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Motivation: Mathematical models take an important place in science and engineering.

A model can help scientists to explain dynamic behavior of a system and to understand

the functionality of system components. Since length of a time series and number of

replicates is limited by the cost of experiments, Boolean networks as a structurally simple

and parameter-free logical model for gene regulatory networks have attracted interests

of many scientists. In order to fit into the biological contexts and to lower the data

requirements, biological prior knowledge is taken into consideration during the inference

procedure. In the literature, the existing identification approaches can only deal with a

subset of possible types of prior knowledge.

Results: Wepropose a new approach to identify Boolean networks from time series data

incorporating prior knowledge, such as partial network structure, canalizing property,

positive and negative unateness. Using vector form of Boolean variables and applying

a generalized matrix multiplication called the semi-tensor product (STP), each Boolean

function can be equivalently converted into a matrix expression. Based on this, the

identification problem is reformulated as an integer linear programming problem to

reveal the system matrix of Boolean model in a computationally efficient way, whose

dynamics are consistent with the important dynamics captured in the data. By using

prior knowledge the number of candidate functions can be reduced during the inference.

Hence, identification incorporating prior knowledge is especially suitable for the case of

small size time series data and data without sufficient stimuli. The proposed approach is

illustrated with the help of a biological model of the network of oxidative stress response.

Conclusions: The combination of efficient reformulation of the identification problem

with the possibility to incorporate various types of prior knowledge enables the

application of computational model inference to systems with limited amount of time

series data. The general applicability of this methodological approachmakes it suitable for

a variety of biological systems and of general interest for biological and medical research.
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1. INTRODUCTION

Boolean networks (BNs) are discrete-time systems, whose
variables can take only two possible values (i.e., 0 and 1). Since
Stuart Kaufman firstly introduced BNs in Kauffman (1969) for
qualitative description of gene regulatory interactions, BNs have
attracted great attention from many scientists and several results
have been proposed, for instance, analysis (Albert and Barabási,
2000) and control (Fauré et al., 2006). An overview can be found
in Wang et al. (2012) and a database for established models and
compatible tools has been introduced (Naldi et al., 2015).

Mathematical models are important to explain dynamic
behavior of a system and to understand the functionality of
system components (Grieb et al., 2015) and can help scientists
to design model-based targeted therapy and diagnosis (Fumia
and Martins, 2013). Hence, the inference of models capturing
the relevant behavior of the system is an important topic. The
inference can be based on the connection of known biochemical
reactions, like BN model for the yeast cell cycle in Davidich
and Bornholdt (2008), or on experimental data, if the latter
is the case it is also called the identification problem. One of
the first approaches to identify a BN was REVEAL which is
based on mutual information (Liang et al., 1998). In Akutsu
et al. (1999) a similar but less complex approach is presented.
Both cannot handle errors in the dataset which was solved in
Lähdesmäki et al. (2003). Themodeled quantities are not Boolean
in the experimental data and need to be binarized first. For the
binarization several approaches can be found in the literature
ranging from mixture model based clustering (Zhou et al., 2003)
to more complex methods where the significance of a jump in the
time series is estimated in Hopfensitz et al. (2012). A comparison
of some identification and binarization approaches and their
combinations can be found in Berestovsky and Nakhleh (2013).
Most identification approaches are based on previously binarized
data, but there also exist approaches directly based on continuous
data (e.g., Karlebach and Shamir, 2012). In Higa et al. (2011)
the data is considered as given constraint and the set of systems
fulfilling the constraints is searched. This approach was then
further improved by reducing the sensitivity to noise in Ouyang
et al. (2014). An example of recent research is the identification of
Boolean models for transient dynamics after perturbations from
time course data with answer set programming (Ostrowski et al.,
2016). A BN can simply be extended to a Boolean control network
(BCN) by considering manipulated external stimuli as control
signal of the network. Recently, a powerful tool called semi-
tensor product (STP) of matrices has been proposed in Cheng
(2001), which can convert the dynamics of BCNs into a model
where all information of the dynamics and the structure of the
BCN is contained in two matrices (Cheng et al., 2011a). Using
the STP based matrix description of BCN several approaches for
identifying BCN have been proposed (Cheng and Zhao, 2011;
Fornasini and Valcher, 2014; Zhang et al., 2017a).

However, in general, in order to identify the dynamical
model of a BCN from its input and output data, a huge number
of data is required (Cheng and Zhao, 2011; Cheng et al.,
2011b). Though, in practice, data size is limited by the cost of
experiments (Geier et al., 2007). In order to reduce the search
space and improve the accuracy of the model, the benefit of

biological prior knowledge should be taken into consideration.
Cheng and Zhao (2011) pointed out that, if the network graph
is known, then the data required can be reduced considerably.
In the literature there are several approaches to include different
types of prior knowledge. For example the known network
structure and known steady state activity is considered in Videla
et al. (2015). Moreover, two common properties of the Boolean
function, canalizing and unateness, can be further utilized
according to Breindl et al. (2013) and Faisal et al. (2010). A
Boolean function is canalizing, if a variable takes on a certain
“canalizing” value, then the output of the boolean function is
always the same (Waddington, 1942). Different from canalizing
function, an unate function has monotonic properties, which
in biology indicates that a gene acts exclusively as an inducer
or as an inhibitor for the expression of another gene (Porreca
et al., 2010). The prior knowledge is used in different ways
either by introducing additional constraints in the optimization
(Breindl et al., 2013), or reducing the number of parameters
in the optimization (Cheng and Zhao, 2011). In Dorier et al.
(2016) and Terfve et al. (2012) genetic algorithms are used to
handle the complexity problem of large networks while satisfying
prior knowledge network graphs as constraints. However, these
approaches to handle prior knowledge are not compatible and
the advantages of different types of prior knowledge can not be
combined. In the approach proposed in this paper, all different
types of prior knowledge can be utilized simultaneously and it
can additionally handle hypotheses for interactions, which could
be used for researcher bias free distinction between alternative
hypotheses. Furthermore existing approaches can not handle
the case that at some time instances some measurement values
are missing, which cannot be avoided in practice due to the
limitation of measuring techniques like mass spectrometry-based
proteomics.

