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Cold water immersion (CWI) has become a highly used recovery method in sports
sciences, which seeks to minimize fatigue and accelerate recovery processes; however,
tensiomyography (TMG) is a new method to analyze the muscle mechanical response
as a recovery indicator after CWI protocols, this relative new tool of muscle function
assessment, can lead to new information of understand fatigue recovery trough
CWI. The objective of the study was to compare the effect of two CWI protocols,
on neuromuscular function recovery. Thirty-nine healthy males (21.8 ± 2.8 years,
73.2 ± 8.2 kg, 176.6 ± 5.3 cm and body fat 13.5 ± 3.4%) were included in the study.
Participants were grouped into a continuous immersion (12 min at 12 ± 0.4◦C) group,
intermittent immersion (2 min immersion at 12± 0.4◦C+ 1 min out of water 23± 0.5◦C)
group, and a control group (CG) (12 min sitting in a room at 23 ± 0.5◦C). Afterward, the
participants performed eight sets of 30 s counter movement jumps (CMJs) repetitions,
with a 90 s standing recovery between sets. Muscle contraction time (Tc), delay time
(Td), muscle radial displacement (Dm), muscle contraction velocity at 10% of DM (V10),
and muscle contraction velocity at 90% of DM (V90) in rectus, biceps femoris, and CMJ
were measured. Neither CWI protocol was effective in showing improved recovery at
24 and 48 h after training compared with the CG (p > 0.05), in any TMG indicator
of recovery in either muscle biceps or rectus femoris, nor was the CMJ performance
(F(6,111) = 0.43, p = 0.85, ω2

p = 0). Neither CWI protocol contributed to recovery of the
neuromuscular function indicator.

Keywords: recovery, tensiomyography, cold water immersion, muscle function, fatigue

INTRODUCTION

The recovery process is of particular importance to athletes who are required to perform optimally
over subsequent training sessions and competitions (Rattray et al., 2015) Cold water immersion
(CWI) has become well-known and the most frequently used recovery method by specialists in
sports sciences, both among high performance athletes and amateur athletes, who seek to minimize
fatigue and accelerate recovery processes (Calleja-González et al., 2016; Ihsan et al., 2016). In this
way, several reviews of these methods (Burgess and Lambert, 2010; Versey et al., 2013; Ihsan
et al., 2016) as well as meta-analyses (Leeder et al., 2012; Hohenauer et al., 2015; Sánchez-Ureña
et al., 2015; Machado et al., 2016), have demonstrated the beneficial effect of these techniques
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on recovery, while other meta-analysis studies report no
significant effect in recovery (Murray and Cardinale, 2015;
Higgins et al., 2017). The literature reports that CWI includes
the following physiological effects: decreased skin temperature
and internal temperature (Peiffer et al., 2010), decreased acute
inflammation, localized edema, and thigh muscle volume level
(Vaile et al., 2008), decreased muscular pain sensation (Rowsell
et al., 2011; Pointon et al., 2012; Delextrat et al., 2013; Minett et al.,
2014; Sánchez-Ureña et al., 2017) and increased parasympathetic
activity after exercise favoring recovery processes (Al Haddad
et al., 2010; Stanley et al., 2012). It also improves the perception of
recovery (Brophy-Williams et al., 2011; Stanley et al., 2012) and
decreases the perception of fatigue (Rowsell et al., 2011; Delextrat
et al., 2013). These studies used continuous and intermittent CWI
protocols, but few studies have made a comparison between both
protocols.

Neuromuscular function is the capacity to perform
mechanical work as a result of muscular and nervous system
function; because of the relevance of this process, the evaluation
of muscle properties is fundamental to accessing the effectiveness
of the recovery protocols (Halson, 2014). In the particular
case of neuromuscular function and fatigue, Halson (2014)
indicates that neuromuscular function can be assessed through
a series of tests ranging from maximum voluntary contraction,
to speed tests, countermovement jumps, or any other test that
expresses aspects such as maximum force, flight time, contact
time, speed of execution, and other contractile properties. Several
studies have reported that CWI can accelerate the recovery of
neuromuscular performance, expressed in the ability to repeat
counter movement jumps (CMJs) (Vaile et al., 2008), improves
performance in CMJ (Ascensao et al., 2011; Sánchez-Ureña
et al., 2017), and benefits the recovery of isometric strength and
muscular power (Vaile et al., 2008). Other studies indicate that
CWI has no effect on neuromuscular function (De Nardi et al.,
2011; Pournot et al., 2011).

