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The dark black chafer (DBC), Holotrichia parallela, is an important pest of multiple crops.
Insect host-searching behaviors are regulated by host plant volatiles. Therefore, a better
understanding of the mechanism linking the chemosensory system to plant volatiles at
the molecular level will benefit DBC control strategies. Based on antenna transcriptome
data, two highly expressed antenna-specific odorant-binding proteins (HparOBP20 and
49) were selected to identify novel DBC attractants using reverse chemical ecology
methods. We expressed these proteins, mapped their binding specificity, and tested the
activity of the plant volatiles in the field. The ligands used in the binding specificity assays
included 31 host-plant-associated volatiles and two sex pheromone components. The
results showed that (1) HparOBP20 and 49 are involved in odor recognition; (2) these
proteins bind attractive plant volatiles strongly and can therefore be employed to develop
environmentally friendly DBC management strategies; and (3) the green-leaf volatile (Z)-
3-hexenyl acetate shows a high binding affinity to HparOBP20 (Ki = 18.51 µM) and
HparOBP49 (Ki = 39.65 µM) and is highly attractive to DBC adults, especially females. In
the field test, a (Z)-3-hexenyl acetate trap caught an average of 13 ± 1.202 females per
day, which was significantly greater than the corresponding male catch (F2,6 = 74.18,
P < 0.0001). (Z)-3-Hexenyl acetate may represent a useful supplement to the known
sex pheromone for DBC attraction. In the present study, the binding characteristics of
two HparOBPs with host plant volatiles were screened, providing behaviourally active
compounds that might be useful for DBC control, based on reverse chemical ecology.

Keywords: Holotrichia parallela, odorant-binding proteins, host plant volatiles, reverse chemical ecology,
(Z)-3-hexenyl acetate

INTRODUCTION

The dark black chafer (DBC), Holotrichia parallela Motschulsky (Coleoptera: Scarabaeidae), is an
important pest in agriculture and forestry. DBC larvae, often referred to as grubs, live in soil and
can cause significant damage to peanut, sweet potato, soybean, corn, and various other vegetable
crops as well as to turf and ornamental species (Ju et al., 2012; Shan et al., 2014). Due to its cryptic
and subterranean nature, this beetle is difficult to control. The main tactic employed for DBC
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management is chemical control, which has environmentally
detrimental consequences, such as residual toxicity,
environmental contamination, and insecticide resistance.
Mass trapping using sex pheromone-based attractants is an
environmentally friendly control tactic and has become well
established. However, this tactic has several shortcomings,
including a male response bias to the sex pheromone traps
and a short duration of residual activity (Reddy and Guerrero,
2004; Said et al., 2005). Similar to insect pheromones, plant
volatiles are important signaling compounds that regulate insect
behavior and exhibit potential as natural pesticides, lures, or
antifeedants (Hanks et al., 2012; Hanks and Millar, 2013; Jung
et al., 2013; Collignon et al., 2016; Wang F. et al., 2016; Wang
Y.L. et al., 2016). Therefore, studies addressing the physiological
and molecular basis of host plant selection could serve as an
important basis for developing novel control tactics for the DBC
(Koczor et al., 2012).