In this paper, we consider the identification problem of BCNs
utilizing biological prior knowledge. A part of the results was
presented at the 56th IEEE Conference on Decision and Control
in Melbourne (Zhang et al., 2017b). However, the BCN model
considered in Zhang et al. (2017b) contains a general output
equation. By applying prediction error method (PEM), a high-
dimensional BCN (i.e., 2n × 2n+m) cannot be avoided. Different
from that, although the handling of unmeasurable processes
is considered in this paper, the proposed approach leads to a
low-dimensional matrix for PEM. Besides, more prior biological
knowledge is considered in the paper, like potential interactions,
known attractors and limit cycles. Moreover, it is discussed how

to deal with alternative hypotheses for interactions and missing

measurement points. The main contributions of this paper are as

follows:

• A suitable way to handle the prior knowledge such as known

network graph, hypotheses for interactions, canalizing and
unateness properties or attractor is introduced. For this

purpose the BCN is described by two matrices with unknown
parameters as entries. If possible, some parameters are inferred
directly. Otherwise, relationships between the parameters are
set up.

• An approach to deal with the identification of BCNs, in
particular, from noisy measurements and missing data points
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is proposed. The identification problem of BCNs is formulated
as a nonlinear pseudo-Boolean optimization, which can be
equivalently transformed into a linear binary optimization
problem and then solved efficiently.

The remainder of the paper is organized as follows. Section
2 introduces some fundamental definitions and notations.
In Section 3, the identification problem of BCNs addressed
in this paper will be formulated. Section 4 introduces a way
to utilize prior knowledge in identification procedure. The
formulation of identification problem of BCNs as an integer
linear programming problem is derived and an example is given
in Section 5 to illustrate the approach. Finally, a short discussion
on the advantages and limitations of the proposed approach is
given in Section 6.

2. PRELIMINARIES

In this part, we list some necessary notations, which will be used
in the subsequent sections.

1. ¬, ∧ and ∨ denote the logical negation (not), conjunction
(and) and disjunction (or), respectively.

2. D : = {1, 0} and Dn = D ×D × · · · ×D
︸ ︷︷ ︸

n

.

3. 1n : = {δkn|1 ≤ k ≤ n}, where δkn denotes the k-th column of
the identity matrix In.

4. For a vector v ∈ R
m, its j-th entry is denoted by [v]j, j =

1, 2, · · · ,m.
5. An n × t matrix L is called a logical matrix, if L =

[δi1n δ
i2
n · · · δ

it
n ], where i1, i2, · · · , it ∈ {1, 2, · · · , n}, and we

express L briefly as L = δn[i1 i2 · · · it]. Denote the set of n× t
logical matrices by Ln×t . Coli(M) denotes the i-th column of
the matrixM.

6. 0n: =[0 0 · · · 0
︸ ︷︷ ︸

n

]T, where the superscript T denotes the

transpose.

The concept of the semi-tensor product of matrices (STP) has
been introduced by Cheng et al. (2011a). The STP of twomatrices
A ∈ R

m×n and B ∈ R
p×q is defined as

A⋉ B = (A⊗ Il/n) · (B⊗ Il/p) (1)

where ⊗ is the Kronecker product and l = lcm{n, p} is the least
common multiple of n and p. The following property of the STP
will be used in the subsequent sections.

Lemma 1. Let X ∈ R
m×1 and Y ∈ R

n×1. Then Y ⋉ X =

W[m,n] ⋉ X ⋉ Y, where W[m,n] is the swap matrix (Cheng et al.,
2011a).

So the order of two vectors which are multiplied can be altered
by multiplying a suitable matrix from the left, this is also called
the pseudo-commutativity of the STP. In the following parts the
symbol⋉ will be omitted.

3. PROBLEM FORMULATION

System identification is the determination of a model describing
the dynamic behavior of a system based on measured data and

known perturbations. In the context of Boolean modeling it
is assumed that the transient behavior of the system can be
qualitatively described by a finite number of Boolean states and
that the interaction of these states can be described by Boolean
functions. The perturbations are inputs to the system and cause
transient behavior of the interacting states in the system. A
measured time series of inputs and states form together the data
basis for the identification. Depending on the system which is to
be modeled, the states might represent the activity of genes or
the abundance of proteins and the perturbations could be a stress
like heat or oxygen or a chemical substance. In the following
the identification process will be formulated as mathematical
optimization problem. Therefore the mathematical model of a
BCN needs to be defined first. A Boolean control network (BCN)
can be described by the following equations (Cheng and Qi,
2010):











X1(t + 1) = f1(X1(t), · · · ,Xn(t),U1(t), · · · ,Um(t))
...