As far as contractile capacities are concerned,
tensiomyography (TMG) is a non-invasive method to access
muscle contraction properties; a monophasic quadrangular
electrical stimulation (0–110 mA) is applied to superficial
muscles to assess it involuntary mechanical response, this
technique provides information about muscle stiffness or muscle
tone, muscle contraction time, and fatigue (Rey et al., 2012).
TMG uses involuntary muscle response, contraction time, and
muscle deformation as neuromuscular function indicators. TMG
parameters are contraction time (Tc), indicating the muscle
contraction velocity; muscle radial displacement (Dm); muscle
belly radial stiffness (De Paula Simola et al., 2015); and muscle
contraction velocity at 10 and 90% of Dm (V10 and V90). These
represent the velocity of the muscle belly radial deformation
(De Paula Simola et al., 2015). TMG parameters have been used
as fatigue indicators, which correlate with gold standards of
neuromuscular function as plyometric jumps, muscle force,
creatine phosphokinase (CPK), and others (García-Manso et al.,
2012; Hunter et al., 2012; De Paula Simola et al., 2015, 2016). For
example, higher Tc indicates lower muscular speed of response
due to fatigue (Hunter et al., 2012), and lower Dm represents
and evaluates muscle stiffness; therefore a lower Dm indicates a

high muscle tone and an excess of rigidity in muscle structures.
This behavior is dependent on the sport and its characteristics
(Tous-Fajardo et al., 2010).

According to the evidence, mechanical muscle alteration has
been related to increased muscle stiffness, less activation of
the muscle fibers, and exercise induced-muscle damage (EIMD)
(García-Manso et al., 2012; Hunter et al., 2012; De Paula Simola
et al., 2015). EIMD has provided an explanation for the muscle
damage response following a series of eccentric contractions;
these will cause various outcomes, such as prolonged loss of
muscle strength and delayed-onset muscle soreness (DOMS)
(Ferreira-Junior et al., 2014). The day-to-day reliability of TMG
parameters has been investigated and reported as high, with
values between ICC = 0.84 and ICC = 0.95 (Tous-Fajardo et al.,
2010; Rey et al., 2012; Simunic, 2012; Ditroilo et al., 2013; De
Paula Simola et al., 2015). Only one study has analyzed the
effect of CWI on the tensiomyographic indicators (García-Manso
et al., 2011). It reported that significant decreases in muscle radial
displacement, but no significant differences in contraction time
variable, and the acute effect of CWI on these indicators was
discussed without using a pre-CWI fatigue protocol. Based on the
evidence, this study’s aim was to compare the effectiveness of two
CWI protocols on neuromuscular function of recovery at 24 and
48 h post-exercise.

MATERIALS AND METHODS

Experimental Design
An experimental randomized 3 × 3 repeated measure was
used. The effectiveness of two CWI protocols was tested
immediately after an exhaustion fatigue protocol was performed.
The participants were randomly divided into three groups (13
subjects per group) using a table of random numbers: an
intermittent cold water immersion (ICWI) group, a continuous
cold water immersion (CCWI) group, and a control group (CG).

Participants
A total of 39 healthy males participated (21.8 ± 2.8 years,
73.2± 8.2 kg, 176.6± 5.3 cm and body fat 13.5± 3.4%). Inclusion
criteria were as follows: male, active student, has a 20% or lower
fatigue index in continuous 30 s CMJs, and no knee or ankle
injuries in the 4 weeks prior to the tests. Participation in the study
was voluntary, and the experimental procedures, associated risks,
and benefits were explained to each player and documented in a
signed informed consent form. The protocol was reviewed and
approved by the ethics committee of the National University of
Costa Rica, N◦ P-006-2015.

Devices
Body Composition
A HD-313 Tanita (Tanita Corporation, Tokyo, Japan) was
used to assess the total body mass (kg) with a precision of
±0.1 kg. Height was measured using a wall stadiometer. Fat
percentage was calculated using the Jackson and Pollock formula
on skinfold data from seven sites (chest, midaxillary region,
subscapular region, triceps, suprailiac, abdomen, and thigh)
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(Pollock and Wilmore, 1990) using a Lange skinfold caliper
from Beta Technology (Cambridge, United Kingdom). These
measurements were taken under the International Society for
the Advancement of Kinanthropometry protocol (Stewart et al.,
2011), and all participants were measured by an experienced
researcher.

