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For both the acquisition of mobile electrocardiogram (ECG) devices and early warning

and diagnosis of clinical work, high-quality ECG signals is particularly important. We

describe an effective system which could be deployed as a stand-alone signal quality

assessment algorithm for vetting the quality of ECG signals. The proposed ECG quality

assessment method is based on the simple heuristic fusion and fuzzy comprehensive

evaluation of the SQIs. This method includes two modules, i.e., the quantification and

extraction of Signal Quality Indexes (SQIs) for different features, intelligent assessment

and classification. First, simple heuristic fusion is executed to extract SQIs and determine

the following SQIs: R peak detectionmatch qSQI, QRSwave power spectrum distribution

pSQI, kurtosis kSQI, and baseline relative power basSQI. Then, combined with

Cauchy distribution, rectangular distribution and trapezoidal distribution, themembership

function of SQIs was quantified, and the fuzzy vector was established. The bounded

operator was selected for fuzzy synthesis, and the weighted membership function was

used to perform the assessment and classification. The performance of the proposed

method was tested on the database from Physionet ECG database, with an accuracy

(Acc) of 97.67%, sensitivity (Se) of 96.33% and specificity (Sp) of 98.33% on the

training set. Testing against the test datasets resulted in scores of 94.67, 90.33, and

93.00%, respectively. There’s no gold standard exists for determining the quality of ECGs.

However, the proposed algorithm discriminates between high- and poor-quality ECGs,

which could aid in ECG acquisition for mobile ECG devices, early clinical diagnosis and

early warning.

Keywords: electrocardiogram(ECG), quality assessment, signal quality indexes (SQIs), heuristic fusion, fuzzy

comprehensive evaluation
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INTRODUCTION

With the wide application of mobile ECG in the fields of
financial safety, security monitoring, medical insurance, and
data confidentiality, ECG recording devices are not limited to
professional training staff.

From the perspective of mobile ECG collection, most of the
available ECG recording devices lack real-time feedback about
the signal quality. Thus, it is difficult for non-professionals to
collect high-quality ECG signals. The mobile recorders record
the ECG in normal lifestyle condition. So there is movement
of the recorders electrodes (Clifford et al., 2006). The existence
of noise prevents the accurate detection of important clinical
characteristics, thus reducing the quality of the ECG signal
(Tob’on and Falk, 2015).

Regarding the clinical application of ECG signals, an
ECG signal contains abundant physiological and pathological
information, which can help clinical staff observe the early
warnings of diseases and make a diagnosis. For instance, for the
diagnosis of cardiovascular disease (World Health Organization,
2016), the high costs of primary health care make follow-
up treatment unaffordable. To circumvent this problem, many
countries transmit real-time ECG data recorded by patients
to clinical experts to diagnose patients. In addition to the
professional judgment of clinical experts, the accuracy of remote
diagnosis should reduce the number of low-quality ECGs sent to
experts, so we need to determine whether the quality of recorded
ECGs is sufficient. In addition, in the ICU early warning system,
the high false positive rate of monitors is caused by noise and
data loss (Lawless, 1994). A survey demonstrated that only 10%
of the alerts are related to treatment (Allen and Murray, 1996;
Chambrin et al., 1999), which increases the workload of ICU staff
and ultimately desensitize them.

Therefore, establishing a suitable assessment mechanism that
divides the signal results into several different levels is particularly
important.

The technology for signal quality assessment is gradually
emerging. Currently, numerous research reports regarding
quality assessment technology for ECG signals are available.
However, the gold standard of ECG quality has not been
evaluated to date. According to the existing research results,
the research ideas for evaluation methods of ECG signal quality
can be roughly divided into the following four methods: the
waveform shape of the time domain signal, the characteristics
of each frequency band of the frequency domain signal, signal
quality characteristics extracted using the nonlinear tool, and
signal quality parameters.

In this paper, we discuss the correlation between ECG signal
quality and noise and ECG waveform characteristics to obtain
accurate assessment results using simple rules and complex
classification techniques. Our method of assessing ECG quality
is divided into two steps:

Step1: Feature Extraction
Based on the noise characteristics and ECG waveform features,
six quality assessment parameters are extracted and quantified:
the matching degree of R peak detection, power spectrum

distribution of QRS wave, variability in the R-R interval, kurtosis,
skewness, and baseline relative power. The advantages and
disadvantages as well as the accuracy, sensitivity, and specificity
of each of the quality assessment parameters of ECG quality are
obtained by conducting quality assessment on the six quality
assessment parameters. Using a simple heuristic fusion operation,
the best accuracy based on the combination of 2–6 parameters is
selected.

Step2: Intelligent Classification
Using the fuzzy comprehensive evaluationmethod that combines
Cauchy distribution, rectangular distribution, and trapezoidal
distribution, the membership of the signal to be evaluated is
calculated based on the parameters of the logical combination
of the best accuracy selected in step 1. By establishing the
fuzzy vector and choosing bounded calculation Sub-fuzzy
synthesis, the ECG signal is divided into the evaluation level set
V = {E,B,U} through the principle of weighted membership
decision-making division.

