studied
the time–response (0–24 h) of st-TRPV1 cells exposed to 10 µM
CAP. The proportion of st-TRPV1 cells in the V state was
maximal after 12 h of exposure to 10 µM CAP. The A state in
st-TRPV1 cells reached 50% after ∼7 h of CAP exposure, while
the D state increased steadily (Figure 3B). These results indicate
that the CAP-induced cell-state transition is mediated by TRPV1.

TRPV1 Expression Increases Intracellular
Calcium Level in Response to CAP
To investigate the intracellular effect of CAP-mediated TRPV1
stimulation, we measured Ca2+ dynamics with ratiometric
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FIGURE 5 | TRPV1 expression induces plasma membrane depolarization in
response to CAP. Membrane potential measured by the change in DiBAC4(3)
fluorescence intensity in st-TRPV1 HeLa cells exposed to 10 µM CAP for
30 min, in the presence or absence of 10 µM CPZ, Ca2+-free condition, or
Na+-free condition. Data are shown as mean ± SEM (n = 5). ∗p < 0.01 and
∗∗p < 0.05.

assays. Measurements of intracellular Ca2+ levels showed that
wt-HeLa cells were irresponsive to CAP stimulation. However,
st-TRPV1 HeLa cells were able to respond to CAP treatment
exhibiting transient and dose-dependent increases in intracellular
calcium concentration ([Ca2+]I; Figure 4A). Addition of 1 µM
CAP to st-TRPV1 HeLa cells showed a fast and transient
rise in [Ca2+]I after 2 min of exposure to CAP reaching
basal levels shortly before 10 min (Figure 4B). However, st-
TRPV1 HeLa cells treated with 10 µM CAP showed a fast
and persistent increase in [Ca2+]I, without return to basal
levels after 10 min. Interestingly, when the latter cells were
simultaneously exposed to 10 µM CPZ, the fast increase in
[Ca2+]I was prevented, showing a slow and constant increase in
[Ca2+]I reaching levels similar to those observed in the absence
of CPZ (Figure 4B). Thus, 10 µM CAP elicits two Ca2+ signals
combined, a TRPV1-dependent fast and transient increase and
another slow and persistent Ca2+ increase, without participation
of TRPV1. As a positive control, cells were responsive to
ionomycin (Figures 4A,B).

Whether the increase in intracellular Ca2+ levels was
mediated by TRPV1, we were prompted to determine the
participation of extracellular Ca2+ on the CAP-induced increase
on intracellular Ca2+ levels. Figure 4C depicts both the transient
and the persistent increases in [Ca2+]I from experiments as
shown in Figure 4B. St-TRPV1 HeLa cells exposed to 1 µM
CAP showed a transient, but not persistent increase in [Ca2+]I,
while cells exposed to 10 µM CAP showed a persistent increase
in [Ca2+]I. The addition of 10 µM CPZ prevented both the
transient increase in [Ca2+]I independent of CAP concentration,
but CPZ failed into inhibit the persistent increase in [Ca2+]I
when 10 µM CAP was present. Interestingly, after removal
of extracellular Ca2+, transient Ca2+ increases were prevented
for both 1 and 10 µM CAP treatments, suggesting that

CAP-induced transient increases in [Ca2+]I are dependent on
extracellular Ca2+ and considering that it is CPZ-sensitive, this
influx is mediated TRPV1. However, after extracellular Ca2+

depletion, 10 µM CAP was still able to stimulate an increase
in [Ca2+]I, potentially due to a secondary mechanism involving
Ca2+ mobilization from an intracellular storage compartment
(Figure 4C).

TRPV1 Expression Induces Plasma
Membrane Depolarization in Response
to CAP
Considering that stimulation of st-TRPV1 with CAP generated
a fast increase in [Ca2+]I (Figure 4B) and that CAP induced
a disruption in membrane integrity but not mitochondrial
function (Figure 2, middle panel), we determined whether
CAP challenge could depolarize plasma membrane potential.
St-TRPV1 HeLa cells exposed to 10 µM CAP for 30 min
increased the fluorescence of the membrane potential fluorescent
indicator DIBAC4(3), suggesting that exposure to 10 µM CAP
induced a significant depolarization of the plasma membrane
from approximately –80 mV in non-treated st-TRPV1 HeLa cells
to –35 mV (Figure 5). Interestingly, selective inactivation of
TRPV1 with 10 µM CPZ prevented the CAP-induced plasma
membrane depolarization, suggesting that TRPV1 participates in
plasma membrane depolarization induced by CAP.