Xn(t + 1) = fn(X1(t), · · · ,Xn(t),U1(t), · · · ,Um(t))

(2)

where X(t) = [X1(t) X2(t) · · · Xn(t)]
T ∈ Dn, U(t) =

[U1(t) U2(t) · · · Um(t)]
T ∈ Dm are, respectively, the state vector,

input vector at time t, fi are logic functions. At the discrete
time instances t the state variables are updated synchronously
according to the logic functions fi. As shown in Cheng and Qi
(2010), a vector form of Boolean variable Xi, i = 1, 2, · · · , n can
be simply expressed as

xi =

[

Xi

¬Xi

]

. (3)

Let x = ⋉
n
i=1xi ∈ 12n , u = ⋉

m
i=1ui ∈ 12m . According to Cheng

and Qi (2010), (2) can be equivalently represented in a vector
form:











x1(t + 1) = S1u(t)x(t)
...

xn(t + 1) = Snu(t)x(t)

, (4)

where Si ∈ L2×2n+m , i = 1, 2, · · · , n are logical matrices.
Multiplying all Equations in (4) together, there is

x(t + 1) = Lu(t)x(t) (5)

where L ∈ L2n×2n+m is a logical matrix and Coli(L) =

⋉
n
j=1Coli(Sj), i = 1, 2, · · · , 2n+m.

A polynomial Pml :R
k→R with k variables {θ1, θ2, · · ·, θk} is

called multi-linear polynomial, if its degree in each variable is at
most 1 (Alon et al., 1991). So, a multi-linear polynomial can be
generally expressed as

Pml(θ1, θ2, · · · , θk) = c+

k
∑

i=1

ciθi +

q
∑

α=1

cIα

∏

j∈Iα

θj (6)

where c, ci, cIα
∈ R for Iα ⊂ V = {1, 2, · · · , k} and the set Iα has

a cardinality of at least 2, i.e., |Iα| ≥ 2,α = 1, 2, · · · , q.

Frontiers in Physiology | www.frontiersin.org 3 June 2018 | Volume 9 | Article 695

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Leifeld et al. Identification of Boolean Network Models

Generally, the identification problem of BCNs can be
described as reconstruction of Boolean functions fi, i =

1, 2, · · · , n that explain the experimental data as well as
possible. Because of equivalent representation of a Boolean
function by a logical matrix, the identification problem
is reformulated as searching for logical matrices Si ∈

L2×2n+m , i = 1, 2, · · · , n based on the input and measurement
state data.

Note that any logical matrix in L2a×2b can be expressed
by multi-linear polynomials in a binary parameter vector θ of
dimension a · 2b. For example, any logical matrix in L4×8 can
be expressed by a binary parameter vector θ = [θ1 θ2 · · · θ16]

T

as













θ1·θ2 θ1·(1− θ2) (1− θ1)·θ2 (1− θ1)·(1− θ2)

θ3·θ4 θ3·(1− θ4) (1− θ3)·θ4 (1− θ3)·(1− θ4)

θ5·θ6 θ5·(1− θ6) (1− θ5)·θ6 (1− θ5)·(1− θ6)

θ7·θ8 θ7·(1− θ8) (1− θ7)·θ8 (1− θ7)·(1− θ8)

θ9·θ10 θ9·(1− θ10) (1− θ9)·θ10 (1− θ9)·(1− θ10)

θ11·θ12 θ11·(1− θ12) (1− θ11)·θ12 (1− θ11)·(1− θ12)

θ13·θ14 θ13·(1− θ14) (1− θ13)·θ14 (1− θ13)·(1− θ14)

θ15·θ16 θ15·(1− θ16) (1− θ15)·θ16 (1− θ15)·(1− θ16)













T

where the superscript T denotes the transpose. In this way, each

realization of the binary parameter vector θ ∈ Da2b corresponds
to a unique logical matrix. It is straightforward to equivalently
convert this logical matrix into readable logical equations. Based
on this, the objective of the paper is to find a binary parameter
vector θ , such that dynamic behavior of the BCN (5) is consistent
with the important dynamics captured in the observed input-
state data.

4. INCORPORATION OF PRIOR
KNOWLEDGE

In this section, we shall show how to utilize known network
graph, potential interactions, canalizing and unateness properties
and attractors in the identification procedure.

4.1. Known or Potential Interactions
Often some or all interaction partners are known in a biological
system which is subject of identification. This knowledge can
come from databases or can be constructed based knowledge
about the underlying biochemical reactions. In some cases a
known signaling network is to be complemented and different
hypothesis for potential interactions shall be evaluated. If all
interaction partners and the direction of the interactions are
known, the underlying directed network graph of the BN is
known.

In graph theory, a directed graph can be denoted by G =

{V , E}, where V is a finite set of nodes and E ⊂ V × V is a
finite set of edges (Bollobas, 2012). If (vi, vj) ∈ E , then there
is an edge from vi → vj. According to Cheng et al. (2011a), a
BCN can be represented by a directed graph, where each gene is
considered as a node. If there is an edge from Xi → Xj, then Xj is
affected by Xi.

Assume that a directed graph for a BCN G = {V , E} is known.
Then we have the following result.

FIGURE 1 | Network graph.

Lemma 2. If the node Xi is affected by w nodes, then 2w binary
parameters are enough to describe the corresponding logical
matrix Si.