The above algorithm evaluation is based on a single-lead
ECG signal. If ECG signals are collected for multiple leads that
are independent of each other, each channel can be processed
separately.

METHODS AND MATERIALS

Databases
To determine the parameters of the fuzzy comprehensive
evaluation (correlation matrix R, weight vector A, synthesis
operator) and verify the effectiveness of our algorithm.In this
work, the ECG signals were obtained from ECG database
(Physionet ECG database). We adopt two of these databases,
Physionet/Cinc Challenge 2017 (Physionet, 2017), marked as
database D1 and Physionet/Cinc Challenge 2011 (Physionet,
2011), marked as database D2.

The database D1 is single-lead ECG records, which is
coincided with the ever-evolving mobile measurement and
wearable measurement methods, supplied by AliverCor, which
was annotated by clinical experts and categorized into one of four
groups (i.e., normal rhythm, atrial fibrillation, other rhythm, and
noisy recordings). We randomly selected 150 groups of normal
rhythm, 150 groups of noisy recordings, and the length of each
group is 9,000 data points.

The database D2 is standard 12-lead ECG recordings, in which
the quality of ECGs were reviewed and examined by a group of
annotators with varying amounts of expertise in ECG analysis. In
our present work, we have used only lead II(Set-a) and randomly
selected 150 groups of acceptable, 150 groups of unacceptable,
and the length of each group is 9,000 data points.

To maximize contrast and create a balanced database, a
10-fold cross-validation method was used 10 times to reduce
the generalization error in the training set (Zhihua, 2016),
Figure 1 below shows the schematic diagram of 10-fold cross
validation.

The database is first divided into 10 equally sized mutually
exclusive subsets: D = D1 ∪ D2 ∪ ... ∪ D10. Di ∩ Dj is
empty. Each subsection maintains the consistency of the data

Frontiers in Physiology | www.frontiersin.org 2 June 2018 | Volume 9 | Article 727

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Zhao and Zhang Fuzzy Comprehensive Evaluation of ECG Quality

distribution, which is obtained through hierarchical sampling
from D. Then, every nine subsets of the union is considered
as a training set, and the remaining subset serves as the test
set. Thus, 10 training and test sets are obtained. Thus, we can
conduct 10 training and testing assessments and obtained the
mean of 10 final test results. In this paper, the mean of 10
test sets is used as the result of cross validation to evaluate the
performance of the algorithm. Numerous methods are available
to divide database D into 10 subsets. To reduce the difference
caused by different sample divisions, we randomly apply different
divisionmethods by repeating the process 10 times. The resulting
assessment is the average of the 10 replicates of the 10-fold cross-
validation results, the mean of the obtained results is the final
performance indicator. Obviously, the stability and fidelity of
the cross-validation method evaluation results are considerably
improved compared with those of the commonly used single-
division leave-one-out method.

Method Outline
Two methods for fusing the signal quality information were
compared. The first step is based on simple heuristic fusion.
Through the ECG waveform characteristics, time-frequency
characteristics, and the time-frequency characteristics of the
noise source, we propose six quality evaluation parameters and
adjust the reasonable range of SQI. ECG quality [accuracy

(Acc), sensitivity (Se) and specificity (Sp)] was analyzed using
a simple logical combination to obtain the best combination
of signal quality indexes (SQIs) U = {u1, u2, u3, ...}. The
second step applied fuzzy comprehensive evaluation, which
represents a more accurate assessment and classification of
U = {u1, u2, u3, ...}. A schematic representation of the proposed
method is presented in Figure 2.

Signal Quality Indexes (SQIs)
Matching Degree of R Peak Detection qSQI
We next describe an evaluation index for ECG signal recognition
ability. For a complete ECG signal, the R wave has the maximum
amplitude andmost obvious characteristic, so the existence of the
ECG signal is often identified by R-wave detection. Therefore,
using different algorithms to perform R-wave detection on
the same ECG signal, the result is compared and analyzed
to estimate the quality of the signal. In this paper, Hilbert
and dynamic adaptive threshold based on R-wave detection
(algorithm flow shown in Figure 3 and denoted as Algorithm
1), wavelet transform (This process is denoted as Algorithm 2)
are used to compare the same ECG signal detection results. As
for wavelet transform, the input ECG signal was decomposed
by discrete wavelet transform (DWT) with four layers, and the
wavelet coefficients for each layer were obtained. The R point
is the singularity of the ECG waveform. The extraction of the R

FIGURE 1 | Schematic of 10-fold cross-validation method repeated 10 times.

FIGURE 2 | The flowchart of the proposed method, which includes two modules.
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point is completed by the correspondence between the singularity
of the signal and the positive and negative modulus maximum of
the wavelet coefficients to the zero point (Zhen et al., 2008).