The interaction between plant volatiles and the insect olfactory
system plays a critical role in the initial step of insect host
orientation (Liu et al., 2015; Brito et al., 2016; Sun et al.,
2017a). Plant volatiles consist of various classes of chemicals,
such as green-leaf volatiles, general odorants and terpenoids
(Aartsma et al., 2017). Due to the great diversity of plant volatiles,
behavioral response methods for selecting active host plant
volatiles require a great deal of time and effort. In this context, the
reverse chemical ecology approach is gaining importance (Mao
et al., 2010; Jayanthi et al., 2014), as it narrows down the number
of odorant candidate compounds based on their binding affinity
to olfactory proteins, saving time and reducing research costs
compared with conventional trial-and-error screening performed
in the field (Leal, 2017). Odorant-binding proteins (OBPs) are
one of the major types of peripheral olfactory proteins involved
in the reception of odorants in insects (Vogt et al., 1985; Klein,
1987; Leal, 2013). The physiological functions of insect OBPs
have been described based on biochemical, biophysical, structural
biology and kinetic studies (Sandler et al., 2000; Horst et al., 2001;
Leal et al., 2005; Zhu et al., 2017), and it is clear that OBPs are
important for transporting odorants through the sensillar lymph
and increase the sensitivity of the olfactory system (Pelosi et al.,
2014; Leal, 2017). The role of OBPs in the transport of molecules
in insect antennae was described for the first time in Lepidoptera
using male Antheraea polyphemus antennae (Vogt and Riddiford,
1981). Knockdown studies have demonstrated that DmelOBP76a
(LUSH) is necessary for the olfactory process in Drosophila
melanogaster (Xu et al., 2005; Laughlin et al., 2008). Furthermore,
behavioural assays in Drosophila mutants (Matsuo et al., 2007;
Swarup et al., 2011) and aphids (Qiao et al., 2009; Sun et al.,
2012) have indicated that OBPs are involved in semiochemical
detection. Previous studies have shown that a blend of volatiles
derived from host plants can bind to OBPs and be used as a luring
agent. A good example is provided by Loxostege sticticalis OBP2,
which has been shown to exhibit a high affinity to host plant
volatiles (Yin et al., 2012). OBP1 of Grapholita molesta exhibits
dual functions in the recognition of host plant volatiles (Li et al.,
2016). Two Spodoptera exigua OBPs share a common odorant-
response spectrum, with a considerable binding affinity to host
odorants (Liu et al., 2017). Binding assays of two OBPs from

H. oblita with various compounds showed that benzoates (leaf
volatiles from host plants) fit inside the OBPs (Deng et al., 2012).

However, little is known about the molecular mechanisms
underlying the interactions between DBCs and the odorous
environment of their host plants. To date, only one report has
described the binding functions of two OBPs in the DBC (Ju
et al., 2012). Using a rapid amplification of cDNA ends (RACE)
approach, the HparOBP1 and HparOBP2 genes were identified,
and their ligand-binding properties were examined. Due to recent
transcriptome projects, a large number of insect OBP sequences
are available. Additionally, 25 OBP genes were obtained from
the DBC whole-body transcriptome (Ju et al., 2014). However,
the OBPs predicted from insect whole-body genomes are all
unlikely to represent true olfactory proteins. In D. melanogaster,
for instance, the OBP gene family comprises as many as 51
putative OBPs, but only seven of them have been demonstrated
to be expressed specifically in adult olfactory organs (Galindo
and Smith, 2001). At present, investigation of the antennal
transcriptome is an effective way to find functional OBPs binding
to plant volatiles. In this study, we identified the OBP genes
expressed in DBC antennae using the transcriptome sequencing
approach. Two HparOBPs were selected based on their specific
phylogenetic position and antenna-specific expression pattern
to determine their ligand-binding properties. Furthermore, the
attractive properties of ligands binding to the two HparOBPs
were verified in behavioral responses tests and field evaluations.
Taken together, our results extend the knowledge of OBP genes
in the DBC and pave the way for the development of novel
environmentally friendly control tactics for DBC management.

MATERIALS AND METHODS

Insects and Insect Maintenance
Adults DBCs were collected from the field of the experimental
station at Shandong Peanut Research Institute, Qingdao, China.
The beetles were separated into males and females and were
reared with fresh elm tree (Ulmus pumila L.) leaves in a rotating
chamber with aerating meshes. The relative humidity in the
rearing chamber was maintained at 18–20%. Fresh antennae were
obtained from both males and females for experimentation.

Transcriptome Sequencing
Total RNA was isolated from adult antennae (∼200 antennae
from both males and females). The RNA was quantified
using a NanoDrop spectrophotometer (Thermo, Franklin, TN,
United States). The mRNA was subsequently used for cDNA
synthesis as described by Rice et al. (2000). cDNA synthesis,
library construction and sequencing, gene annotation and
prediction, and OBP identification and confirmation were
conducted as described in previous articles (Ju et al., 2014).
Briefly, the double-stranded cDNAs were fragmented into
segments of 300–500 bp via sonication, and the sonicated
mixture was purified using Agencourt-AMPure beads (Beckman,
Schaumburg, IL, United States). A cDNA library was then
generated using the TruSeqTM RNA Sample Prep Kit (Illumina,
San Diego, CA, United States). The cDNA library was
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subsequently sequenced on the Illumina HiSeq 4000 sequencing
platform. Raw read quality was assessed using FastQC1 prior to
assembly, and Trimmomatic was used to filter adaptor sequences
and trim reads bases with a PHRED quality score below 20. After
adaptor filtering, the resulting reads were de novo assembled
into contigs using the Trinity program. The ‘align and estimate
abundance’ script in the Trinity package was used to align the
reads and perform transcript abundance estimation using the
RSEM method. The assembled contigs were further clustered
using the TGI Clustering Tool (Pertea et al., 2003).

