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Dysbiosis in the gut microbiome composition may be promoted by therapeutic drugs
such as metformin, the world’s most prescribed antidiabetic drug. Under metformin
treatment, disturbances of the intestinal microbes lead to increased abundance of
Escherichia spp., Akkermansia muciniphila, Subdoligranulum variabile and decreased
abundance of Intestinibacter bartlettii. This alteration may potentially lead to adverse
effects on the host metabolism, with the depletion of butyrate producer genus. However,
an increased production of butyrate and propionate was verified in metformin-treated
Type 2 diabetes (T2D) patients. The mechanisms underlying these nutritional alterations
and their relation with gut microbiota dysbiosis remain unclear. Here, we used Genome-
scale Metabolic Models of the representative gut bacteria Escherichia spp., I. bartlettii,
A. muciniphila, and S. variabile to elucidate their bacterial metabolism and its effect
on intestinal nutrient pool, including macronutrients (e.g., amino acids and short chain
fatty acids), minerals and chemical elements (e.g., iron and oxygen). We applied flux
balance analysis (FBA) coupled with synthetic lethality analysis interactions to identify
combinations of reactions and extracellular nutrients whose absence prevents growth.
Our analyses suggest that Escherichia sp. is the bacteria least vulnerable to nutrient
availability. We have also examined bacterial contribution to extracellular nutrients
including short chain fatty acids, amino acids, and gasses. For instance, Escherichia
sp. and S. variabile may contribute to the production of important short chain fatty
acids (e.g., acetate and butyrate, respectively) involved in the host physiology under
aerobic and anaerobic conditions. We have also identified pathway susceptibility to
nutrient availability and reaction changes among the four bacteria using both FBA and
flux variability analysis. For instance, lipopolysaccharide synthesis, nucleotide sugar
metabolism, and amino acid metabolism are pathways susceptible to changes in
Escherichia sp. and A. muciniphila. Our observations highlight important commensal
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and competing behavior, and their association with cellular metabolism for prevalent
gut microbes. The results of our analysis have potential important implications for
development of new therapeutic approaches in T2D patients through the development
of prebiotics, probiotics, or postbiotics.

Keywords: gut microbiota, dysbiosis, host–microbiome interactions, genome-scale metabolic models, systems
biology

INTRODUCTION

Dysbiosis in the gut bacterial community and concomitant
metabolic changes have an impact on human health (Qin et al.,
2012; Tremaroli and Bäckhed, 2012; Karlsson et al., 2013;
Forslund et al., 2015; Mardinoglu et al., 2016; Magnusdottir
et al., 2017). Gut microbiome could affect host metabolism
(Brillat-Savarin, 1826; Tremaroli and Bäckhed, 2012; Shoaie
et al., 2013, 2015; Magnusdottir et al., 2017) through degrading
non-enzymatically digestible foods, and synthesis of amino
acids and short chain fatty acids (SCFAs). Dysbiosis may have
detrimental effects on host metabolism such as alterations
in abundance of nutrients crucial for homeostasis including
butyrate (Forslund et al., 2015; Mardinoglu et al., 2016; Wu et al.,
2017). Perturbations of intestinal microbiota are recognized as a
risk factor for type 2 diabetes (T2D), a complex chronic disorder
associated with genetic and environmental risk factors such as
age, diet, and lifestyle (Karlsson et al., 2013; Forslund et al.,
2015; Shoaie et al., 2015; Mardinoglu et al., 2016; Magnusdottir
et al., 2017). Recently, compositional shifts in representative gut
microbes were identified in T2D patients undergoing metformin
treatment, the most prescribed antidiabetic drug. These patients
display increased abundance of Escherichia sp., Akkermansia
muciniphila (A. muciniphila), and Subdoligranulum variabile
(S. variabile) (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017), and lower of Intestinibacter bartlettii (Forslund et al.,
2015; Wu et al., 2017), as well as increased levels of the SCFAs
butyrate and propionate. Thus, despite potentially detrimental
effects of gut microbiota dysbiosis, metformin-treated patients
display beneficial alterations in gut SCFA abundances (Forslund
et al., 2015; Mardinoglu et al., 2016). However, the relationship
between the metabolism of representative gut bacteria such as
Escherichia sp., A. muciniphila, S. variabile and I. bartlettii, and
compounds in the intestinal lumen such as SCFAs or amino acids
is unclear.

Clarifying complex metabolic responses and relationships
between gut microbes and host metabolism requires an analysis
of large and highly intertwined reaction networks. GEnome-
scale Metabolic models (GEMs) allow for the analysis of such
complex networks and have successfully been applied to clarify
the mechanisms underlying insulin resistance (Varemo et al.,
2015; Zhang and Hua, 2016; Mardinoglu et al., 2018; Turanli
et al., 2018) and to identify important nutritional interactions
between gut microbes and the host (Shoaie et al., 2013; Ji
and Nielsen, 2015; Mardinoglu et al., 2015; Zhang and Hua,
2016). Synthetic lethality analysis (Pratapa et al., 2015) is
an approach commonly used in constraint-based modeling to
clarify biological phenomena (Mardinoglu and Nielsen, 2012;

Mardinoglu et al., 2016; Magnusdottir et al., 2017). It is used
to identify vital interconnected metabolic processes underlying
a phenotype of interest (Qin et al., 2012; Shoaie et al., 2013;
Magnusdottir et al., 2017) and has been extensively applied in
health and disease (O’Neil et al., 2017). While synthetic lethality
analysis traditionally seeks to identify genes that are individually
essential, this approach may assist in identifying whether the
simultaneous knock-out of two genes of interest leads to cell
lethality, but their individual knock-out maintains cell viability,
i.e., synthetic lethality interactions (Kaelin, 2005).