Any R-wave detection algorithm has certain shortcomings,
which may lead to false positives. Accordingly, the ECG signal
quality is evaluated by the same R-wave matching degree of the

FIGURE 3 | R Wave Detection Flow Chart Based on Hilbert and Dynamic

Adaptive Threshold.

two algorithms mentioned above. The following equation is used
to obtain the QRS wave R peak detection matching degree:

qSQI =
2N

Na + Nb
(1)

where N indicates the correct number of R waves detected by the
two algorithms and Na and Nb denote the numbers of R waves
measured by Algorithms 1 and 2, respectively. The identification
criteria of qSQI are given as follows:

ECG







optimal, qSQI > 90%;

suspicious, qSQI ∈ [60%, 90%] ;
unqualified, qSQI < 60%

(2)

Power Spectrum Distribution of QRS Wave pSQI
Wenext describe an evaluation index of QRSwave quality (Li and
Clifford, 2006). A heartbeat cycle is mainly composed of a P wave,
QRS complex wave, T wave, and other important eigenvectors,
of which the QRS wave accumulates ∼99% of the energy of the
ECG signal and is the most stable. The energy of the QRS wave is
concentrated in a frequency band centered at 10Hz and is 10Hz
in width. Therefore, pSQI is mathematically defined as follows:

pSQI =

∫ f=15Hz

f=5Hz
P

(

f
)

df
∫ f=40Hz

f=5Hz
P

(

f
)

df
(3)

Spectrum analysis is performed, and the energy of the two bands
is calculated. The numerator represents the energy of the QRS
wave, and the denominator represents the overall energy of the
ECG signal.

If EMG interference exists, the high-frequency component
increases, and pSQI decreases. The identification criteria of pSQI
are given as follows:

ECG







optimal pSQI ∈ [l1, l2];
suspicious, pSQI ∈ [l3, l1];
unqualified pSQI > l2, or pSQI < l3;

(4)

FIGURE 4 | Skewness-kurtosis distribution for different quality ECG signals.
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l1 and l2, which represent the lower and upper limits, respectively,
vary slightly with the heart rate. Based on the experimental
training set, we adjusted l1 and l2 as follows:

Heart rate

{

∈ [60bmp, 130bmp], l1 = 0.5, l2 = 0.8; l3 = 0.4;
∈ [130bmp, 160bmp], l1 = 0.4, l2 = 0.7; l3 = 0.3;

(5)

Variability in the R-R Interval cSQI
We next describe an evaluation index of normal and stable
heart rhythm. The ECG signal is a periodic signal, and the
interval of R-R interval is periodic. The calculation of cardiac
cycle (single-cycle ECG length) is related to the heart rate,
which differs depending on the exercise state. The measurement
is very sensitive to motion artifacts in the human body; the
ECG signal is collected in the active state. We need to ensure
that the heart rhythm has a normal ECG signal to avoid
affecting the clinical diagnosis. In addition, the presence of noise
artifacts leads to reduced QRS detector performance. When an
artifact is present, the QRS detector underperforms by either
missing R-peaks or erroneously identifying noisy peaks as R-
peaks. The above two problems will lead to a high degree of
variability in the distribution of R-R intervals; therefore, the
coefficient of the variation of R-R interval proposed by Hayn
(Hayn et al., 2012) was used to calculate the variability of R-R
intervals:

cSQI =
σ̂RR

µ̂RR
(6)

where µ̂RR and σ̂RR are the empirical estimates of the mean and
standard deviation of the distribution of the R-R intervals within

a segment of ECG. The identification criteria of cSQI are given as
Equation (7), where the threshold was determined empirically.

ECG







optimal cSQI < 0.45;
suspicious qSQI ∈ [0.45, 0.64] ;
unqualified, qSQI > 0.64

(7)

Skewness sSQI and Kurtosis kSQI
We next describe an evaluation index of the de-noising effect of
three disturbing noises, which is defined as follows:

sSQI = ν3 =
E

{

(x− µx)
3
}

σ 3
(8)

kSQI = ν4 =
E

{

(x− µx)
4
}

σ 4
(9)

The third and fourth standardized moments of a signal are
measures of signal symmetry and Gaussianity, respectively.
The central limit theorem indicates that random uncorrelated
processes tend to have Gaussian distributions, such as thermal
noise. Conversely, correlated signals tend to exhibit non-
Gaussian distributions. The fourth standardized moment of a
distribution, kurtosis, measures the relative peakedness of a
distribution with respect to a Gaussian distribution. However,
outliers will cause the asymmetric distribution of the signal, and
the skewness is high. In this equation,µx and σ are the mean and
standard deviation of the signal, respectively.