Counter Movement Jump
This was measured by an Axon Jump (Bioingenieria Deportiva,
San Martín, Argentina), with Smart Axon 4.02 software. The CMJ
was executed following the Bosco protocol. The subjects were
asked to stand on the platform with legs separated shoulder-width
apart, and the hands on the waist. Given a signal, they made an
explosive jump. This test has a test–retest reliability of ICC = 0.98
(Markovic et al., 2004).

Neuromuscular Properties
A tensiomyography (TMG) (TMG, Ljubljana, Slovenia) was used
to assess muscle properties of the rectus femoris (RF) knee
extensor, hip flexor muscle, and the long head of the biceps
femoris (BF) knee flexor and hip extensor muscle from both
lower limbs; the average value from both legs was used for further
analyses as in other similar studies (De Paula Simola et al., 2015).

Participants were asked to remain relaxed. For RF the
participants were in supine position and a cushioned pad was
used to fix the knee at 120◦; for the BF a prone position
was required and a cushioned pad was used to fix the knee
joint at 150◦.

The participants were asked to remain in a rest position for
5 min. After cleaning the area, two 5 cm2 adhesive electrodes
(TheraTrode R©, TheraSigma, Orange, CA, United States) were
placed on the respective muscles at a 5 cm distance from each
other avoiding the tendon insertions; the negative electrode
was placed distal from the measurement point (García-García
et al., 2013). The measurement point was set at the maximal
radial circumference of each muscle; it was established visually
and by palpation of the muscle during a voluntary contraction.
The electrodes were connected to an electrical stimulator
(TMG-S2 doo, Ljubljana, Slovenia) that triggers a quadrangular,
monophasic, 1 ms pulse duration wave between 0.1 and 110 mA.
An accurate digital displacement transducer (GK 40, Panoptik
doo, Ljubljana, Slovenia) was positioned perpendicular to the
previously established measurement point of muscle belly (De
Paula Simola et al., 2015).

The measurement protocol started triggering at a 40 mA
electrical stimulus to induce a muscle contraction, whereby the
electrical stimulus was increased by 20 mA until the maximal
radial displacement was obtained; the electrical stimuli was then
separated from each other by 10 s rest, to avoid fatigue or
post-tetanic activation (De Paula Simola et al., 2016).

From TMG measurements the following parameter were
obtained: muscle contraction time (Tc) expressed in ms
(ICC = 0.92) (Tous-Fajardo et al., 2010; Benítez-Jiménez et al.,
2013) [maximum radial muscle displacement (Dm) in mm
(ICC = 0.94–0.97)] (Tous-Fajardo et al., 2010; Benítez-Jiménez
et al., 2013); the muscle contraction speed from the onset
of electrical stimulation until it reached 10% (V10) and 90%

(V90) of Dm, expressed in mm/mm/s−1 was obtained by the
formula developed by De Paula Simola et al. (2015, 2016)
(ICC = 0.92–0.94; CV = 4.9–9.9%).

Rate of Perceived Exertion (RPE)
This variable was measured using a modified “Borg” 0–10 visual
analogic scale. The RPE was measured immediately after the
fatigue protocol.

Procedure
The base line and post-measurements were made in the same
hour and in the following order: height, body mass, body fat %,
CMJ, and TMG. They were performed in a controlled laboratory
at 23± 0.5◦C.

Fatigue Protocol
Before the fatigue protocol was implemented, a 10 min× 4.1 Mph
warm up was performed. After that, the participants undertook
eight sets of as many CMJ repetitions as possible in 30 s; each set
was separated by a 90 s stand rest.

Recovery Protocols
The immersions were conducted immediately after the
fatigue protocol (RPE, Control Group = 9.7 ± 0.82; ICWI
Group = 9.3± 1.4; CCWI = 9.4± 0.76, no significant differences,
F(2,39) = 0.57, p = 0.56) in a rounded 0.75 m deep and 3 m
circumference pool where the subjects were sitting, with legs
fully extended, and the water reaching navel height. The water
was cooled by ice cubes. The temperature of the water was
controlled minute by minute. The CWI and control protocols
were performed as follows: CG, 12 min sitting in a 23 ± 0.5◦C
room; ICWI, 12 min intermittent immersions of 2 min inside
(12 ± 0.4◦C) and 1 min outside (23 ± 0.5◦C); CCWI, 12 min
continuous immersion at 12 ± 0.4◦C. Immediately after the
recovery protocol, a single CMJ was measured. The CMJ and
TMG were measured 24 and 48 h post-CWI or control protocols
(see Figure 1).