Proof: As the node xi is affected by w nodes, then the Boolean
function can be represented in a vector form as

xi(t + 1) = Sixi1 (t)xi2 (t) · · · xiw (t)

where the matrix Si is a logical matrix of dimension 2 × 2w.
Recall that the logical matrix Si is a matrix containing only
columns belonging to 12 (Cheng et al., 2011a). Hence, 2w binary
parameters are enough for the description of the logical matrix
Si.

An example is given below to express logical matrices of
a BCN with a known network graph with the help of binary
parameters.

Example 1. Consider a BCN as follows.

{

X1(t + 1) = f1(X2(t),U1(t))

X2(t + 1) = f2(X1(t),U2(t))
(7)

where the network graph of the BCN is shown in Figure 1

(Cheng and Zhao, 2011). According to Cheng and Qi (2010), the
algebraic form of the BCN is obtained,

{

x1(t + 1) = S1u1(t)x2(t)

x2(t + 1) = S2u2(t)x1(t)
(8)

where the logical matrices S1, S2 ∈ L2×4 can be expressed by the
binary parameter vector θ = [θ1 θ2 · · · θ8]

T in the following
form:

S1 =

[

θ1 θ2 θ3 θ4
1− θ1 1− θ2 1− θ3 1− θ4

]

,

S2 =

[

θ5 θ6 θ7 θ8
1− θ5 1− θ6 1− θ7 1− θ8

]

.
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Potential interactions can be treated in the same way as
known interactions as long as all of them could potentially be
simultaneously true. If there are two alternative hypotheses and
the question is which fits better to the data, then this can be done
by introducing a constraint on the parameters θ .

Example 2. Assume that X1 is influenced either by X2 or by U1,
this could be ensured by imposing the constraint

λ(θ1 − θ2) · (θ3 − θ4)+ (1− λ)(θ1 − θ3) · (θ2 − θ4) = 0, λ ∈ {0, 1},

(9)

4.2. Canalizing Boolean Functions
The concept of “canalizing” values in Boolean functions was
introduced in developmental biology in 1940s (Waddington,
1942). The idea is, that one input is dominant and if it takes
a certain value it determines the output. After that, in order to
explain the phenomenon that absence of repressor or high levels
of allolactose assures the operator cannot bind repressor in lac
operon of the bacterium Escherichia coli, Kauffman applied this
concept to BNmodeling of gene regulatory networks (Kauffman,
1974).

Canalizing functions are defined as follows.

Definition 1. A Boolean function f :Dn f
−→ D is canalizing if

there exist a variable Xi, i ∈ {1, 2, · · · , n} and a Boolean function
g(X1, · · · ,Xi−1,Xi+1, · · · ,Xn) and a, b ∈ D, such that

f (X1, · · · ,Xn) =

{

b, if Xi = a,

g 6= b, if Xi 6= a
(10)

where a is called the canalizing value for the variable Xi and b is
the canalizing output value (Kauffman, 1974).

Based on Definition 1, this prior knowledge can be translated
into imposing a specified value in the corresponding logical
matrix. Assume that the logical matrix for the canalizing function
(10) is denoted as S and the canalizing value a and canalizing
output b can, respectively, be expressed in a vector form as δ2−a

2

and δ2−b
2 . Then, we can get the following result.

Theorem 1. Given a canalizing function (10). The corresponding
logical matrix S ∈ L2×2n satisfies

SW[2,2i−1]δ
2−a
2 = δ2[2− b 2− b · · · 2− b

︸ ︷︷ ︸

2n−1

]. (11)

where W[2,2i−1] is the swap matrix.

Proof: According to Lemma 1, it is easy to obtain Sx1x2 · · · xn =

SW[2,2i−1]xix1x2 · · · xi−1xi+1 · · · xn. Applying (11), we have

SW[2,2i−1]δ
2−a
2 x1x2 · · · xi−1xi+1 · · · xn

= δ2[2− b 2− b · · · 2− b
︸ ︷︷ ︸

2n−1

]x1x2· · ·xi−1xi+1· · ·xn = δ2−b
2

which corresponds to f (X1, · · · ,Xi−1, a,Xi+1, · · · ,Xn) = b for
any X1, · · · ,Xi−1,Xi+1, · · · ,Xn ∈ {0, 1}.

Let’s take an example to illustrate the result of Theorem 1.

Example 3. Consider the BCN (7). Assume that the Boolean
function f1 is a canalizing function in x2 for a canalizing value
δ22 and the corresponding canalizing output is δ12 . Due to the
canalizing property, the logical matrix S1 can be reduced to

S1W[2,2]δ
2
2 =

[

1 1
0 0

]

⇒ S1 =

[

θ1 1 θ3 1
1− θ1 0 1− θ3 0

]

.

It can be checked that S1u1δ
2
2 = δ12 , no matter whether u1 = δ12

or u1 = δ22 . Note that the logical matrix S1 contains only two
binary parameters (i.e., θ1 and θ3). It shows that using canalizing
property can reduce the number of binary parameters.

As an important subclass of canalizing function, k-canalizing
function is defined as follows.

Definition 2. Let σ be a permutation on the set {1, 2, · · · , n}.