RNA Isolation, CDNA Synthesis, and PCR
Cloning
The cloning primers were designed using Primer Express 3.0 and
are listed in Supplementary Table S1. PCR was carried out in a
total volume of 50 µl containing 200 ng of cDNA template, 5 µl
of 10× buffer, 4 mmol/L MgCl2, 0.8 µmol/L of each forward and
reverse primer, 1 mmol/L dNTPs, and 2.5 U of Taq polymerase.
The PCR program started at 95◦C for 5 min for denaturation,
followed by 25 cycles of 30 s at 95◦C, 30 s at 60◦C, and 30 s at
72◦C, with a final extension at 72◦C for 5 min.

Phylogenetic Analysis
Both the novel OBP genes identified in this study and the
reported OBP gene sequences retrieved from previous studies
were included in the phylogenetic analysis (Ju et al., 2014; Li X.
et al., 2015). Multiple alignments of OBP genes were generated
using MAFFT alignment software version 7.215 (Katoh et al.,
2009). Based on the capability for parallelizing computation,
the IQ-TREE program version 1.5 was employed to construct a
phylogenetic tree using the protein sequences of these OBP genes
according to the maximum likelihood principle (Lam-Tung et al.,
2015). The best protein substitution model was selected by the
built-in model-selection function of the IQ-TREE program, and
bootstrap support values from 1000 replicates were assessed with
ultrafast bootstrap approximation.

Fluorescence Competitive Binding Assay
Recombinant protein expression and purification were
performed according to our previously reported protocols
(Ju et al., 2012). Briefly, plasmid constructs containing the
HparOBP genes were generated and transformed into Rosetta
(DE3) competent cells for recombinant protein expression,
and the resulting proteins were highly induced with 1 mM
isopropyl ß-D-1-thiogalactopyranoside (IPTG) for 3–6 h at 37◦C.
Purification was performed via Ni ion affinity chromatography
(GE Healthcare, Beijing, China), and the His-tag was removed
using enterokinase for HparOBP20 or tobacco etch virus (TEV)
protease for HparOBP49. Renaturation and extensive dialysis
were performed as previously reported (Ju et al., 2012), and the
size and purity of the recombinant proteins were verified through
SDS-PAGE.

For the ligand-binding assays, 33 compounds (>95% purity,
Sigma-Aldrich, Shanghai, China) were selected based on their

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc

previously reported isolation from DBC host plants (Cheng et al.,
2010; Lee et al., 2010; Shi et al., 2011; Ju et al., 2012; Tang
et al., 2012; Iqbal et al., 2014). We used an F-380 fluorescence
spectrophotometer (Tianjin, China) to determine the results of
the perform the binding assay at room temperature (25◦C).
The excitation wavelength was 337 nm, and the emission
spectrum was recorded between 390 and 460 nm. N-phenyl-
1-naphthylamine (1-NPN) is an effective fluorescent probe for
insect OBP binding studies. First, we measured the constant
emission of HparOBPs with 1-NPN, and titrated 2 µM proteins
in 50 mM Tris-HCl (pH 7.4) with 1 mM 1-NPN in methanol
to final concentrations ranging from 1 to 24 µM. Then, the
affinities of other ligands were tested in competitive binding
assays using 1-NPN as a fluorescent reporter at a concentration
of 2 µM, while the concentration of each competitor ranged
from 2 to 30 µM. We evaluated each bound chemical based
on its fluorescence intensity, with the assumption that the
protein was 100% active of 1:1 (protein/ligand) saturation. The
binding curves were linearized using a Scatchard plot, and the
dissociation constants of the competitors were calculated from
the Scatchard plot of the binding data and the corresponding
IC50 values based on the following equation: Ki = [IC50]/(1+[1-
NPN]/K1−NPN), where [1-NPN] is the free concentration of
1-NPN, and K1−NPN is the dissociation constant of the complex
protein/1-NPN.

Electroantennogram (EAG) and Olfactory
Response Assays
The biologically attractive effects of chemicals with an ability to
bind HparOBPs strongly were tested.