To investigate whether CAP-induced plasma membrane
depolarization requires external Ca2+, st-TRPV1 HeLa cells
were exposed to 10 µM CAP in the absence of extracellular
Ca2+. These results showed that in the absence of external
Ca2+, CAP-induced plasma membrane depolarization was
significantly decreased. Often, intracellular Ca2+ increases are
followed by increases in intracellular Na+, which severely
contribute to plasma membrane depolarization (Figure 5;
Castro et al., 2006). To test this possibility, st-TRPV1 HeLa
cells were exposed to 10 µM CAP in the presence of a
culture medium depleted of Na+ by means of replacing Na+
with the non-permeable cation NMDG+, thereby maintaining
osmolarity and tonicity constant. These results showed that in
the absence of external Na+, the CAP-induced plasma membrane
depolarization was significantly decreased. Remarkably, CAP-
induced plasma membrane depolarization was completely
prevented when both Ca2+ and Na+ were absent from the
extracellular medium (Figure 5). Thus, CAP-induced plasma
membrane depolarization appears to be an additive effect of
Ca2+ and Na+ influxes. DIBAC4(3) efficiency to measure
plasma membrane potential was validated using valinomycin and
gramicidin (Supplementary Figure S3).

DISCUSSION

This study highlights how TRPV1 activity is required to induce
cell death. Here, we suggest that TRPV1 stimulation with
CAP induces necrotic-like cell death without mitochondrial
dysfunction, in a mechanism that involves a fast and transient
increase in intracellular Ca2+, leading to plasma membrane
depolarization and a loss of plasma membrane integrity.
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Interestingly, 100 µM CAP generates mitochondrial dysfunction
and TRPV1-independent apoptotic-like cell death.

TRPV1 expression exhibits dose-dependent cytotoxic effects,
including mitochondrial store-dependent Ca2+ overload (Lam
et al., 2007; Hu et al., 2008; Davies et al., 2010), membrane
bleb formation (Pecze et al., 2013; Wu et al., 2014), pyknotic
nuclear fragmentation, cytochrome c release from mitochondria,
caspase-3 activation (Davies et al., 2010), and cell viability
(Maeno et al., 2000; Bortner and Cidlowski, 2002; Stutzin
and Hoffmann, 2006; Lam et al., 2007; Panayiotidis et al.,
2010). Indeed, TRPV1 activation promises therapeutic use
by rapidly and selectively inducing necrosis in TRPV1-
expressing nociceptive neurons (Olah et al., 2001), thereby
inducing analgesia most likely via Ca2+-mediated cytotoxicity
(Marsch et al., 2007; Gunthorpe and Chizh, 2009; Lambert,
2009). Furthermore, the analgesic effects of CAP – via
TRPV1 activation – are associated with the inhibition of
hyperpolarization-activated cation currents (Ih), which depend
on intracellular Ca2+ mobilization (Kwak, 2012). Optimal
mitochondrial physiology maintains a low cytoplasmic Ca2+

concentration through mitochondrial refilling and/or ATP-
dependent Ca2+ compartmentalization processes (Varikmaa
et al., 2013). Thus, CAP can induce sustained Ca2+ increases,
likely via the release of Ca2+ stores caused by mitochondrial
failure or mitochondrial fission.

Stable TRPV1 expression and stimulation induces membrane
depolarization through an increase in intracellular Ca2+.
Although transient increases in Ca2+ did not induce a change
in cell state, heavy stimulation of TRPV1 with 100 µM CAP was
able to trigger a toxic Ca2+ overload, likely due to intracellular
mitochondrial Ca2+ release. Mitochondrial Ca2+ exchange with
the cytoplasm has been previously reported (Malli et al., 2003)
and Ca2+ uptake has been proposed to generate microdomains
of low Ca2+ concentrations across the cytoplasm (Youle and van
der Bliek, 2012). In fact, mitochondrial function has been found
to be finely regulated by Ca2+-dependent ion channels, capable
of regulating the electrochemical gradients required to mobilize
Ca2+ into intracellular stores (Malli et al., 2003). Thus, the loss of
membrane potential is likely induced by the activation of TRPV1
and a massive Ca2+ influx, leading to CAP-induced cell death.

Endogenous TRPV1 expression in many tissues, such as
the brain, heart, skin, and testis, has been reported to play
a role in cell death (Kunert-Keil et al., 2006; Marsch et al.,
2007). For example, TRPV1-mediated neurotoxicity has been
reported in a large spectrum of assays involving primary
cultures, as well as tissues, organs, and in toto experiments

(Shin et al., 2003; Cernak et al., 2004; Shirakawa et al., 2008). In
fact, direct application of CAP to the substantia nigra can
induce the depletion of dopaminergic neurons (Kim et al., 2005).
Moreover, deregulated TRPV1 activation by endogenous agonists
induces the loss of hippocampal neurons and an impairment of
cognitive functions (Cernak et al., 2004). These findings, along
with observations by other authors, raise the possibility that
TRPV1 receptors may be inducing cell death via oxidative stress
(Macho et al., 1999; Movsesyan et al., 2004; Lam et al., 2007;
Shirakawa et al., 2008), mitochondrial disruption (Macho et al.,
1999; Shin et al., 2003), and intracellular Ca2+ overload (Chard
et al., 1995; Cernak et al., 2004; Lam et al., 2007; Shirakawa et al.,
2008). Nevertheless, this conjecture falls beyond the scope of this
work and warrants further investigation in neuronal cells.

Taken together, the results shown in this study suggest that the
expression and specific activation of TRPV1 can induce TRPV1-
dependent Ca2+ signaling modifications that lead to a plasma
membrane potential depolarization contributing to cell death.
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