Figure 4 shows different quality ECG signals and their
kurtosis and skewness values. Comparing Example 1 with the
other three sets of signals, the noisy ECG signal has a smaller
kurtosis value but a different skewness distribution. Example 2
contains a large amount of high-frequency noise. The kurtosis
value is very low. However, given the nature of the noise, the

FIGURE 5 | ECG quality comparison chart with or without baseline shift.
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distribution is approximately symmetric, yielding a low skewness
value. Therefore, skewness is less robust to noise than kurtosis,
and we only use kurtosis in the ensuing noise detection. The kSQI
in each case is described as follows:

1. For a standard, noise-free and normal sinus ECG, the value is
>5 (He et al., 2006);

2. If power frequency interference, baseline drift or Gaussian
distribution of random noise is noted, the values is <5
(Clifford et al., 2006);

3. If EMG interference is present, the value is∼5 (He et al., 2006);

The identification criteria of kSQI is given as follows:

ECG

{

optimal kSQI > 5;
unqualified, kSQI ≤ 5;

(10)

The Relative Power in the Baseline basSQI
We next describe an evaluation index of the de-noising effect
of baseline drift (Zhihua, 2016). basSQI is difficult to filter,

TABLE 1 | Single-lead classification using individual SQIs.

qSQI pSQI cSQI kSQI basSQI

Database D1 Acc 80.33 80.00 76.00 79.67 78.67

Se 95.33 95.00 63.67 84.33 80.67

Sp 88.33 80.33 56.33 83.00 72.33

Database D2 Acc 86.33 77.00 74.33 82.33 83.00

Se 93.67 84.33 66.33 85.00 86.00

Sp 80.67 69.67 47.67 80.67 79.67

The best performing SQI indicator is shown in bold and underlined.

TABLE 2 | Single-lead classification using combination of SQIs.

SQI entered Acc Training

performance (%)

Acc Test

performance (%)

qSQI, pSQI 81.67 77.33

qSQI, pSQI, kSQI 83.33 81.00

qSQI, pSQI, kSQI, basSQI 85.67 84.33

qSQI, pSQI, kSQI, basSQI, cSQI 88.67 87.00

The results is performed on Database D1. The best result of SQIs combinations (Database

D1) is shown in bold and underlined.

TABLE 3 | Single-lead classification using combination of SQIs.

SQI entered Acc Training

performance (%)

Acc Test

performance (%)

qSQI, pSQI 87.33 83.67

qSQI, pSQI, kSQI 88.67 87.00

qSQI, pSQI, kSQI, basSQI 92.00 91.33

qSQI, pSQI, kSQI, basSQI, cSQI 91.67 89.67

The results is performed on Database D2. The best result of SQIs combinations

(Database D2) is shown in bold and underlined.

but its presence greatly impacts late pathological judgment and
identification, as shown in Figure 5, which gives an example of
baseline for a high-quality ECG sample (upper plot, basSQI =

0.966) and low-quality ECG sample (lower plot, basSQI = 0.5)
obtained from Set-a of the PhysioNet/CinC 2011 database (Silva
et al., 2011). Therefore, it is necessary to evaluate its de-noising
effect, as defined below:

basSQI =
1−

∫ f = 1Hz

f = 0Hz
P

(

f
)

df
∫ f = 40Hz

f = 0Hz
P

(

f
)

df
(11)

If no baseline drift interference is noted, the basSQI value is
close to 1. A low basSQI means that the power within the band

[0, 1Hz] is abnormally high with respect to the power in the

[0, 40Hz] interval, which is likely to be caused by an abnormal
shift in the baseline. The identification criteria of basSQI are
given as follows:

ECG







optimal, basSQI ∈ [0.95, 1];
suspicious, basSQI ∈ [0.9, 0.95];
unqualified, basSQI < 0.9;

(12)

FIGURE 6 | Single-factor evaluation flow chart.
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Data Fusion Approaches
Simple Heuristic Fusion of the SQIs
After the analysis in the previous section, five SQIs are reserved.
The simple logic classifier model was built on database D, and
the performance of the individual SQIs was evaluated. Then,
we studied the contribution of each SQI to the classification
performance and removed SQIs with an accuracy (Acc) <75%.
Then, we evaluated of all other possible combinations of SQIs
(pairs, triplets, etc.). Ten-fold cross-validation was performed on
database D to assess the performance of the predictive model.
Possible fusion equations were constructed in an ad hoc manner
as follows:

(SQI1, SQI2) :ECG is














Excellent(E), ′optimal′ = 2;

Barely acceptable(B), ′suspicious′ = 2 or
′optimal′ = 1,′ suspicious′ = 1;

Unacceptable(U), others;

(13)

(SQI1, SQI2, SQI3) :ECG is














Excellent(E), ′optimal′ ≥ 2, ′unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 2 or
′suspicious′ = 2, ′unqualified′ = 1;

(14)

(SQI1, SQI2, SQI3, SQI4) :ECG is






















Excellent(E), ′optimal′ ≥ 3,′ unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 3 or
′unqualified′ = 2,′ suspicious′ ≥ 1 or
′unqualified′ = 1,′ suspicious′ = 3;

(15)

(SQI1, SQI2, SQI3, SQI4, SQI5) :ECG is






























Excellent(E), ′optimal′ ≥ 4,′ unqualified′ = 0;

Barely acceptable(B), others;

Unacceptable(U), ′unqualified′ ≥ 4 or
′unqualified′ = 3,′ suspicious′ ≥ 1 or
′unqualified′ = 2,′ suspicious′ ≥ 2 or
′unqualified′ = 1,′ suspicious′ = 4;

(16)

Where the ECG quality corresponding to the number
distribution of “optimal,” “suspicious,” and “unqualified”
is arbitrary and set empirically through trial and error.
Although these coefficients could be optimized, it is unlikely
that the logic is optimal. Thus, an exhaustive search of
possible logical combinations and thresholds was not
performed.