Through reconstruction and analysis of GEMs, we sought to
understand the contribution of the four bacteria in the physiology
of T2D patients undergoing metformin treatment. We used
AGORA GEM reconstructions of Escherichia sp., A. muciniphila,
S. variabile, and I. bartlettii to analyze relationships between the
bacterial metabolism and the extracellular environment, as well
as predicting the survivability of the bacteria against nutritional
alterations (Magnusdottir et al., 2017). Here, we employed the
concept of synthetic lethality analysis to identify sets of individual
and pairs of reactions that, when not present, abolished growth.
Additionally, we implemented nutritional interactions analysis
to understanding how the presence or absence of gut nutrients
influences bacterial growth by focusing on nutrient transport
reactions (i.e., exchange reactions). Moreover, we assessed the
influence of available nutrients and synthetic lethal reactions on
cellular metabolic pathways to clarify which metabolic pathways
were mostly dependent on nutritional alterations and under
survivability threat, respectively. Lastly, interactions between
the gut microbiota and the environment (host intestine) were
evaluated through a novel approach based on the production and
consumption of substrates of interest under maximal growth and
minimal media conditions of each organism. Our observations
highlight important association between cellular metabolism
of these four prevalent gut microbes and point important
implications for development of new therapeutic approaches in
T2D patients.

MATERIALS AND METHODS

Genome Scale Metabolic Model
Retrieval, Curation, and Modeling
AGORA (Assembly of Gut Organisms through Reconstruction
and Analysis) model reconstructions (Magnusdottir et al., 2017)
were downloaded in SBML format from Virtual Metabolic
Human (VMH) database1 for Escherichia sp. 4_1_40B, and

1https://vmh.uni.lu/#microbes/search
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I. bartlettii (Clostridium bartlettii DSM 16795) on the 27th
of January 2017, for A. muciniphila ATCC BAA-835 and
S. variabile DSM 15176 on the 2nd April 2018. Details regarding
microorganism AGORA reconstructions are accessible in
Supplementary Table S1. The models were manually curated
to ensure biological functionality. The computations were
performed on resources provided by the Swedish National
Infrastructure for Computing (SNIC) through Uppsala
Multidisciplinary Center for Advanced Computational Science
(UPPMAX).

The RAVEN (Reconstruction, Analysis and Visualization of
Metabolic Networks) Toolbox (Agren et al., 2013) was used
to define and set parameters for simulations and perform
analyses of the originated predictions. Unless otherwise stated, all
flux balance analyses (FBAs) considered biomass production as
objective function. For flux variability analysis (FVA), minimum
and maximum flux ranges were calculated for each reaction
for the optimized value of the objective function through
the COBRA (Constraint-Based Reconstruction and Analysis)
Toolbox (Schellenberger et al., 2012).

Synthetic Lethality Analysis
Lethality analysis was performed by adapting the Fast-SL
algorithm (Pratapa et al., 2015) from the COBRA Toolbox
(Schellenberger et al., 2012) to RAVEN Toolbox (Agren
et al., 2013). Fast-SL-derived single and double lethal reactions
predictions (Supplementary Table S2) were further validated
by constraining methods, setting lower and upper bounds to
zero, with biomass maximization defined as objective function.
Single lethal reactions were determined and treated as essential
reactions for cell growth. Double lethal reactions were considered
as those pairs of reactions that induce no growth when
blocked simultaneously but not individually. Exchange reactions
were determined using default RAVEN functions, and only
those involving nutrient exchange with the extracellular space
are reported (i.e., outside reactions, and not inside reactions
which include DNA replication, RNA transcription, protein
biosynthesis and biomass, and are treated as intracellular
reactions). This permits the identification of essential exchange
reactions, which are the nutrients required to be uptaken from
the environment by the organism in order to guarantee cell
survival.

Metabolic Pathway Sensitivity to
Essential Reactions and Nutrient
Changes
The built-in subsystems of the model were used for defining the
pathways (Supplementary Table S5) and unclassified pathways
were ignored. We applied modeling-constraints (lower and
upper bounds set to zero and objective function defined
as biomass maximization) going through each of the single
and double lethal reactions (essential reactions) and non-
essential exchange reactions. Pathway sensitivity to changes
was determined based on the proportion of reactions that
presented absolute flux changes above 0.01 mmol/gDW/h
relative to the respective flux in the reference model where no

constraints were set on lower/upper bounds. This value was
conservatively considered based on the observation that FBA-
based approaches often use 0.001 mmol/gDW/h as threshold
for identifying reactions that have fluxes (Hyotylainen et al.,
2016).

Additionally, these results were compared with those from
FVA in response to the inhibition of single and paired synthetic
lethal (essential) and non-essential exchange reactions, and
compared to a reference output without applied constraints on
lethal neither exchange reactions. Only solutions on flux variation
that achieve ≥90% of the reference solution were considered.
Using the minimum and maximum fluxes determined for each
reaction, we computed the mean and ranges for all reactions in
each subsystem.

Extracellular Nutrient Uptake and
Alternative Aerobic and Anaerobic
Escherichia sp. Growth
We have employed a novel approach which allowed us to
identify which are the minimal sufficient nutrients that when
combined are capable of providing cellular growth when uptaken
by the organism. In order to identify which nutrients are on
the first line promoting cellular growth under environmental
limited conditions, the target reactions of this approach were
non-essential exchange reactions. No constraint was applied
for single essential exchange reactions to ensure that growth
inhibition was not due to the block of required essential nutrients.
Cellular intake through non-essential exchange reactions was
blocked with lower bounds set to zero. Based on FBA methods,
non-essential exchange reactions were blocked one-by-one, two-
by-two, and three-by-three. Future work should test how this
approach compares with existing methods for determining
minimum growth conditions (e.g., Imielinski et al., 2006; Eker
et al., 2013). This was performed for all organisms under
anaerobiosis, and also for Escherichia sp. under aerobiosis.
A biomass flux threshold of 10−5 was defined as minimum to
consider cell growth.