A Boolean function f :Dn f
−→ D is k-canalizing in the

variable orderXσ (1),Xσ (2), · · · ,Xσ (k) with canalizing input values
a1, a2, · · · , ak and canalizing output values b1, b2, · · · , bk, if it can
be represented in the form (Kauffman et al., 2003).

f (X1, · · · ,Xn)=































b1, if Xσ (1) = a1,

b2, if Xσ (1) 6= a1,Xσ (2) = a2,
...

bk, if Xσ (1) 6= a1,Xσ (2) 6= a2 · · ·

Xσ (k) = ak,

g 6= bk, if Xσ (1) 6= a1,Xσ (2) 6= a2 · · ·

Xσ (k) 6= ak.

(12)

Note that if all variables have certain canalizing values, then the
function is called nested canalizing function (Kauffman et al.,
2003).

As a Boolean variable can only take two values, i.e., {0, 1}, (12)
can be equivalently expressed as f (X1, · · · ,Xn) = bi, if Xσ (1) =

1 − a1,Xσ (2) = 1 − a2, · · · ,Xσ (i) = ak, i = 1, 2, · · · , k. Using
the Boolean variables [Xσ (1) Xσ (2) · · ·Xσ (i)]

T to represent a multi-
valued logic variable, it is straightforward to recognize that a k-
canalizing function can be equivalently formulated as a canalizing
function in a multi-valued logic variable. Therefore, Theorem 1
can be applied to specify the logical matrix for k-canalizing or
nested canalizing function (12).

It is necessary to point out that different from the approaches
proposed in Breindl et al. (2013) and Faisal et al. (2010), some
binary parameters can be directly inferred, no matter which
canalizing value the canalizing variable takes.

Example 4. Consider the BCN (7). Assume that the Boolean
function f2 is nested canalizing function, which can be
represented as

f2(U2,X1) =

{

1, if U2 = 1,

0, if U2 6= 1,X1 = 1.
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Because f2(1,X1) = 1 for X1 ∈ {0, 1}, we have

S2δ
1
2 =

[

1 1
0 0

]

⇒ S2 =

[

1 1 θ7 θ8
0 0 1− θ7 1− θ8

]

.

Moreover, due to f2(0, 1) = 0, there is

S2δ
2
2δ

1
2 =

[

0
1

]

⇒ S2 =

[

1 1 0 θ8
0 0 1 1− θ8

]

.

Remark 1. Theorem 1 implies that considering canalizing
property of a Boolean function, the corresponding logical matrix
can be expressed with fewer binary parameters. For instance, if
a Boolean function f (X1,X2, · · · ,Xn) is a k-canalizing function,
then 2n−k different binary parameters are enough to represent the
corresponding logical matrix.

4.3. Unate Boolean Functions
The behavior of some substances or genes are well studied and it
is known that they act as suppressing or activating in all reactions
they are involved. If they always act inhibiting they have the so
called negative unateness property. For the case that a quantity
exclusively induces the expression of another gene or substance
it has the positive unateness property (Porreca et al., 2010).

For the mathematical modeling of the unatess properties let
us consider another important type of Boolean functions, which
is called the unate function (Breindl et al., 2013).

Definition 3. (Breindl et al., 2013) A Boolean function f :Dn f
−→

D is unate in xi, if for any [X1 X2 · · · Xi−1 Xi+1 · · · Xn]
T ∈ Dn−1

it holds for positive unateness that

f (· · ·,Xi−1, 0,Xi+1, · · ·)≤f (· · ·,Xi−1, 1,Xi+1, · · ·) (13)

or it always holds for negative unateness that

f (· · ·,Xi−1, 0,Xi+1, · · ·)≥f (· · ·,Xi−1, 1,Xi+1, · · ·) (14)

In the same way as Breindl et al. (2013), unateness can
be equivalently represented as linear formulation. Afterwards,
this linear formulation can be seen as additional inequality
constraints in the optimization problem. As Boolean function can
be rewritten as a vector form (4) and according to Lemma 1, there
is

Sx1x2 · · · xi−1xixi+1 · · · xn = SW[2,2i−1]xix1x2 · · · xi−1xi+1 · · · xn
(15)

where S is the logical matrix corresponding to the
Boolean function f . Hence, f (· · ·,Xi−1, 0,Xi+1, · · ·) and
f (· · ·,Xi−1, 1,Xi+1, · · ·) can, respectively, be represented in
a vector form as

SW[2,2i−1]δ
2
2x1x2 · · · xi−1xi+1 · · · xn (16)

and

SW[2,2i−1]δ
1
2x1x2 · · · xi−1xi+1 · · · xn (17)

Furthermore, based on the vector form of Boolean
variable (3) and according to (13) or (14), for each
x1, x2, · · ·, xi−1, xi+1, · · ·, xn ∈ 12 an inequality can be set
up. Putting all inequality constraints together, we can find a
matrix A for the following expression.

A · θ ≤ 0n (18)

Example 5. Consider the Boolean function x1 = f1(x2), this
function f1 is defined by two unknown parameters θ1 and θ2 .
Assume that the Boolean function f1 is a unate function with
respect to x2, which satisfies (13). As the first step, the matrix S1δ

1
2

and S1δ
2
2 are calculated, which yields

S1δ
1
2 =

[

θ1
1− θ1

]

, S1δ
2
2 =

[

θ2
1− θ2

]

.

Then, the inequality constraint is

θ2 ≤ θ1 ⇐⇒
[

−1 1
]

·

[

θ1
θ2

]

≤ 0.