The EAG responses of virgin male/female antennae were
measured after removing the tips of the three antennal lamellae
(at approximately 1 mm) and separating them from each other.
The chemicals used for the EAG and behavior assays were diluted
in methanol (HPLC grade) to varying concentrations (0.1, 1, and
10 µg/µl), and methanol was used as a control. A 10 µl aliquot
of each concentration was applied to a filter paper (25 × 8 mm).
EAG responses were recorded for 5 s, with a stimulation interval
of 30 s and a flow rate of 4 ml/s for both the stimulant and
purge airflow. Each chemical was tested against six antennae, and
each antenna was tested with three repeated stimulations. The
EAG apparatus consisted of a signal acquisition system (IDAC-
4), a micromanipulator assembly (INR-5), a stimulus controller
(CS-05), and a system for outputting the EAG results (Syntech
Company, Holland).

The behavioral responses of female and male adults to the
putative ligands were tested using a Y-tube olfactometer in a
dark room at 27 ± 1◦C. A filter paper (25 × 8 mm) with 10 µl
of the test compound was placed at the end of one arm of the
Y-tube, with 10 µl of methanol at the end of the other arm
(control tube). The airflow was 500 ml/min. Six replicates were
performed for each stimulant with 10 healthy virgin adults in
the main stem of the Y-tube, and 10 min was allowed for their
distribution. The response rate was calculated according to the
following equations: response rate = (T+C)/SUM and selective
response rate = T/(T+C), where T represents the number of
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FIGURE 1 | Phylogenetic tree of OBP genes in the DBC and A. corpulenta. The tree was constructed using IQ-TREE version 1.5.
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FIGURE 2 | SDS-PAGE analyses of HparOBP purification. Protein markers (M)
are labeled with sizes on the left and right sides. Lanes 1 and 2 show the
purified proteins HparOBP20 and HparOBP49.

beetles in the treatment tube; C indicates the number of beetles
in the control tube; and SUM is the number of beetles tested.

Field Evaluation
According to the laboratory evaluation, in addition to the
main sex pheromone component, L-leucine methyl ester, (Z)-
3-hexenyl acetate was considered as a candidate compound for
attracting DBC adults in the field. The tested chemicals were
individually dissolved with methanol to 360 mg/ml. A dispenser
was constructed using oil-free cotton wool with 360 mg of the
tested chemical and stored in a freezer before use. Methanol was
employed as a control. The treatments were as follows:

- L-leucine methyl ester alone, 360 mg/ml, 1 ml/dispenser
- (Z)-3-hexenyl acetate alone, 360 mg/ml, 1 ml/dispenser
- methanol alone as control, 99% purity, 1 ml/dispenser

All experiments were performed at the experimental station
of the Shandong Peanut Research Institute, Lai Xi Wang Cheng,
Qingdao, China. Traps were placed in middle of the field,
and each trap was located 60 m from any other trap, so that
the individual treatments were 60 m apart. To avoid cross-
contamination, only one compound was tested at each sub-site
at any time, and each compound was tested at only one sub-site
(Isberg et al., 2017). Each trap was set to operate from 1 h before
sunset until 1 h after sunset. Three traps (replicates) were selected
for each treatment. The test period was June 1–20, 2017. As a rule,
the traps were checked every day, and the individuals that were
caught in all experiments were sexed.

FIGURE 3 | Saturation binding curves and relative Scatchard plots of the
affinity of 1-NPN to HparOBPs. The dissociation constants of 1-NPN with the
HparOBPs were 7.439 ± 1.45 (HparOBP20) and 14.67 ± 2.96 (HparOBP49),
respectively.

RESULTS

Characterization of Antenna
OBP-Encoding Genes
A total of 30,338,129 paired-end reads were produced with a
read length equal to 150 bp (Data Availability Statement: All the
illumina sequencing data are available from the SRA database,
accession number SRP148674). After low-quality filtering and
adaptor cleaning, 30,297,575 filtered reads (representing 99.87%
of total raw reads) were used for de novo assembly, resulting in
a total of 106,562 contigs with an N50 length of 1,351 bp. The
metrics of the DBC transcriptome assemblies were compared
with those of the pine shoot beetle transcriptome (Zhu et al.,
2012). The quality of these two transcriptome assemblies was
comparable, indicating that the DBC assembly was suitable for
downstream transcriptome analyses.