Maximal Growth-Coupled Extracellular
Nutrient Production and Consumption
We developed a novel approach to assess the contribution of
each bacteria for nutrient production and consumption under
the maximum growth rate permitted under minimum media
conditions. Specifically, we determined the maximal rate of
secretion or intake of each metabolite when the organism is at
its highest growth yield by individually setting each metabolite
of interest as objective function at a time, therefore maximizing
its production or consumption. Maximum organism growth
was determined based on FBA under minimal media for
each organism (Supplementary Table S7). Thus, the predicted
maximal growth (0.6387, 0.2268, 0.2599, 0.2460 mmol/gDW/h,
respectively for Escherichia sp., I. bartlettii, A. muciniphila, and
S. variabile) was used as lower bound constraint for biomass
together with minimal media conditions and under anaerobic
conditions (with oxygen exchange constrained to zero in both
models).
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RESULTS

In Silico Identification of Different
Growth Requirements in Representative
Gut Bacteria
To assess growth requirements of Escherichia sp., I. bartlettii, A.
muciniphila and S. variabile, we retrieved AGORA (Magnusdottir
et al., 2017) models for these organisms (Supplementary
Table S1). These models comprise the entire known metabolic
reaction networks of these organisms, and contain 1757, 1095,
1125, and 1057 reactions, and 1267, 730, 592, and 1313 genes,
respectively. Using the FAST-SL algorithm (Pratapa et al., 2015)
based on FBAs) with biomass as objective function, we performed
synthetic lethality interaction analysis (Figure 1) on these four
organisms. Through this approach, we revealed the influence
of an inhibited (i.e., without flux) reaction on the metabolic
network. This allowed for the identification of single essential
reactions (Figure 1A), and those combinations of reaction
pairs that become lethal when blocked simultaneously but not
individually (Figure 1B). In total, this represents between 559,153
to 1,544,403 different conditions (including single and double
reaction combinations) tested.

Additionally, this approach allowed for understanding the
consequences of unavailability of environmental compounds
(e.g., amino acids or oxygen) on cell growth by inhibiting
transport reactions with the extracellular environment (i.e.,
exchange reactions). Escherichia sp., I. bartlettii, A. muciniphila,
and S. variabile respectively displayed 211, 153, 142, and 130
exchange reactions. I. bartlettii was the bacteria with higher
proportion of exchange reactions, while S. variabile was the
organism with higher proportion of single lethal reactions.
Escherichia sp. was the bacteria with lower proportion of
essential exchange reactions (Figure 1A and Supplementary
Table S2). These four organisms commonly shared 46 single
lethal reactions. A. muciniphila presented 182 organism
specific single lethal reactions and 45 additional single lethal
reactions shared with Escherichia sp. Among all exchange
reactions, 10 single-lethal were shared by these four organisms:
environmental exchange of calcium, chloride, carbon dioxide,
copper, potassium, magnesium, manganese, sulfate, zinc,
and ferrous (Fe2+) iron (Figure 1C). Escherichia sp. did not
present organism-specific essential exchange reactions, whereas
I. bartlettii, S. variabile, and A. muciniphila respectively had 1,
2, and 6 single-lethal exchange reactions found only in these
organisms. Both A. muciniphila and S. variabile presented shared
single-lethal exchange reactions with I. bartlettii, where exchange
of ferric iron (Fe3+) was essential in the three organisms.
Exchange of vitamin B5 and tryptophan were essential exchange
reactions found in I. bartlettii and S. variabile, whereas exchange
of hydrogen phosphate is commonly essential in I. bartlettii and
A. muciniphila.

When considering all possible pairs of combinations,
A. muciniphila presented the highest proportion of double lethal
reaction pairs and pairs that include at least 1 exchange reaction.
I. bartlettii was the organism with higher number of organism-
specific lethal reaction pairs with ≥1 exchange reaction, followed

by A. muciniphila (Figure 1B). There were no lethal reaction
pairs (≥1 exchange reactions) exclusively shared by the two
organisms. However, ornithine exchange comprised 7 and 4
organism-specific double lethal reactions in I. bartlettii and
A. muciniphila, respectively. Among those combinations found
together with ornithine exchange, the urea cycle was the only
common pathway between the two bacteria, where arginine and
proline metabolism are specific for A. muciniphila, and alanine
and aspartate metabolism, pyrimidine synthesis, citric acid cycle
are specific for I. bartlettii.

Intracellular reactions involving NADP+/NADPH became
lethal when combined with riboflavin or diaminoheptanedioate
exchange in I. bartlettii. In turn, intracellular reactions involving
NADP+/NADPH together with environmental exchange of
vitamin B5, the fatty acid laurate or thymidine were synthetic
lethal reaction pairs in Escherichia sp., but not in I. bartlettii.
Escherichia sp. displayed the lowest proportion of double lethal
reactions, as well as the lowest proportion of double lethal
reactions with ≥1 exchange reactions, and the lowest number
of organism-specific lethal reaction pairs with ≥1 exchange
reactions. Among these pairs with ≥1 exchange reaction
which involved fatty acids, Escherichia sp. and A. muciniphila
respectively displayed 20 of 21 shared reaction pairs involving
laurate exchange and an intracellular reaction associated with
fatty acid synthesis or oxidation. Simultaneous inhibition of
acetate exchange and acetate kinase or phosphotransacetylase
reactions were lethal in A. muciniphila.