4.4. Known Attractors or Limit Cycles
When the BCN is not perturbed for a sufficiently long time it
reaches the steady state. The steady state of a BCN can be exactly
one state (i.e., attractor) or a fix cycle of some states (i.e., limit
cycle). Attractors or limit cycles are assumed to determine the
phenotype in the cell differentiation (Huang and Ingber, 2000).
The experimental setup to measure the steady state of a system
is simpler and measurements are easier to reproduce compared
with transient dynamics. As a result, the steady state of the
BN is often already known when the perturbation experiments
for identification of the transient behavior are carried out. This
knowledge can be utilized as follows.

An attractor corresponds to a self loop in the reachability
graph. For a given input combination this fixes one specific
coulumn in the matrix L. For the constant input u(t) = δi2m and

the constant state x(t) = δ
j
2n the k-th column is known to be

Colk(L) = δ
j
2n with k = (i−1)2n+ j. A limit cycle can be analyzed

in a similar manner. For the given state sequence of the limit cycle
of length T and the constant input u(t) = δi2m one can calculate
T columns of L. For each time instant t of the cycle the actual

state x(t) = δ
j
2n and the next state x(t + 1) = δw2n is known. The

information of this known transition is used by setting the k-th
column to Colk(L) = δw2n with k = (i− 1)2n + j.

5. IDENTIFICATION APPROACH

In this part, the identification problem of BCNs will be studied.
At first, it will be shown that the identification problem can
be reformulated as a nonlinear pseudo-Boolean optimization
problem by applying the idea of the prediction error method.
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The pseudo-Boolean optimization can be transformed into an
equivalent linear binary integer programming problem that
can be solved more efficiently. Then, we give a way to deal
with missing measurement values. Finally, we discuss how
dependencies between measured substances can be handled.

5.1. Optimization Problem
The prediction error method (PEM) is one of the most widely
used identification methods (Isermann and Münchhof, 2011).
The basic idea behind this method is to choose parameters to
make the difference between a prediction based on the model and
the measured values as small as possible. As the PEM minimizes
the prediction error in the identified system, errors in the data set
due to noise need no special treatment. Obviously the more noise
is expected in the data set the more data should be acquired for
identification of a reliable model.

Before applying PEM, it is necessary to specify a measure of
prediction error. In information theory, the Hamming distance
d(X,Y) between two vectors X,Y ∈ Dn is defined as the number
of positions, in which the entries differ (Hamming, 1950).

d(X,Y) = |{j ∈ {1, 2, · · · , n}| [X]j 6= [Y]j}| (19)

As each entry in the vectors X and Y belongs to the Boolean
domain {0, 1}, (19) can be equivalently written as

d(X,Y) =

n
∑

i=1

∣
∣[X]i − [Y]i

∣
∣ (20)

Furthermore, let xi, yi be, respectively, the vector form of [X]i and
[Y]i. Then, it is straightforward to get

∣
∣[X]i − [Y]i

∣
∣ = 1− xTi · yi (21)

Based on this, the Hamming distance d(X,Y) can be rewritten as

d(X,Y) =

n
∑

i=1

(

1− xTi · yi

)

(22)

Assume that the observed input and state data is
{(U(t),X(t)), t = 0, 1, · · · ,T}. The vector form of the input data
{U1(t),U2(t), · · · ,Um(t)} and state data {X1(t),X2(t), · · · ,Xn(t)}
are denoted, respectively, as u1(t), u2(t), · · · , um(t) and
x1(t), x2(t), · · · , xn(t). Since the logical matrix Si for the
state variable Xi can be represented by the parameter vector θ ,
we simply denote them as Si(θ). Suppose that the state variable
Xi can be influenced by the variables Xj1 ,Xj2 , · · · ,Xjk . According
to (5), it is easy to get expression of the prediction x̂i(θ , t):

x̂i(θ , t) = Si(θ)u(t − 1)⋉k
i=1 xji (t − 1) (23)

Recalling (21) and (22), the PEMmethod will estimate the binary
parameters by minimizing the prediction error, i.e.,

min
θ∈Dk

T
∑

t=0

d(X(t), X̂(θ , t))=min
θ∈Dk

T
∑

t=0

n
∑

i=1

(

1−xTi (t)·x̂i(θ , t)
)

(24)

Furthermore, the optimization problem (24) can be equivalently
rewritten as

min
θ∈Dk

(

T · n−

T
∑

t=0

n
∑

i=1

xTi (t) · x̂i(θ , t)

)

which is actually equivalent to

max
θ∈Dk

T
∑

t=0

n
∑

i=1

xTi (t) · x̂i(θ , t) (25)

Next, it will be shown that the optimization problem (25) can be
formulated as a pseudo-Boolean optimization (i.e., optimization
of pseudo-Boolean functions). A pseudo-Boolean function is a
mapping from a finite number of Boolean variables to a real
number and can be uniquely represented by a multi-linear
polynomial (Boros and Hammer, 2002).

As mentioned before, any logical matrix can be expressed
by a multi-linear polynomial. After calculation, the term
∑T

t=0

∑n
i=1 x

T
i (t)x̂i(θ , t) can be represented by a multivariate

polynomial.