Multiple SQI metrics quantify different characteristics, and
the simple fusion of the SQIs classifies the signal quality of
each ECG into three levels: excellent (E), barely acceptable (B),
and unacceptable (U). We obtained the best combination of
quality assessment parameters U = {u1, u2, u3, ...} by comparing
the accuracy(Acc), sensitivity (Se) and specificity (Sp) of the
different logical combinations. The three indicators are defined as
follows:

Se = TP/ (TP + FN) (17)

Sp = TN/ (TN + FP) (18)

Acc = (TN + TP) / (TP + TN + FN + FP) (19)

TP (true case) indicates the number of acceptable ECG signals
correctly counted. TN (true negative example) indicates the

number of unacceptable ECG signals correctly counted. FP
(false positives) indicates the number of acceptable ECGs under
error statistics. FN (false positives) indicates the number of
unacceptable ECGs that were counted as errors.

Table 1 shows the performance of five SQIs in ECG quality
assessment. The table clearly shoes that qSQI and pSQI best
distinguish between records of good and bad quality (the results
obtained from the 300 sets in database D1 and D2). Then, the
system is trained with all possible combinations of SQIs, using
10-fold cross-validation method repeated 10 times to train
database D1 and D2, and merged with the upper (13)–(16).
The results for the best pair, triplet, etc. of SQIs combinations
are summarized in Table 2 and Table 3. Analysis of the table
clearly reveals that as SQIs increase, the accuracy rate exhibited
a slowly increasing trend. As for database D1, the best accuracy
was obtained when considering all SQIs ((Acc)D1 = 87.00%).
However, compared with 4 SQIs (with higher sensitivity,

(Se4)D1 = 94.67% is superior to (Se5)D1 = 87.33%), the accuracy
difference is negligible. As for database D2, it shows the best
precision when only considering qSQI, pSQI, kSQI and basSQI.
Accordingly, U = {u1, u2, u3, u4} =

{

qSQI, pSQI, kSQI, basSQI
}

is the best combination for evaluation factor
aggregation in the fuzzy comprehensive evaluation
mechanism.

SQI Quality Evaluation Mechanism Based on Fuzzy

Comprehensive Evaluation
We selected the best SQIs combination in simple heuristic
fusion, and the SQI quality evaluation mechanism based
on fuzzy comprehensive evaluation was established. Fuzzy
comprehensive evaluation is based on fuzzy mathematics
by applying the principle of fuzzy relational synthesis,
quantifying some undefined and unquantifiable factors,
and using a number of factors to evaluate the affair level of a
comprehensive evaluation of a method (Fengbiao, 2000).The
fuzzy data fusion technology has mature applications in
speech analysis (Song et al., 2016), image analysis (Wenqing
and Yongjun, 2016), traffic network, and power grid risk
assessment (Deng et al., 2017). The specific steps are as
follows:
First, determine the evaluation factor aggregation U

For the evaluated object, select the main factors that reflect
the evaluation object, measure with corresponding index, and
form the evaluation factor aggregation U. The ECG signal’s
evaluation factor aggregation is U = {u1, u2, u3, u4} =
{

qSQI, pSQI, kSQI, basSQI
}

.
Second, determine the rating hierarchy V

For each evaluation factor, determine a number of levels. In
this paper, the quality of ECG signal is divided into excellent
(E), barely acceptable (B), and unacceptable (U). The evaluation
rating set is V = {v1, v2, v3}.
Then, establish the evaluation matrix R

Analyze the membership function rij of each factor ui to the
rating level vj, and obtain the single factor evaluation result of
the ith factor: ri = (ri1, ri2, ri3). After the multiple single factor
evaluation, a fuzzy matrix R is formed. In this paper, fuzzy matrix
R, which has 4 factors and 3 evaluation levels, is described as
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follows:

R =









r11 r12 r13
r21 r22 r23
r31 r32 r33
r41 r42 r43









Next, determine the weight vectorW

According to the various factors for the evaluation of the
importance of the object, give the appropriate weight, which is
marked as W = (w1,w2,w3,w4),

∑

wi = 1. The W in this
paper is based on 100 sets of experimental training to adjust the
experimental training set.
Then, assess fuzzy synthesis S

S = W◦R, S = (s1, s2, s3). Different operator symbols ◦

correspond to different fuzzy comprehensive evaluation models
(Zimmermann, 2011).
Finally, make a decision

According to the assessment needs of the appraisers to process
S, obtain the results.