Several double lethal pairs involving nicotinate exchange were
present in S. variabile (three pairs) and I. bartlettii (four pairs).
Lethal pairs involving nicotinamide mononucleotide (NMN)
exchange were also found for S. variabile (three pairs) and
Escherichia sp. (two pairs), where one pair involves nicotinate-
nucleotide adenylyltransferase in both organisms. Reactions
involved in hypoxanthine exchange and purine synthesis were
found in 10 double lethal pairs exclusive of S. variabile.

The inhibition of L-lysine exchange simultaneously with
diaminopimelate decarboxylase reaction was the only lethal
pair found in the four organisms. Reaction pairs including
exchange of arginine, alanine, asparagine, aspartate, isoleucine,
lysine, tyrosine, valine, thymidine, or thiamine (vitamin B1)
were synthetic lethal in one or more organisms. S. variabile, A.
muciniphila, Escherichia sp., and I. bartlettii respectively had 4,
2, 1 and 1 double lethal pairs involving 2 exchange reactions.
Simultaneous inhibition of NMN exchange and nicotinate, or L-
tyrosine coupled with glycyl-L-tyrosine, or phosphate paired with
glycerol 3-phosphate and uracil paired with succinate became
lethal in S. variabile. In A. muciniphila inhibiting the exchange of
L-asparagine together with glycyl-L-asparagine or thiamin led to
lethality. Notably, simultaneous blocking of exchange of oxygen
with ferric iron (Fe3+) or nicotinate, respectively prevented
growth in Escherichia sp. and I. bartlettii. While I. bartlettii is
an obligate anaerobe (Supplementary Table S1), the observation
that O2 exchange is present in this model could indicate that
the model failed to describe its aerotolerance. However, the two
following points indicate that the model predictions are robust
to O2 availability. First, the Spearman correlation between model
fluxes in presence vs. absence of O2 was very high (Spearman’s
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FIGURE 1 | Specific growth requirements suggest lower vulnerability of Escherichia sp. to environmental nutritional deficiencies. (A) Proportions of single lethal
reaction sets for the entire metabolic network and for exchange reactions in the four organisms, and number of exclusive and shared single lethal reactions
(Supplementary Table S2) (B) Number of double lethal reaction pairs. (C) Essential metabolites consumed by the four organisms. Multiple colored metabolites are
consumed by several bacteria according to the legend.

ρ > 0.82, P < 10−70 considering all 304 non-null fluxes of both
models). Second, the reactions catalyzed by antioxidants against
reactive oxygen species (hydrogen peroxide reductase) showed
activity in a model encompassing oxygen exchange, but not
in its absence (Supplementary Table S3). We finally, removed
oxygen exchange from the I. bartlettii model and repeated the
lethality analysis for the entire reaction network. The comparison
of synthetic lethality analysis under aerobic versus anaerobic
conditions changes the number of single lethal reactions from
80 to 85, and from 124 to 171 lethal pairs (Supplementary
Table S4), respectively. However, only one additional single lethal
exchange reaction (methionine exchange) was identified in the
I. bartlettii model. These observations reinforce the confidence
in the predictions of the model in terms of environmental
dependency or synthetic lethal reactions.

Identification of Sensitive Pathways to
Inhibition of Lethal and Non-essential
Exchange Reactions
We investigated which pathways were mostly altered by single
and double synthetic lethal reactions (i.e., essential reactions)

and non-essential exchange reactions. Escherichia sp. displays 73
metabolic pathways, I. bartlettii displays 66, A. muciniphila has
68 and S. variabile displays 63, of which 54 are commonly present
in the four organisms (Supplementary Table S5). Considering
the entire metabolic network and sets of single, paired essential
reactions, and non-essential exchange reactions individually and
coupled in pairs, we computed the proportion of reactions that
are altered in each pathway in comparison with each bacteria’s
reference model, i.e., the model with no reaction blocking.
To do so, we used FBA to identify flux distribution between
pathways while maximizing for bacterial growth, i.e., “pathway
sensitivity” to reaction blocking. Additionally and to complement
this methodology, we employed FVA (Supplementary Table S6).
We observed (Figures 2, 3) that several pathways show significant
alterations in >50% of their reactions. For instance, cholesterol
(and squalene) synthesis but not other reactions involved in
cholesterol metabolism, were highly perturbed by essential
reactions and partly by environmental exchange reactions in
Escherichia sp. In turn, cholesterol metabolism was highly
perturbed by essential and environmental exchange reactions
under the same constraints in A. muciniphila but not in
I. bartlettii and S. variabile.
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FIGURE 2 | Pathways of Escherichia sp. and Intestinibacter bartlettii show distinct vulnerability to environmental nutritional changes. Synthetic lethality analysis was
performed in Escherichia sp. (A) and I. bartlettii (B) for blocking of single reactions or pairs of reactions belonging to the entire metabolic network (“All essential
reactions”), for exchange reactions, or for non-essential exchange reactions and then we determined the fraction of pathway reactions altered (>1% change with
respect to the reference model). For reaction pairs, we also considered pairs comprising 1 exchange reaction and 1 intracellular reaction. Columns have different
number of blocked reactions, and only one pair of essential exchange reactions was found in each organism (see text). Columns leading to no pathway changes are
not shown; for non-essential exchange reactions, only those in the top 30% inducing most pathway changes are shown. Amino acids are abbreviated by their
common three-letter names. Total number of reactions in each pathway are presented in brackets. Due to the large number of possible combinations, only those
pairs of non-essential exchange reactions that resulted in high pathway changes are shown (sum over all pathways >4).
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FIGURE 3 | Pathway susceptibility to environmental changes in Akkermansia muciniphila and Subdoligranulum variabile. Synthetic lethality analysis was performed in
A. muciniphila (A) and S. variabile (B) similarly to Figure 2. Amino acids are abbreviated by their common three-letter names. Total number of reactions in each
pathway are presented in brackets. Due to the large number of possible combinations, only those pairs of non-essential exchange reactions that resulted in high
pathway changes are shown (sum over all pathways >4).
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Akkermansia muciniphila showed the most significant cellular
pathway alterations in response to essential reactions including
N-glycan synthesis, exclusive to this bacteria (Figure 3A).
Lipopolysaccharide (LPS) biosynthesis and nucleotide sugar
metabolism were metabolic pathways highly perturbed in
A. muciniphila and Escherichia sp., but not in S. variabile. I.
bartlettii showed (Figure 2B) substantial (>50%) alterations
in metabolism of propionate, phenylalanine, alanine but no
change in chloroalkane and chloroalkene degradation, a species-
exclusive metabolic pathway. In turn, metabolism of butyrate and
vitamin B2 showed substantial (>50%) alterations in metabolism
in Escherichia sp. (Figure 2A). Oxidative phosphorylation, a
metabolic pathway found in the four organisms, was highly
perturbed in S. variabile when any of its lethal or non-essential
exchange reactions were inhibited. The same was observed in
I. bartlettii, however mainly when double lethal reactions were
blocked simultaneously. The metabolism of sulfur and energy
were equally highly perturbed in S. variabile in response to
inhibition of any of its essential or non-essential exchange
reactions, while sulfur metabolism was poorly affected in other
species and energy metabolism was only considerably perturbed
in A. muciniphila.