Phylogenetic Analysis
A total of 48 HparOBP-encoding transcripts (containing 113–
223 amino acids) were identified through BLAST searches. The
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FIGURE 4 | Competitive binding curves of host-associated volatiles and sex pheromone components with HparOBPs. (A) HparOBP20; (B) HparOBP49.
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OBPs of Anomala corpulenta and the DBC were employed
to construct a phylogenetic tree (Figure 1). The phylogenetic
tree showed that HparOBP20 (KR733566.1) and HparOBP49

(KR733548.1) were clustered with AcorOBP7 and AcorOBP8.
Analysis of expression levels indicated that compared with
other HparOBPs, HparOBP20 and HparOBP49 showed higher

TABLE 1 | Fluorescence-based competitive binding affinity of host-associated volatiles and sex pheromone components to recombinant HparOBPs.

Ligand CAS Number HparOBP20 HparOBP49

IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)

General odorants

Dodecane
(Cheng et al., 2010)

112-40-3 48.50 40.60 >50 –

Dodecyl aldehyde
(Cheng et al., 2010)

112-54-9 >50 – >50 –

Methyl benzoate
(Chen et al., 2016)

93-58-3 >50 – >50 –

Benzaldehyde
(Leskey et al., 2014; Maeda et al., 2015)

100-52-7 >50 – >50 –

Nonanoic acid
(Shepherd and Sullivan, 2013)

112-05-0 >50 – >50 –

α-Phellandrene
(Siciliano et al., 2014)

99-83-2 21.09 17.65 >50 –

Nonanal
(Fettig et al., 2012; Shepherd and Sullivan,
2013)

124-19-6 >50 – >50 –

Benzyl alcohol
(Shepherd and Sullivan, 2013)

100-51-6 >50 – >50 –

Hexanoic acid
(Green, 2014)

142-62-1 47.24 39.54 47.57 42.20

1-Octanol
(Mukherjee et al., 2015)

111-87-5 30.18 25.26 >50 –

Methyl salicylate
(Cheng et al., 2010; Maeda et al., 2015; Chen
et al., 2016)

119-36-8 28.48 23.84 >50 –

1-Methylpyrrole
(Burroni et al., 1997)

96-54-8 26.14 21.88 >50 –

Valeraldehyde
(Germinara et al., 2016)

110-62-3 31.13 26.06 >50 –

4′-Ethylacetophenone
(Zhang et al., 2013)

937-30-4 >50 – >50 –

1,4-Cyclohexadiene
(Li et al., 2009)

628-41-1 >50 – >50 –

Pentadecane
(Fan et al., 2015)

629-62-9 16.53 13.84 >50 –

3′,4′-Dimethylacetophenone
(Pomonis et al., 1980)

3637-01-02 >50 – >50 –

Green-leaf volatiles

(Z)-3-Hexen-1-ol
(Cheng et al., 2010; Maeda et al., 2015)

928-96-1 30.12 25.21 >50 –

(E)-3-Hexen-1-ol
(Tang et al., 2012)

928-97-2 30.31 25.37 >50 –

(Z)-3-Hexenyl acetate
(Cheng et al., 2010; Maeda et al., 2015)

3681-71-8 22.11 18.51 44.69 39.65

(E)-2-Hexenyl acetate
(Allmann et al., 2013)

2497-18-9 27.78 23.25 >50 –

(E)-2-Hexen-1-ol
(Fettig et al., 2012)

928-95-0 >50 – >50 –

1-Hexanol
(Shepherd and Sullivan, 2013)

111-27-3 >50 – >50 –

(Continued)
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TABLE 1 | Continued

Ligand CAS Number HparOBP20 HparOBP49

IC50 (µM) Ki (µM) IC50 (µM) Ki (µM)

1-Hexanal
(Tang et al., 2012)

66-25-1 >50 – >50 –

(E)-2-Hexenal
(Fettig et al., 2012; Leskey et al., 2014; Chen
et al., 2016)

6728-26-3 >50 – >50 –

Terpenoids

(R)-(+)-Limonene
(Cheng et al., 2010; Leskey et al., 2014; Chen
et al., 2016)

5989-27-5 28.66 23.99 >50 –

Farnesol, mixture of isomers
(Cheng et al., 2010)

4602-84-0 >50 – >50 –

Farnesene, mixture of isomers
(Cheng et al., 2010; Delaney et al., 2013)