The single factor evaluation process for each factor ui is shown
in Figure 6 below.

Therefore, with a rating hierarchy V, the key step of single
factor evaluation is to calculate the membership function rij and

determine the fuzzy operator symbols ◦ . After determining the
single factor evaluation, the key step in multifactorial evaluation
is the choice of weight vectorW and decision-making methods.

Determine the membership function of each single factor

evaluation
Single factor evaluation of qSQI. Assuming that q is the value of
matching degree of R peak detection, q ∈ [0, 100], we construct
the membership function of its quality level (E, B, and U) as
UqH

(

q
)

, UqI

(

q
)

, and UqJ

(

q
)

, respectively. Due to the matching
degree of R peak detection’s performance level and because its
corresponding evaluation object values approximate a Cauchy
distribution, we choose the Cauchy distribution function to serve
as the membership function of qSQI.

(a).UqH

(

q
)

Based on the understanding of formula (1), the greater the
value of q is, the greater the membership of H is. Therefore, we
select the increasing half of the Cauchy distribution.

UqH

(

q
)

=

{

0, q ≤ a
1

{

1+[α(q−a)]−β
} , q > a (20)

Specifically, α,β > 0. In practice, we often utilize β = 2.

FIGURE 7 | Accuracy comparison chart of different weight coefficient.
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Analysis Equation (20), take a = 80. If q is not >80, the
membership function to H is zero. If q is > 80, there is a non-
zero membership for H. The greater the q value is, the greater
the membership for H is. When q = 100, UqH

(

q
)

= 1, thus
improving Equation (20):

UqH

(

q
)

=











0, 0 ≤ q ≤ 80
1

{

1+[α(q−80)]−β
} , 80 < q < 90

x
100 , 90 ≤ q ≤ 100

(21)

In addition, to ensure the continuity of UqH

(

q
)

to calculation

a, lim
x→90−

1
{

1+[α(q−80)]−2
} = 0.9, yielding α = 0.3. Therefore,

UqH

(

q
)

is as follows:

UqH

(

q
)

=











0, 0 ≤ q ≤ 80
1

{

1+[0.3(q−80)]−2
} , 80 < q < 90

x
100 , 90 ≤ q ≤ 100

(22)

(b).UqJ

(

q
)

Considering the decreasing half of the Cauchy distribution

UqJ

(

q
)

=

{

1, q ≤ a
1

{

1+[α(q−a)]β
} , q > a (23)

FIGURE 8 | ECG quality assessment flow chart.

Specifically, α,β > 0. If a = 55,β = 2, then UqJ (60) = 0.5,
yielding α = 0.2.

UqJ

(

q
)

=







1, q ≤ 55
1

{

1+
(

q−55
5

)2
} , 55 ≤ q ≤ 100 (24)

(c).UqI

(

q
)

Considering the Cauchy distribution directly, a = 75,α =

1/7.5 . The membership function is calculated as follows:

UqI(q)= 1
{

1+
(

q−75
7.5

)2
}

(25)

When assessing the matching degree of R peak detection, we
calculate the value of qSQI according to Equations (22), (24),
and (25). We can obtain qSQI single factor evaluation results:
r1 = (r11, r12, r13).

Single factor evaluation of pSQI. This evaluation is similar to the
structure of qSQI. According to the power spectrum distribution
of pSQI’s identification criteria (4), its performance level and
its corresponding evaluation object value exhibit a trapezoidal
distribution. Therefore, the trapezoidal distribution function is
adopted as the membership function of pSQI. Assuming that p
is the value of the power spectrum distribution, p ∈ [0, 1], we
obtain the membership function of pSQI quality level UpH

(

p
)

,
UpI

(

p
)

, and UpJ

(

p
)

:

UpH

(

p
)

=







0, x ≤ 0.25
0.1 (x− 0.25) , 0.25 < x < 0.35
1, x ≥ 0.35

(26)

UpJ

(

p
)

=







1, x < 0.15
0.1 (0.25− x) , 0.15 ≤ x ≤ 0.25
0, x > 0.25

(27)

UpI

(

p
)

=























0, x < 0.18
25 (x− 0.18) , 0.18 ≤ x < 0.22
1, 0.22 ≤ x < 0.28
25 (0.32− x) , 0.28 ≤ x < 0.32
0, x ≥ 0.32

(28)

We calculate the value of pSQI according to Equations (26)–
(28), and pSQI’s single factor evaluation results can be obtained:
r2 = (r21, r22, r23).

Single factor evaluation of kSQI. According to the identification
criteria (10) of Kurtosis kSQI, its performance level and its
corresponding evaluation object value exhibits a rectangular
distribution. Accordingly, we choose the rectangular distribution
function to be the membership function of kSQI. We calculate
the value of kSQI, and the result of single factor evaluation r3 =

(r31, r32, r33) is obtained as follows:
{

if kSQI > 5, r3 = (1, 0, 0)
if kSQI ≤ 5, r3 = (0, 0, 1)

(29)
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Single factor evaluation of basSQI. This evaluation is the same
as that reported for qSQI. For the analysis of Equation (12), the
baseline relative powers performance level and corresponding
evaluation object value approximate a Cauchy distribution. We
select the Cauchy distribution function to construct UbH

(

b
)

,
UbI

(

b
)

, and UbJ

(

b
)

. We calculate the value of basSQI according
to Equations (30)–(32), and basSQI’s single factor evaluation
results can be obtained: r4 = (r41, r42, r43).