While some of the pronounced changes exhibited by some
pathways reflect their small size (e.g., oxidative phosphorylation
with ≤3 reactions), other pathways showed substantial changes
though they comprise more reactions. This is the case of LPS
biosynthesis (27 reactions in Escherichia sp. and 30 reactions in
A. muciniphila), butyrate metabolism (9 reactions in I. bartlettii
and Escherichia sp.), or phenylalanine metabolism (25 and 10
reactions in Escherichia sp. and S. variabile). Importantly, these
trends were also observed when blocking single or pairs of
essential exchange reactions, and for many of the non-essential
exchange reactions, indicating the strong effect of nutritional
availability in these pathways. Metabolic pathways were more
sensitive to inhibition of essential (lethal) reactions that are
intracellular and environmentally exchanged, comparatively to
non-essential exchange reactions in the four organisms. FVA
showed qualitatively similar results, though it indicates that more
pathways were sensitive to perturbations than FBA.

Tyrosine, Phenylalanine, and Vitamin B6
Permit Escherichia sp. Growth Under
Aerobic but Not Anaerobic Conditions
Bacteria present different growth requirements, and thus may
present selective advantages and disadvantages. Among the four
bacteria tested here, all are strict anaerobes with exception to
Escherichia sp., a facultative aerobe. In Escherichia sp., blocking
of oxygen and iron exchange together induces lethality (but not
individually, since production of ferric iron depends on oxygen
through the reaction 4H++ O2 + 4Fe2+

→ 2H2O + 4Fe3+).
We questioned if pathway utilization may differ not only in
response to nutrients but also in response to oxygen availability
(Figure 4A, top). Such differential nutritional responses may
present an added selective advantage over anaerobic bacteria.

We investigated pathway response to oxygen availability
in Escherichia sp., and determined the minimum growth

requirements for the four organisms. We developed an approach
complementary to those used above for assessing pathway
sensitivity (Figure 4A, bottom). Briefly, from the entire metabolic
reaction network, we selected those involving exchange reactions
and blocked all non-essential single exchange reactions identified
above, whereas the single-lethal exchange reactions identified
above are unblocked. All non-lethal exchange reactions are firstly
blocked, and then unblocked one by one, two by two, etc. The
synthetic lethality approach employed above optimized for cell
growth, and thus allowed for identification of those exchange
reactions that most penalize cell growth and whose blocking
prevents cell growth using otherwise unconstrained models.
In turn, the approach used here optimizes flux distribution
in a tightly constrained model and permits identifying those
combinations of exchange reactions that, when simultaneously
unblocked, promote cell growth. This additionally permits
identifying those pathways showing the greatest changes while
conferring the greatest increments to cell growth by comparison
with the reference fully unconstrained model.

None of the four gut bacteria under study displayed cellular
growth when unblocking any single exchange reaction. Only
pairs comprising either oxygen or iron exchange resulted in
growth for Escherichia sp. when combinations of two-by-two
non-essential reactions were allowed. In combinations of three
exchange reactions, oxygen and iron exchange is always present
as one of the necessary reactions for growth (results not shown).
Unblocking combinations of two non-essential reactions in
A. muciniphila and S. variabile provided significant cellular
growth. Notably, employing this approach yielded no growth in
I. bartlettii using combinations of 1, 2, and even 3 unblocked non-
essential exchange reactions (results not shown), suggesting that
more nutrients must be available in order to permit growth. The
Escherichia sp. model shows growth with as few as 12 exchange
reactions (of which 10 are single-essential), whereas the model for
I. bartlettii does not grow with 18 exchange reactions (including
15 single-essential). Additionally, A. muciniphila shows growth
with only 23 exchange reactions (which includes 21 single-
essential), while S. variabile shows growth with only 14 exchange
reactions (of which 12 single-essential).