502-61-4 > 50 – >50 –

Ocimene, mixture of isomers
(Cheng et al., 2010)

13877-91-3 > 50 – >50 –

β-Caryophyllene
(Cheng et al., 2010; Chen et al., 2016)

87-44-5 >50 – >50 –

α-Pinene
(Cheng et al., 2010; Iqbal et al., 2014)

80-56-8 26.77 22.41 >50 –

Sex pheromones

(R)-(-)-Linalool
(Leal et al., 1993)

126-91-0 >50 – >50 –

L-Leucine methyl ester
(Leal et al., 1993)

7517-19-3 >50 – >50 –

Each value was obtained from three independent experiments. IC50 values labeled “>50” indicate that the binding affinity could not be calculated directly with the tested
ligand concentrations. Therefore, the Ki values of these ligands are designated “−”.

transcriptional activity. Therefore, HparOBP20 and HparOBP49
were selected for further analysis due to their tissue-specific
expression pattern and high transcriptional activity in antennae
(Ju et al., 2014).

In Vitro Expression, Purification of
Recombinant HparOBPs and
Fluorescence Binding Assays of
HparOBPs
Recombinant HparOBPs were expressed in bacterial expression
systems and purified using Ni ion affinity chromatography.
SDS-PAGE analysis of the recombinant proteins showed that
their molecular weights were 14–18 kDa, consistent with their
predicted molecular masses (Figure 2).

NPN can be used as a probe in fluorescence binding assays of
insect OBPs, and the binding properties of 1-NPN to OBPs have
been well characterized (Sun et al., 2013; Zhuang et al., 2014; Li
D.Z. et al., 2015). Therefore, 1-NPN was employed to establish
saturation binding curves and Scatchard plots (Figure 3). The
dissociation constants of 1-NPN with the HparOBPs, calculated
using Scatchard plots, were 7.439 ± 1.45 (HparOBP20) and
14.67± 2.96 (HparOBP49), respectively.

A total of 33 semiochemicals, including 31 host plant-
associated volatiles and two sex pheromone components, were
selected for fluorescence binding assays (Figure 4 and Table 1).
Among the 17 general odorants, HparOBP20 showed broad

binding activity from Ki = 13.84 µM (pentadecane) to 40.60 µM
(dodecane); HparOBP49 specifically bound to hexanoic acid
with a Ki of 42.20 µM. Among the eight green-leaf volatiles
(GLVs), (Z)-3-hexenyl acetate showed a high binding affinity
to HparOBP20 and HparOBP49, with Ki values of 18.51 and
39.65 µM, respectively. In addition, (E)-2-hexenyl acetate, (Z)-3-
hexen-1-ol and (E)-3-hexen-1-ol showed high binding affinities
to HparOBP20, with Ki values of 23.25, 25.21, and 25.37 µM,
respectively. Among the six terpenoids, HparOBP20 bound to
α-pinene and (R)-(+)-limonene with Ki values of 22.41 and
23.99 µM. None of the tested terpenoids could displace 1-NPN
bound to HparOBP49.

EAG and Olfactory Responses to
Host-Associated Volatiles and Sex
Pheromone Components
Based on the results of the fluorescence binding assays, five
putative ligands of the recombinant HparOBPs were selected as
candidates for EAG testing in both male and female antennae
(Figure 5). In males, the highest responses were observed for
L-leucine methyl ester and (Z)-3-hexenyl acetate at 1 µg/µl,
with EAG responses of 5.68 and 4.02 mV, respectively. The
highest response for females was observed for (Z)-3-hexenyl
acetate at 1 µg/µl, with an EAG response of 4.84 mV. The
dose-dependent EAG responses to (Z)-3-hexenyl acetate were
similar in the two sexes. Significantly different EAG responses

Frontiers in Physiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 769

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00769 July 18, 2018 Time: 16:26 # 9