UbH

(

b
)

=











0, 0 ≤ b ≤ 90
1

{

1+[0.8718(b−90)]−2
} , 90 < q < 95

x
100 , 95 ≤ q ≤ 100

(30)

UbJ

(

b
)

=







1, q ≤ 85
1

{

1+
(

b−85
5

)2
} , 85 < q ≤ 100 (31)

UbI

(

b
)

=
1

{

1+
(

b−92
2.5

)2
} (32)

After repeating the single factor evaluation four times, we obtain
the fuzzy matrix R = [r1 r2 r3 r4]

T .

Determine the weight vector W
Different evaluation factors have different effects on the quality
of ECG signals. Therefore, the selection of weight coefficients
will have a great influence on the final quality assessment results.
In this paper, different sets of weight vectors are selected to
compare the four factors, which are verified according to 10
replicates of the 10-fold cross-validation test in the Database D1
and D2. The statistic is presented in Figure 7. Under different

weight values of different SQI decision values, the accuracy
of the quality of the assessment of ECG also differs. When
the ratios of the four were set as follows (0.4, 0.4, 0.1, 0.1),
whether the database D1 or D2, the accuracy of the ECG quality
assessment under different test set was relatively high, with
minimal fluctuation.

Determine the fuzzy operator
The principle of fuzzy comprehensive evaluation is fuzzy
transformation. Numerous types of operation modes of fuzzy
transformation are available. The commonly used fuzzy synthesis
operators are classified as the following types:

1. M(∧,∨) operator: Main factor determinant
2. M(· ,∨) operator: Main factor protruding
3. M (∧,⊕) operator: Unbalance mean
4. M (·,⊕) operator: Weighted mean

Considering the role of reflection, the first step is more
appropriate for a multiplicative operation. In contrast, from
a comprehensive point of view, it is appropriate to use the
“boundedness and” operation to ensure the full use of all aspects
of the information provided by the fuzzy vector R. In this paper,
we need to synthesize the four SQIs’ indicators to evaluate the
effect of ECG quality, so we use the operator M (·,⊕), which is
also known as a bounded operator.

Determine the decision-making methods
After fuzzy synthesis, the vector S = (s1, s2, s3) of the fuzzy
comprehensive evaluation is obtained, which provides abundant
information. In this paper, we need to weigh the four single-factor
evaluations for each tester to obtain the numerical result of rating
class V. Therefore, further processing is needed. Commonly used
methods include the principle of maximum membership degree,
the principle of weighted membership degree, and the fuzzy
vector single-value method. We choose the principle of weighted

TABLE 4 | Performances of simple heuristic fusion of the SQIs and fuzzy comprehensive evaluation.

Method SQI entered Training performance (%) Test performance (%)

Acc Se Sp Acc Se Sp

Simple heuristic fusion 4 85.67 94.67 88.67 84.33 88.67 81.33

Simple heuristic fusion 5 88.67 87.33 85.33 87.00 88.67 87.33

Fuzzy comprehensive evaluation 4 89.33 93.67 74.33 92.67 97.33 88.67

The best performing algorithm (on the independent Database D1) is indicated in bold.

TABLE 5 | Performances of simple heuristic fusion of the SQIs and fuzzy comprehensive evaluation.

Method SQI entered Training performance (%) Test performance (%)

Acc Se Sp Acc Se Sp

Simple heuristic fusion 4 92.00 94.67 92.00 91.33 93.67 92.67

Simple heuristic fusion 5 91.67 92.33 89.67 89.67 91.00 88.33

Fuzzy comprehensive evaluation 4 97.67 96.33 98.33 94.67 90.33 93.00

The best performing algorithm (on the independent database D2) is indicated in bold.
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average decision-making, which is expressed as follows:

V =

3
∑

j = 1
sj
2 · j

3
∑

j = 1
sj2

(33)

After the above four-step parameter setting, we establish the SQI
quality evaluation mechanism based on fuzzy comprehensive
evaluation and obtain the final evaluation rating set V as follows:

ECG







‘

Excellent (E), v ≤ 1.50;
Barely acceptable (B), 1.50 < v < 2.40;
Unacceptable (U), v ≥ 2.40.

(34)

Then, for any ECG signal to be evaluated, the SQI quality
evaluation mechanism based on fuzzy comprehensive evaluation
can be used to obtain the ECG quality assessment results (shown
in Figure 8) according to the above formula (33).

After the ECG quality assessment, the results were analyzed:

1. If E, the ECG signal quality is good. The signal can be directly
entered into the identification, security monitoring or other
applications.