Escherichia sp. displays substantial pathway changes
(Figure 4B) in LPS, squalene and cholesterol biosynthesis,
nucleotide sugar metabolism (>90% pathway reactions
with >1% fluxes under all assessed conditions), purine and
butyrate metabolism (>74% reactions altered), as well as
metabolism of histidine, tryptophan, valine, leucine, isoleucine,
aspartate, alanine, and lysine (>70%). Glutathione and nitrogen
metabolism tend to be mostly unchanged (<2%). Additionally,
we observed that Escherichia sp. responds differently depending
on oxygen availability. As expected from aerobic growth,
ROS detoxification is significantly active when O2 exchange
is unconstrained versus no changes when Fe3+ is unblocked
but O2 exchange is blocked (respectively, >33 vs. 0%, compare
Figure 4B, left with right). Slight increased fluxes are also
identified under aerobic conditions in energy metabolism
(mean pathway reaction changes >21% aerobic vs. 16%
anaerobic), pentose phosphate pathway (57 vs. 50%), starch
and sucrose metabolism (14 vs. 3%), and metabolism of
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FIGURE 4 | Effect of availability of environmental nutrients on pathway responses and growth rates in Escherichia sp. under aerobic and anaerobic growth. (A) Due
to their aerotolerance, the facultative Escherichia sp. may respond differently to environmental nutrients under aerobic versus anaerobic growth, which may provide a
selective advantage with respect to the obligate anaerobe I. bartlettii. We employed a novel in silico approach where all single essential reactions are kept unblocked,
and the non-essential exchange reactions (in Figure 2) are unblocked one-by-one and two-by-two. This approach may thus assist in identifying those combinations
that confer the highest increments on cell growth, as well as determining which pathways most support this response. (B) Escherichia sp. pathway reactions that are
altered (% from total) as response to availability of specific nutrients, together with oxygen or iron exchange (only pairs that either included oxygen or iron exchange
resulted in growth). No growth is observed when unblocking single reactions for Escherichia sp., or in I. bartlettii for single, pairs, or triplets of reactions (results not
show). Reactions were considered altered when their flux were altered >1% against the reference model. (C) Growth rates for Escherichia sp. achieved by
unblocking exchange reactions together with O2 exchange (i.e., aerobic conditions) or iron exchange (i.e., anaerobic conditions).

Frontiers in Physiology | www.frontiersin.org 9 June 2018 | Volume 9 | Article 775

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00775 June 21, 2018 Time: 15:56 # 10

Rosario et al. Modeling Gut Microbiota Nutritional Requirements

vitamins B6 (64 vs. 57%) and B2 (71 vs. 64%). Oxidative
phosphorylation shows substantial increases (>66%) in some
entries under aerobic conditions, but not under anaerobic
conditions, when exchange of some compounds and amino acids
is unblocked (e.g., NMN, alanine, glutamine, glycine, proline,
serine, threonine, and tryptophan). In turn, sulfur metabolism
(18 vs. 25%) and glyoxylate/dicarboxylate metabolism (29
vs. 35%) are slightly altered under anaerobic conditions.
Practically all nutrients confer highest growth rates under
aerobic than anaerobic conditions, with exception to nitrate
exchange that elicits similar growth rates under aerobic and
anaerobic growth. NMN, glutamate, aspartate, nitrate, and
nitrite exchange confer the most substantial increases to
growth under aerobic and anaerobic conditions (Figure 4C).
Interestingly, tyrosine, phenylalanine, tyramine, and vitamin B6
uptake allow for cell growth under aerobic but not anaerobic
conditions.

Commensal and Competing Metabolic
Behavior of Gut Bacteria in the
Utilization of Amino Acids and Short
Chain Fatty Acids
We also determined how amino acids, short chain fatty
acids, and other nutrients important for host and bacterial
metabolism (Shoaie et al., 2013; Forslund et al., 2015; Mardinoglu
et al., 2016) were produced or used by the four bacteria.
To this extent, we aimed to determine for each metabolite
its maximum growth-coupled uptake/secretion fluxes under
maximal growth and minimal media conditions in anaerobiosis
(Supplementary Table S7, see section “Materials and Methods”),
since the human intestinal environment is predominantly
anaerobic (Tremaroli and Bäckhed, 2012; Donaldson et al.,
2015). We observed that the four organisms may contribute
for the production of extracellular acetate, whereas all but
S. variabile produced propionate. Predictions have shown
butyrate production by S. variabile. In turn, I. bartlettii produced
isobutyrate (Figure 5A and Supplementary Table S8), while
both Escherichia sp. and I. bartlettii revealed to compete for
ribose, deoxyribose and cysteinylglycine, as well as for aspartate
and phosphate, which were both products of S. variabile
(Figure 5B).

Potential commensal behavior may occur, since some of
these compounds may be produced by A. muciniphila and
S. variabile (e.g., threonine and glycine), while consumed by
Escherichia sp. and I. bartlettii. Phenylalanine produced by
the three other bacteria may be consumed by I. bartlettii,
which in turn is predicted to secrete phenylacetate. Proline
and glutamine were produced by A. muciniphila, I. bartlettii
and S. variabile and consumed by Escherichia sp. Finally,
Escherichia sp. was involved in the production of the gasses
hydrogen and, together with A. muciniphila, both may produce
hydrogen sulfide; whereas I. bartlettii produced methanethiol
(Figure 5C). Because Escherichia sp. is a facultative aerobe
we repeated these analyses under aerobic conditions, and
observed some differences in comparison with the results
under anaerobiosis, specifically in the secretion of amino

acids (e.g., proline, glutamate, and threonine) and nucleobases
(Figure 5B).

Altogether, our results demonstrated that the four bacteria
displayed substantial differences in substrate requirements for
growth, as well as metabolic responses to nutritional changes
in the environment. As a consequence of their metabolisms,
these four organisms differently contributed and competed for
nutrients in the gut, which among those were short chain fatty
acids, amino acids, and gasses.