Pmv(θ) = c+
∑

Qβ⊂V

cQβ

∏

j∈Qβ

θ
rQβ ,j

j (26)

where c, cQβ
∈ R for Qβ ⊂ V = {1, 2, · · · , k} and

the factor rQβ ,j,∀β , j is a natural number. In addition, using
the property of Boolean variables θ ri = θi,∀r ∈ Z+, the
multivariate polynomial (26) is easily transformed into a multi-

linear polynomial. Consequently, the term
∑T

t=0

∑n
i=1 x

T
i (t) ·

x̂i(θ , t) can be described by a multi-linear polynomial (6) and the
optimization problem (25) is transformed into a pseudo-Boolean
optimization problem

max
θ∈Dk

Pml(θ) = max
θ∈Dk

c+

k
∑

i=1

ciθi +

q
∑

α=1

cIα

∏

j∈Iα

θj (27)

So far, several different ways to handle the nonlinear pseudo-
Boolean optimization problems (27) exist, such as reduction to
an equivalent linear or quadratic binary programming problem,
branch-and-bound method, linear approximations (Boros and
Hammer, 2002; Crama and Rodrí-guez-Heck, 2017). As the
linear programming relaxation of an integer linear program can
be solved efficiently and based on the solution integer solutions
can be found, in this paper we consider “linearization”, so that
nonlinear binary optimization can be reduced to integer linear
program (Crama and Rodrí-guez-Heck, 2017). The key is to
introduce auxiliary Boolean variables z = [z1 z2 · · · ]T to
replace the nonlinear monomial

∏

j∈Iα
θj in (6) by means of the

AND-expression zα =
∏

j∈Iα
θj. Simultaneously to satisfy the

AND-expression, linear inequalities as constraints are considered
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to get feasible value of the nonlinear monomial
∏

j∈Iα
θj. Finally,

an optimization problem equivalent to (27) is obtained as

max
θ ,z

LP(θ , z) = max
θ ,z

c+

k
∑

i=1

ciθi +
∑

α

cIα
zα

s.t. zα ≤ θj,∀j ∈ Iα ,

zα ≥
∑

j∈Iα

θj − (|Iα| − 1),

zα ∈ D, θ ∈ Dk.

(28)

The constraints in the optimization problem in (27) can be
complemented by additional constraints representing the prior
knowledge of alternative hypotheses or unateness as shown in
Section 4.1 and Section 4.3, respectively.

Remark 2. It is important to note that minimizing or maximizing
a pseudo-Boolean function is known to be NP-hard (Crama and
Rodrí-guez-Heck, 2017). However, Breindl et al. (2013) shows
that the optimization problem (28) can be solved using a relaxed
problem, i.e., linear programming solver based on the simplex
method, which requires less computational effort than mixed
integer linear program. The relaxed problem delivers an integer
as optimal solution, which is also an optimal solution of the
optimization problem (28).

5.2. Handling of Large Scale Networks
With modern measurement techniques it is possible to quantify a
huge amount of substances simultaneously. A Boolean network
which describes the observed interactions is then also of large
scale. But the number of substances which are direct relevant
for the regulation of certain substance is usually limited, in
other words the connectivity inside the network is bounded.
For instance, as pointed out by Arnone and Davidson (1997),
the connectivity is bounded by 8. Without prior knowledge the
complexity of the algorithm is O = 2n+m as all state and
input combinations have to be considered as potential regulators
for all states, even though only some of them are relevant in
the end. This would limit the applicability of the approach to
rather small networks. If one has hypotheses about potential
interaction partners and the number of potential regulators per
state is limited by a set of k variables, then the complexity of the
algorithm is O = 2k, as the regulative functions for each state
can be inferred separately. The hypotheses for the interaction
partners are not necessarily based on prior-knowledge, but
could also be computed based on the data set. In Margolin
et al. (2006) an approach is presented, which is based on the
information theoretic concept of mutual information ranking
and the restriction to pairwise interactions that leads to a very
good scaling with big data sets.

5.3. Handling of Missing Measurement
Values
Dependent on the measurement technique it is sometimes not
possible to measure all states at all time instances and the
missing values must be handled in the data analysis. There

are approaches in the literature to compute an imputation
e.g., for microarrays in Gan et al. (2006) and gel-based
proteomics in Albrecht et al. (2010). These approaches are
based on interpolation or heuristics. An alternative is to use
a data analysis approach which can deal with incomplete data
matrices.

A missing measurement value can be estimated during the
identification by adding additional binary parameters in the
identification process. Because of vector expression of states,
all possible states belong to the set 12n . In this way, n binary
parameters are enough for vector expression of a completely
unknown state at time k. For example, if n = 2, then we can
generally express the unknown state as

x(k) =







γ1 · γ2
γ1 · (1− γ2)
(1− γ1) · γ2

(1− γ1) · (1− γ2)






. (29)

Furthermore, as the states of the system are known partially, then
the number of binary parameters can be reduced accordingly. So
for eachmissing value one parameter is added to the optimization
and the imputation for this value is calculated which fits best to
the other dynamic behavior of the system.

5.4. Handling of Unmeasurable Processes
In some systems post transcriptional protein-protein interactions
induce dependencies between the measured abundances similar
to the transcriptional regulation. This leads to the situation that
the transcriptional regulation can not be observed directly and
the identification procedure needs to be adapted accordingly
(Geier et al., 2007). The dependencies between the states and the
measured outputs can be included in boolean models easily by
adding Boolean functions mapping from the actual stats X(t) to
the measured outputs Y(t):

Yj(t) = hj(X(t)), j = 1, 2, . . . , p (30)

where [Y(t) = Y1(t) Y2(t) . . . Yp(t)]
T ∈ Dp is the output vector

at time t , hi are logic functions. All structural information on the
logic functions can be expressed with a logical matrix H

y(t) = Hx(t) (31)

which can be derived analogous to Equations (2–5). All
approaches presented in this paper can be extended for the
BN model with output mapping. As additional logic functions
are to be identified, additional unknown parameters are added
and these parameters cannot be separately identified from
the parameters of the regulative functions, which impacts the
computational burden drastically (Zhang et al., 2017b) .