Ju et al. OBPs Binding to Host Plant Volatiles

FIGURE 5 | Electroantennogram (EAG) responses of male and female DBCs to host-associated volatiles and sex pheromone components. Mean ± SE (N = 6) after
correction of the EAG with methanol. Significant differences between different chemicals were analysed through one-way analysis of variance (ANOVA) at a
significance level of P < 0.05, and significant differences are indicated with different letters: a and b indicate males, and α, β, and γ indicated females. Asterisks
indicate statistically significant differences between females and males (by Student’s t-test): ∗P < 0.05, ∗∗P < 0.01.
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FIGURE 6 | Behavioral responses of male and female DBCs to five putative HparOBP ligands at 1 µg/µl in a Y-tube olfactometer trial. A high response rate (greater
than 80%) was observed for all DBC individuals. The indices were calculated using the following formulas: response = T/SUM or C/SUM, response
rate = (T+C)/SUM and selective response rate = T/(T+C), where T represents the number of beetles in the treatment tube; C indicates the number of beetles in the
control tube; and SUM is the number of beetles tested. Mean ± SE (N = 6). Asterisks indicate statistically significant differences between females and males (by
Student’s t-test): ∗P < 0.05, ∗∗P < 0.01.

FIGURE 7 | Total numbers of DBC captured in traps with different chemicals. Mean ± SE (N = 3). Significant differences between different treatments were analyzed
via ANOVA at a significance level of P < 0.05, and significant differences are indicated with different letters.

between the sexes were found for L-leucine methyl ester, with
male antennae being more responsive than female antennae
(t = 12.062, P < 0.01 for L-leucine methyl ester at 0.1 µg/µl;
t = 11.635, P < 0.01 for L-leucine methyl ester at 1 µg/µl; and
t = 19.231, P < 0.01 for L-leucine methyl ester at 10 µg/µl).
At the concentration of 1 µg/µl, β-caryophyllene elicited a
significantly higher response in female antennae than in male
antennae (t = 5.350, P < 0.01).

Figure 6 summarizes the olfactory responses of DBC adults
to the tested volatiles at 1 µg/µl. A good response rate

(>80%) suggested that the tests were valid. Similar to the EAG
responses, the highest selective response rate of females to
(Z)-3-hexenyl acetate was 98%. A significantly higher selective
response rate in males (96%) than in females was observed
for L-leucine methyl ester. Significant differences in behavioral
responses were observed between the controls and treatments for
α-phellandrene and L-leucine methyl ester, with the treatment
being more attractive than the control (t = 13.738, P < 0.01
for α-phellandrene; t = 13.538, P < 0.01 for L-leucine methyl
ester). Females exhibited upwind movement into the volatiles
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containing pentadecane and (Z)-3-hexenyl acetate (t = 6.010,
P < 0.01 for pentadecane, t = 23.756, P < 0.01 for (Z)-3-hexenyl
acetate). L-Leucine methyl ester, an established sex pheromone
component, attracted few female adults (t =−6.188, P < 0.01).

Field Evaluation
Based on the EAG and olfactory responses, L-leucine methyl
ester and (Z)-3-hexenyl acetate were selected for field evaluation
(Figure 7). The results showed that all of the tested lures
attracted more males than females. The sex pheromone resulted
in significantly higher male catches than (Z)-3-hexenyl acetate
(F2,6 = 272.1, P < 0.0001). For males, (Z)-3-hexenyl acetate
yielded 83 ± 4.933 DBCs, and the sex pheromone yielded
258± 12.860. The average number of females per trap per day was
13± 1.202 using (Z)-3-hexenyl acetate (F2,6 = 74.18, P < 0.0001).

DISCUSSION

In this study, we focused on OBPs, which are relatively accessible
targets for research, because they are small, soluble, stable and
relatively easy to manipulate and modify (Brito et al., 2016; Leal,
2017; Zhu et al., 2017). A. corpulenta Motschulsky (Coleoptera:
Scarabaeidae: Rutelinae) and DBC larvae, which are the main
pests in many crop fields, exhibit overlapping active times, and
adults of these species also overlap on some host plant species.
Therefore, these pests may exhibit similar olfactory proteins in
their olfactory systems, which could be the functional proteins
interacting with plant volatiles. In A. corpulenta, AcroOBP7
and AcroOBP8 display antenna-specific expression (Li X. et al.,
2015), and HparOBP20 and HparOBP49 exhibit antenna-specific
expression in H. parallela (Ju et al., 2014). We have revised
the nomenclature system of the Holotrichia parallela OBP genes
in this paper. The OBP2 gene from the previous study (Ju
et al., 2014) has been renamed HparOBP49. We hypothesize that
these proteins are responsible for chemical communication, and
the phylogenetic tree of A. corpulenta and H. parallela showed
that HparOBP20 and HparOBP49 clustered with AcorOBP7
and AcorOBP8. Furthermore, an analysis of expression levels
indicated that HparOBP20 and HparOBP49 showed higher
transcriptional activity than that of other HparOBPs. Therefore,
HparOBP20 and HparOBP49 were selected for further study.
Their binding specificity may pave the way for the identification
of active host plant volatiles.