DISCUSSION

Dysbiosis is one of the main features observed in metformin-
treated T2D patients, where there is higher relative abundance
of Escherichia spp., A. muciniphila, S. variabile but lower of
I. bartlettii (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017). Moreover, larger concentrations of the SCFAs
propionate and butyrate were reported under drug treatment
(Forslund et al., 2015; Mardinoglu et al., 2016; Wu et al., 2017).
However, the observation that metformin-treated T2D patients
show a depletion in Firmicutes bacteria including I. bartlettii
(Forslund et al., 2015; Wu et al., 2017), and that Firmicutes and
Clostridia are major sources of butyrate (Tremaroli and Bäckhed,
2012; Shoaie et al., 2013, 2015), raises questions about the possible
sources of SCFAs. Systems biology approaches have consistently
been applied to clarify complex biological processes (Benfeitas
et al., 2017; Lee et al., 2017, 2018; Uhlen et al., 2017) including
in the relationship between host and gut microbiota (Shoaie
et al., 2013, 2015; Forslund et al., 2015; Mardinoglu et al., 2015).
Here, we used systems biology methodologies including genome-
scale metabolic models and flux balance optimization to clarify
the metabolic relationships between the prevalent gut bacteria
Escherichia sp., A. muciniphila, S. variabile, and I. bartlettii
and their contributions for extracellular pool of compounds
including SCFAs and amino acids. Based on synthetic lethality,
we also examined the influence of uptake reactions, which
involve substrate exchange with the extracellular space, not only
on bacterial growth rates but also on flux distribution across
intracellular pathways.

The cumulative evidence presented here suggests that
the shifts in microbiota diversity reported under metformin
treatment and their resulting increase in butyrate and propionate
pool (Forslund et al., 2015; Mardinoglu et al., 2016; Wu
et al., 2017) may be due to an increased abundance of
S. variabile, a butyrate-producing anaerobe (Louis and Flint,
2009). A. muciniphila may produce aminobutyrate, while
I. bartlettii produces isobutyrate, a branched chain fatty acid
that has been associated with increased risk of colon cancer
(Shoaie et al., 2015). In turn, while the enzyme-coding genes
involved in butyrate production are present in Escherichia sp.,
this compound is not produced by the wild-type bacterium but
may be engineered to do so (Baek et al., 2013). It remains to test
if other butyrate-producing bacteria (Forslund et al., 2015) show
similar trends. Moreover, our modeling simulations indicate that
I. bartlettii, A. muciniphila, and Escherichia sp. may contribute
for the extracellular pool of propionate, of which A. muciniphila
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FIGURE 5 | Contribution and competition of the four bacteria for extracellular substrates including short chain fatty acids (A), amino acids and nucleobases (B), and
gases (C). Metabolic models for all organisms considered biomass maximization under minimal media anaerobic or aerobic conditions (respectively, solid and
dashed arrows, see section “Materials and Methods” and Supplementary Tables S7, S8). Cys–Gly indicates Cysteinylglycine. Glutamine, deoxyribose, aspartate,
and Cys–Gly show no flux under aerobic growth. Metabolite colors indicate the bacteria that influence its extracellular levels. For all bacteria we considered minimal
medium conditions (see section “Materials and Methods”) with exception to A. muciniphila, which additionally requires mucin to grow (de la Cuesta-Zuluaga et al.,
2017).

had previously been observed to produce propionate (Derrien
et al., 2004). These observations were associated with the
major changing pathways in the four organisms. Propionate
metabolism was the pathway displaying the highest responses
to alterations in nutrient uptake in I. bartlettii, together with

metabolism of phenylalanine. In turn, butyrate metabolism in
S. variabile was perturbed depending on the inhibited reactions.

Bloating and intestinal discomfort are reported side-effects
of metformin medication (Forslund et al., 2015), and gasses
produced by gut microbiota enhance these adverse side effects

Frontiers in Physiology | www.frontiersin.org 11 June 2018 | Volume 9 | Article 775

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00775 June 21, 2018 Time: 15:56 # 12

Rosario et al. Modeling Gut Microbiota Nutritional Requirements

(Lewis and Cochrane, 2007; Jahng et al., 2012; Forslund
et al., 2015). Colonic transit may be beneficially influenced
by the production of hydrogen (Lewis and Cochrane, 2007;
Jahng et al., 2012). Our observations show that hydrogen
was produced by Escherichia sp., which also contributed for
hydrogen sulfide production together with A. muciniphila.
Hydrogen sulfide may have several beneficial effects for
both host and gut microbes, displaying anti-inflammatory
properties, and promoting smooth muscle relaxation and
antioxidant defense (Al Khodor et al., 2017). Future work
should experimentally test the contributions of the four
bacteria to the extracellular pool of gasses, SCFAs, and amino
acids.

The mechanism of action of metformin on glucose
metabolism was suggested to be mediated through the
bacterial production of SCFAs, where local LPS-triggered
inflammation and lower intestinal lipid absorption are side
effects of the drug (Forslund et al., 2015; Mardinoglu et al.,
2016; Wu et al., 2017). A. muciniphila and Escherichia sp., two
bacteria whose abundance is increased in metformin-treated
T2D patients, were the two organisms with the most shared
single and double essential reactions as indicated by synthetic
lethality. These similar responses among the two bacteria
are consistent with the high sensitivity of LPS biosynthesis
(a pathway exclusive of both bacteria), and nucleotide sugar
metabolism.