5.5. Influence of Noise
In real world experiments measurement noise is unavoidable.
With a sophisticated binarization method the influence of
additive noise can often be suppressed (Hopfensitz et al., 2012).
But noise can still lead to wrong binarized values in some cases
and consequently errors in the input to the identification method
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FIGURE 2 | Perturbation and state measurement. (A) First experiment. (B) Second experiment.

FIGURE 3 | Hypothesis, partially identified and fully identified network graph. (A) Hypotheses for regulative interactions. (B) Identified Boolean network without

canalizing information. (C) Identified Boolean network with prior knowlege.

cannot be totally avoided. As the presented approach is based on
an optimization, the network which optimally fits to the observed
data is found. Inconsistent transitions caused by noise in the
data set can be handled directly and lead to an identification
result with a non-zero prediction error. If, due to noise, the
observed transitions would lead to an identification result which
is contradictory to prior knowledge, the identification approach
ignores these transitions directly.

Example 6. Consider the BCN for oxidative stress response
pathways with the PI3-Kinase-Akt pathway given in

Sridharan et al. (2012).























X1(t + 1) = U(t) ∧ ¬X6(t)

X2(t + 1) = ¬X1(t)

X3(t + 1) = ¬X1(t) ∧ (X5(t) ∨ X3(t)

X4(t + 1) = X1(t) ∧ ¬X6(t)

X5(t + 1) = X4(t) ∨ ¬X3(t)

X6(t + 1) = X5(t) ∧ (¬X6(t) ∨ ¬X2(t))

(32)

In the model, X1 represents stress reactive intermediaries, X2

transcription factor A, X3 key protein, X4 protein kinase, X5
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transcription factor B, X6 anti-stress response element, U stress
signal. Using STP, (32) can be converted into the algebraic form
(5) with x(t) = ⋉

6
i=1xi(t) ∈ 164, u(t) ∈ 12.

Assume that two experiments have been executed starting in
steady state with two different stimuli, the corresponding input-
state data is obtained as shown in Figures 2A,B. Assume further
that as prior knowledge the candidates of regulative interactions
(see the dashed lines in Figure 3A) and the attractor are given.
The attractor of the BCN without stress is X1 = 0, X2 = 1, X3 =

1,X4 = 0, X5 = 0, X6 = 0.
Based on the candidates of regulative interactions, the number

of unknown binary parameters θ representing the logical
matrices of the Boolean functions can be reduced from 6 · 27 =

768 to 40 as described in Section 4.1. For instance, since the
variable X2 is connected with the variables X1, X3 and X5, it
means that the Boolean function of the variable X2 can be
described by f2(X1,X5,X5). Accordingly, 8 binary parameters are
enough to represent the logical matrix S2 of the Boolean function
f2, i.e.,

S2 =

[

θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
1−θ1 1−θ2 1−θ3 1−θ4 1−θ5 1−θ6 1−θ7 1−θ8

]

.

(33)
The information about the steady state is used as described in
Section 4.4 to determine one parameter in each matrix, which
reduces the number of unknown variables to 34. In the next,
we apply the proposed approach to identify the model of the
BCN from the given input-state data. Solving the optimization
problem (28), in total, 31 unknown binary parameters can be
determined. The identification result is depicted in Figure 3B and
the identified matrices are as follows,

S1 =

[

0 1 0 0
1 0 1 1

]

, S2 =

[

0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0

]

,

S3 =

[

0 0 0 0 1 1 1 0
1 1 1 1 0 0 0 1

]

,

S4 =

[

0 1 0 1 0 0 0 0
1 0 1 0 1 1 1 1

]

, S5 =

[

θ29 0 1 1
1−θ29 1 0 0

]

,

S6 =

[

0 1 θ35 0 1 1 θ39 0
1 0 1−θ35 1 0 0 1−θ39 1

]

.

(34)

It can be seen that the logical matrices of the Boolean functions
for X5 and X6 can not be uniquely determined. Combined
with an additional information about activating or suppressing
properties of the states, for instance, X4 and X5 are, respectively,
activator to X5 and X6, the complete model can be uniquely

reconstructed. The canalizing property of X4 and X5 can be
utilized as described in Section 4.2. If this information is
not available, one could conduct additional experiments with
different stimuli and combine the data to have full reconstruction
of the model as depicted in Figure 3C.

6. DISCUSSION

The proposed method facilitates the incorporation of various
types of prior knowledge. The optimization problem can be
solved by efficient linear programming solvers. By using the
simplex method one can guarantee to find the network which
optimally fits to the observed data. In comparison, the genetic
algorithms based approaches may not guarantee the optimal
solution. The proposed method is developed for synchronous
Boolean networks. It can be applied to large scale networks,
if the connectivity of the network to be identified is limited
with aid of prior knowledge or application of information
theory.

In future we plan to investigate data-based approaches to infer

the connections in large networks and automated partitioning
into smaller subsystems (e.g., with an adapted approach from

discrete event systems like Saives et al., 2018). We also work on
a new method for the binarization based on the idea that the
qualitative system behavior before and after the binarization shall

be the same.
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