Statistical Analysis
Descriptive statistics were employed using the mean (M)
and standard deviations (± SD). Results are expressed as
means ± standard deviation (SD). The normality of the data
for each of the variables was checked by the Shapiro–Wilk test
and the Levene test for homogeneity of variance; Box’s M test
and Mauchly’s sphericity were used to describe the homogeneity
of the covariance matrices of the dependent variables. Data of
CMJ and TMG were subjected to a 2 (condition) × 2 (period)
mixed model ANOVA with an a previously set alpha of p < 0.05.
The post hoc analysis was undertaken by the Bonferroni method.
The magnitudes of the differences for all variables were analysed
using the partial omega squared (ω2

p) for ANOVA analysis.
The ω2

p values were qualitatively interpreted using the following
thresholds:≤0.01 small,≤0.06 medium, and≤0.14 large (Cohen,
1988). The data analysis was performed using the Statistical
Package for the Social Sciences (SPSS, IBM, SPSS Statistics,
V 22.0, Chicago, IL, United States).
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FIGURE 1 | Schematic study design.

FIGURE 2 | Comparison of counter movement jump behavior between groups by measure moment.

RESULTS

Figure 2 shows the contrast between groups by measurement
moment for the CMJ variable and the main effect into each group.
The results showed no significant interaction between group and
measurement moment (F(6,111) = 0.43, p = 0.85, ω2

p = 0). After the
main effects analysis, there was a significant difference between
measurement moments (F(3,35) = 14.13, p < 0.001, ω2

p = 0)
as follows: pre-CG CMJ results were significantly −9.3% lower
(31.2 ± 7 vs. 34.4 ± 5.8) than 0 h, −7% (32 ± 5.7 vs. 34.4 ± 5.8)
and at the 48-h measurement point (p = 0.028, p = 0.030,
respectively); the pre-continuous CWI group CMJ results were
significantly −12.2% lower than 0 h (32.3 ± 6.7 vs. 36.8 ± 5),
−6.5% lower (34.4 ± 6.2 vs. 36.8 ± 5) at 24 h and −6.5%
lower (34.4 ± 5.9 vs. 36.8 ± 5) than 48-h measures (p = 0.004,
p = 0.018, p = 0.033, respectively); the pre-intermittent CWI,
CMJ results were significantly −14.8% lower at 0 h (31.2 ± 4 vs.
36.6± 5) (p = 0.001),−6.8% lower (34.1± 6 vs. 36.6± 5) at 24 h
(p = 0.015), and −10.4% lower at 48 h (32.8 ± 6 vs. 36.6 ± 5)
(p = 0.001). There was no main effect of group (F(2,37) = 0.40,
p < 0.67, ω2

p = 0).
Supplementary Table 1 shows the TMG rectus femoris

intergroup contrasts by measurement moment. There was no
TMG rectus femoris interaction between groups or measure
moments for any of the TMG BF variables. These results suggest
that the CWI protocol does not contribute to the TMG recovery
of the rectus femoris as a neuromuscular function indicator.

Supplementary Table 2 shows the TMG biceps femoris inter
groups contrast by measure moment. There was no TMG biceps
femoris interaction between groups or measure moment for any
of the TMG BF variables. These results suggested that the CWI
protocol does not contribute to the TMG recovery of the biceps
femoris as a neuromuscular function indicator.

DISCUSSION

The present study aimed to analyze the effects on recovery of
two CWI protocols, including a continuous protocol (12 min
of immersion at 12 ± 0.4◦C) and an intermittent protocol
(6 min × 2 min immersion at 12 ± 0.4◦C + 1 min out
of the water at room temperature) after exercise, compared
to passive recovery. The results obtained in the present study
indicate that immersions in cold water do not contribute
significantly to the recovery of the muscular function evaluated
by tensiomyographic indicators and functions such as CMJ
jumping ability, regardless of the protocol used, no significant
differences were found between groups on any of the variables
analyzed.

The above findings were different from those reported by
Sánchez-Ureña et al. (2017) (CCWI, 12 min at 12◦C vs. ICWI,
4 min × 2 min: 1 min at 12◦C) and Vaile et al. (2008) (CCWI,
14 min at 15◦C), who identified significant differences between
groups at 24 and 48 h after treatment in CMJ performance.
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However, these coincided with reports from most studies where
this variable was analyzed, in which there was also no significant
difference in CMJ jump height at post-immersion measurements
24 and 48 h later [De Nardi et al., 2011 (CCWI, 8 min at
15◦C vs. ICWI, 2 min × 2 min: 2 min at 15◦C) and Pournot
et al., 2011 (CCWI, 15 min at 10◦C)]. In particular, in the
study carried out by Ascensao et al. (2011) (CWI, 10 min at
10◦C), significant differences were reported between the CG and
CWI group at 24 h, but in this case the values of the group
of immersions were even smaller than the group of thermo-
neutral immersions; that is, they reported a detrimental effect
of the immersions in cold water. Recent meta-analytic studies
report a low and negative effect of CWIs on the ability to jump
at 24 h (ES = −0.30 [−0.96, 0.35]) (Murray and Cardinale,
2015). On the other hand (Higgins et al., 2017) also report
that CWI did not show significant effect sizes in variables
such as the CMJ jump at 24 h (p = 0.05, 95% CI −0.004 to
0.578).