2. If U, analyze the 4 SQIs: If kSQI or basSQI are unqualified,
noise artifacts are present. Perform de-noising first, and then

reevaluate the ECG quality. If pSQI or qSQI are unqualified,
recollect the tester’s ECG.

3. If B, ECG quality assessment should be performed again. If the
result is E, the signal is treated as in method one. Otherwise,
treated as in method two.

RESULTS AND DISCUSSION

The results of the comparison of Fuzzy comprehensive evaluation
with the simple heuristic fusion of the SQIs with Database D test
are shown in Tables 4, 5 below:

For simple heuristic fusion of the SQIs, when the number
of SQIs increases from 4 to 5, the accuracy of the database
D1 and D2 is not well optimized, even in its sensitivity (Se)
and specificity (Sp). These values are not increasing but are
decreasing. These findings indicate that the new evaluation
parameter cSQI contains information that is complementary
to the original (qSQI, pSQI, kSQI, basSQI), which affects the
evaluation of ECG quality. Therefore, the selection (qSQI,
pSQI, kSQI, basSQI) is more reasonable. Compared with simple
heuristic fusion of the SQIs, although the same number of
SQI indicators is used to quantify the different characteristics
of ECG signals, the accuracy of database D1 and D2 is
improved after it is synthesized by fuzzy comprehensive
evaluation.

FIGURE 9 | ROC curve derived by varying v across the database D2. The circle indicates the position of maximum accuracy (91.67% with vth1, 94.67% with vth1 and

vth2).

TABLE 6 | Contrast tabulation of experimental results for different quality evaluation algorithms.

Authors Methods Performance of Database D2(%)

Acc Se Sp

G D Clifford (Clifford et al., 2012)1,2 SVM+SQIs 97.80 96.30 99.30

FJ Martínez-Tabares (Martínez-Tabares et al., 2012)4 Diversity systems 96.00 86.00 91.00

Yalda Shahriari (Shahriari et al., 2017)5 SSIM 93.10 96.30 90.00

Lars Johannesen (Johannesen, 2011)1,3 SQIs 88.00

Fuzzy Comprehensive Evaluation + SQIs 94.67 90.33 93.00

Best results are highlighted. The results of this article are underlined.
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Simultaneously, the above Tables 4, 5 shows that the database
D2 shows a better accuracy than D1. Using the database D2, we
varied the value of v above for which data were considered to
be excellent (E) or barely acceptable (B) quality and calculated
the receiver operating characteristic (ROC) curve (Figure 9). The
value v that yielded the best classification accuracy was vth1 =

1.50, vth2 = 2.40 (in the ROC curve, they were normalized to
vth1 = 0.15, vth2 = 0.24), which resulted in an accuracy of 91.67%
(275 correctly classified out of 300) on the database D2, using the
threshold vth1. Then adding the threshold vth2, the accuracy on
the test set was found to be 94.67% (284 correctly classified out of
300).

To perform a more extensive and accurate comparative
performance evaluation, the base performance of the proposed
system is compared with the four existing algorithms,
(Johannesen, 2011; Clifford et al., 2012; Martínez-Tabares
et al., 2012; Shahriari et al., 2017), all of which adopted the
Database D2, used single-lead ECG signal, made the comparison
more persuasive. The experimental results are presented in
Table 6.

1. Based on SQI indexes.
2. Four SQI indexes were extracted and fused by support vector

machine (SVM) and multi-layer perceptron (MLP), which
achieved high accuracy. However, the calculation of the index
bSQI (the percentage of beats detected by wqrs that were also
detected by eplimited) is pretty complicated.

3. The author adopted five SQI indexes, then considered each
index in turn, at each step in the algorithm ECGs are grouped
into two groups depending on a set of ECG features (SQI), but
the accuracy rate is poor.

Compared with these two studies, we propose the SQI
Quality Evaluation Mechanism Based on Fuzzy Comprehensive
Evaluation, with only 4 SQI indexes, all of which are simply
calculated, and obtain a good accuracy.

4. A Correlation and Diversity-based Approaches is proposed.
5. Adopt a Structural Similarity Measure (SSIM) to compare

images of two ECG records that are obtained from displaying
ECGs in a standard scale.

Compared with these two algorithms, we use the SQI index to
quantify the quality of ECG which increased the readability of
this algorithm, made it easy to be understood, and obtains an
ideal accuracy. Therefore, the algorithm proposed in this paper
has some advantages compared with other algorithms reported
in the literature.

CONCLUSION

We have described an effective system (with an accuracy of
92.67% on database D1 and 94.67% on database D2) that
could be deployed as a stand-alone signal quality assessment
algorithm to vet the clinical utility of ECG signals. Applications
range from determining the quality of ECG signal collected
to false alarm suppression. Moreover, the algorithm presented
here is quite general and could be retrained and applied
to any periodic or quasi-periodic signal, such as contraction
signals.

Future work should focus on methods for expanding the
feature space and on the further optimization of feature fusion.
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