To confirm the functions suggested by the phylogenetic tree,
along with the tissue expression profiles and quantification
analysis, the binding affinity of the two HparOBPs to 33
volatiles was determined using fluorescent binding assays. All
the volatile compounds tested in this study were isolated from
DBC host plants and may be biologically significant for the
DBC. We found that HparOBP20 showed a broad spectrum of
binding activity, and HparOBP49 specifically bound to general
odorants and GLVs. Overall, HparOBP20 exhibited a high
binding affinity to three volatiles (Ki < 20 µM): pentadecane,
(Z)-3-Hexenyl acetate and α-phellandrene. However, all the
volatiles tested in this study showed a relatively weak binding
affinity (Ki > 20 µM) to HparOBP49. Compensation effects

may exist between HparOBP20 and HparOBP49, as observed for
Cnaphalocrocis medinalis OBP2 and OBP3 (Sun et al., 2016), and
Chrysopa pallens OBP3,−6 and−10 (Li et al., 2017).

Among the three compounds that displayed a high binding
affinity (Ki < 20 µM) to HparOBP20, (Z)-3-hexenyl acetate
showed a higher affinity to both HparOBP20 and HparOBP49.
(Z)-3-Hexenyl acetate is a GLV metabolized from one of the
most abundant GLVs, (Z)-3-hexenal (Deng et al., 2004; Matsui,
2006; D’Auria et al., 2007; Allmann et al., 2013). (Z)-3-Hexenyl
acetate is a common plant volatile released in large amounts after
damage and plays important roles in insect-plant interactions
(Arimura et al., 2008; Mumm and Dicke, 2010; Szendrei et al.,
2011; von Arx et al., 2012). For example, a mixture of plant
volatiles including (Z)-3-hexenyl acetate attracts the Colorado
potato beetle, Leptinotarsa decemlineata Say (Visser, 1986),
and the scarab beetle Anomala octiescostata Burmeister (Leal
et al., 1994). Here, we tested the behavioral response and field
attraction of the DBC to (Z)-3-hexenyl acetate, and a clear
behavioral influence was observed in the EAG, Y-tube and field
evaluations. The results were consistent with those of previous
studies. Furthermore, (Z)-3-hexenyl acetate has been confirmed
to activate olfactory sensory neurons (OSNs) expressing different
sets of odorant receptor types on Manduca sexta female antennae
(Allmann et al., 2013) and to enhance the responses of some
insect species to sex pheromones (Deng et al., 2004; Varela et al.,
2011; Ju et al., 2017). In the field, (Z)-3-hexenyl acetate mixed
with sex pheromone in a 1:1 ratio increased the number of trap-
caught females by 6- to 7-fold and the number of males by
20–30% compared with traps baited with sex pheromone alone
(Reddy and Guerrero, 2000). Therefore, the synergistic effect
between (Z)-3-hexenyl acetate and the sex pheromone requires
further study. However, it is worth noting that, while (E)-2-
hexenyl acetate displayed a lower binding affinity (Ki = 23.25) to
HparOBP20, when it was employed in a trap along with the DBC
sex pheromone, many DBCs were caught (Ju et al., 2017).

The general odorants pentadecane and α-phellandrene
showed a higher binding affinity (Ki < 20 µM) to HparOBP20
and exerted a clear influence on behavior in the EAG and Y-tube
assays but exhibited a low attractant ability in traps. Fluorescence
binding assays often provide candidate compounds, but not all
of the screened compounds exhibit biological activity in insects
(Yi et al., 2018). AfunOBP1 from Anopheles funestus binds to
1-octen-3-ol, but when 1-octen-3-ol was used in a trap, only a
few mosquito species were caught (Xu et al., 2010). However,
pentadecane has been reported to bind to a Locusta migratoria
OBP (Jiang et al., 2009), and the molecular docking results
for α-phellandrene showed that it could tightly bind to the
Adelphocoris lineolatus OBP6 pocket (Sun et al., 2017b). In the
future, we may focus more research effort on these two odorants
to obtain a greater number of DBC attractants.
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