To explain the behavior of the results obtained, Takeda
et al. (2014) indicate that CMJ has usually been considered an
indicator of neuromuscular performance, because after exercise-
induced muscle damage, a decrease in CMJ is a result of
impaired neuromuscular function and efficiency, due to the
reduction of both the frequency and the intensity, by which
the nerve impulse reaches the muscle. However, Pruscino et al.
(2013) and Higgins et al. (2017) point out that the recovery of
neuromuscular function depends not only on issues related to
reducing the damage induced by exercise, but is also influenced
by other physiological factors, such as muscle activation, muscle
coordination, and level of fiber recruitment in the motor plate
by the nervous system. Nevertheless, some studies (Rowsell et al.,
2011; Higgins et al., 2013) indicate that recovery of EIMD is
influenced by aspects such as the level of training and adaptive
capacity.

On the other hand, a number of studies (Buchheit et al.,
2011; Rowsell et al., 2011; Higgins et al., 2013) mention
that the CMJ may not be sensitive enough to evaluate the
recovery of neuromuscular function in trained athletes as these
are influenced by psychological factors, such as a high level
of motivation, competitiveness, exercise tolerance and pain
tolerance, thereby allowing them to perform adequately when
making maximum efforts in implementing a CMJ test.

To confirm the findings of this study, further trials are
needed where these variables are analyzed; indicators of muscle
function at the maximum voluntary contraction and torque, or
biochemical indicators associated with muscle damage, such as
CPK and lactate dehydrogenase (LDH), should be measured in
addition to the subjective indicators of late-onset muscular pain
(DOMS).

On the other hand, the implementation of recovery protocols
performed in this study have no effect on mechanical fatigue
indicators measured by the TMG, among which are Tc, Dm,
V10, and V90. Dm behavior has been associated with an increase
in muscle tone (García-Manso et al., 2012), and decrease in
muscle fiber activation as a response to exercise induced fatigue
(Hunter et al., 2012; De Paula Simola et al., 2015). In contrast,
the present study shows a trend for a small decrease in the Dm

behavior in the CG and García-Manso et al. (2011) reported
significant differences in Dm during ICWIs (4 min × 4 min at
4◦C) compared to a CG (no exercise was performed prior to the
CWI/control interventions).

As for Tc (p = 0.89 in RF, p = 0.39 in BF) neither the study by
De Paula Simola et al. (2015) nor the present study reported any
differences over time after the exercise intervention. In contrast,
De Paula Simola et al. (2015, 2016) reported that Dm, V10, and
d V90 were able to detect fatigue after eccentric exercise. Despite
this, in the present study, both CWI protocols were not effective
in promoting superior recovery to the mechanical properties of
the rectus femoris and the biceps femoris.

A possible explanation of why TMG indicators and the CMJ
differ in the behavior of muscular fatigue at 24 and 48 h
within the groups is that the TMG test was measured only
in a muscle (rectus and biceps femoris) but the CMJ test
included other muscles in the jump technique; the fatigue in
these other muscles may explain the discrepancy between the
TMG variables and CMJ. In future studies, it will be necessary
to analyze other muscles, such as the gluteal and vastus femoris
for example.

CONCLUSION

Both CWI, continuous and intermittent protocols, were
ineffective for promoting superior recovery of CMJ performance
and TMG muscle mechanical responses.

PRACTICAL APPLICATIONS

A single CWI recovery protocol, regardless of whether it is
intermittent or continuous for 12 min, is not capable of
recovering the functional and mechanical muscle properties of
rectus femoris nor biceps femoris after a strenuous eccentric
exercise in active men. It is necessary to explore the role
of frequency and protocols (time immersion and water
temperature) of CWI application during the hours and days after
strenuous exercise, and it would be of much practical interest to
inquire about the effects of different recovery techniques on the
mechanical functions of the muscle.
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