Among those nutrients that confer the highest increases
to Escherichia sp. growth both under anaerobic and aerobic
growth are NMN and nitrate exchange, as well as tyrosine,
phenylalanine, and tyramine uptake under aerobic conditions.
NMN exchange is involved in the coenzyme nicotinamide
adenine dinucleotide (NAD) salvage pathway I (Henry et al.,
2010; Keseler et al., 2013; Wattam et al., 2017) essential
for microbial catabolism and growth (Berríos-Rivera et al.,
2002). In turn, nitrate exchange was the only reaction that
stimulated similar growth rate under alternative circumstances.
Denitrification occurs as part of anaerobic respiration by
replacing oxygen as final electron acceptor in the electron
transport chain. Nitrate:nitrite antiporters (NarU and NarK)
are responsible for the incorporation of nitrate and export
of nitrogen (Moreno-Vivian et al., 1999; Keseler et al.,
2013). The catabolism of aromatic amino acids is one of
the important commensal functions between this bacteria and
the host (Díaz et al., 2001; Fuchs et al., 2011), and plays an
important role in microbial-mediated food digestion in the
intestine (Donaldson et al., 2015; Shoaie et al., 2015). Our
observations further suggest that potential commensal behavior
may be displayed by Escherichia sp. and I. bartlettii under
anaerobic growth, where on one hand the former produces
phenylalanine required by the latter, and on the other hand
I. bartlettii produces proline, glutamine, and glutamate that
are uptaken by Escherichia sp. Moreover, phenylalanine,
tryptophan, and threonine are essential amino acids which
must be ingested by the host for nutritional availability,
and which are part of the set minimal sufficient sources
promoting cellular growth of Escherichia sp. Complementarily,
arginine, cysteine, glutamine, glycine, proline, and tyrosine

are conditionally non-essential amino acids as well as
contributing as first line of sufficient sources for Escherichia
sp. growth.

The dysbiosis induced by metformin treatment of T2D
patients promotes nutritional imbalances (Forslund et al., 2015;
Mardinoglu et al., 2016) that may impose fitness disadvantages
for specific bacterial taxa. The alterations in relative abundance
of Escherichia sp. was consistent with our observed growth
organism requirements. Escherichia sp. is a facultative aerobe and
displays a slightly lower number of essential uptake reactions
and higher number of uptake reactions when compared with the
other bacteria under study. Additionally, the former organism
is capable of growing while requiring fewer uptake reactions
when compared with the other three organisms. Thus, our
observations are consistent with Escherichia sp. showing a
higher robustness to environmental nutrient changes. Together
with its aerotolerance and steep oxygen gradient in the gut
(Díaz et al., 2001; Bueno et al., 2012; Donaldson et al., 2015),
this may confer a selective advantage to Escherichia sp. over
other gut microbes (Díaz et al., 2001; Magnusdottir et al.,
2017), allowing it to grow near the oxygen-rich epithelial
surface.

Interestingly, among all exchange reactions, simultaneous
blocking of oxygen and ferric iron (Fe3+) uptake prevents
growth of Escherichia sp, whereas ferrous iron (Fe2+) uptake
is by itself essential. Although iron and other metals may be
toxic due to radical formation by reaction with reactive oxygen
species [i.e., Fenton reaction (Koppenol, 1993)], it is essential
for bacterial growth. Iron is a component of hemic enzymes
such as hydroperoxidases and cytochromes, and sensed by the
BasS-BasR two-component system involved in LPS modification
and anoxic redox control (Bueno et al., 2012). In the absence
of oxygen, iron may act as electron acceptor whereby reduction
of Fe3+ is coupled with oxidation of organic matter (Lovley
and Phillips, 1986), and its addition to cell culture promotes
growth under anoxia (Bueno et al., 2012). Although one may
question whether the observed O2/Fe3+-associated lethality
patterns are plausible considering that Fe2+ iron is uptaken
by the cell, the oxidation of Fe2+ to Fe3+ by bacterioferritin
requires oxygen (4Fe2+

+ 4H+ + O2 → 4Fe3+
+ 2H2O).

The essentiality of iron in Escherichia sp. has been extensively
discussed elsewhere (Braun and Braun, 2002), and is encoded
into the biomass equation of Escherichia sp. where both redox
forms are present.

Overall, our in silico observations suggest commensal
and competing behavior in the production of extracellular
compounds including short chain fatty acids and amino
acids, among which the metabolism of Escherichia sp.,
A. muciniphila, S. variabile, and I. bartlettii may explain
the observed features in metformin-treated type 2 diabetes
patients. These observations remain to be experimentally
tested, though the above observations indicate good agreement
with previously known features of these organisms; multiple
studies have shown that growth predictions by FBA and
gene essentiality prediction are in good agreement with
experimental observations (Edwards et al., 2001; Feist et al.,
2007). Microbiota modulation approaches based on probiotics,
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prebiotics, and postbiotics are considered as potential therapies
in type 2 diabetes patients. Thus, identification of intestinal
bacteria playing a beneficial role or promoting adverse effects on
glucose and fatty acids metabolism, will allow the identification
of potential microbial targets to improve host metabolism.

AUTHOR CONTRIBUTIONS

AM conceived and supervised the study. DR, RB, GB, and
CZ designed the experiments. DR performed the experiments.
SS assisted in model acquisition and refining of the model.
DR and RB analyzed the data and wrote the manuscript.
All authors have revised and contributed to the final
manuscript.

FUNDING

This work was funded by Knut and Alice Wallenberg Foundation
and King’s College London.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00775/full#supplementary-material

TABLE S1 | Organism and AGORA reconstruction details.

TABLE S2 | Single and double essential reactions in Escherichia sp. and
Intestinibacter bartlettii.

TABLE S3 | Flux changes in reactive oxygen species (ROS) reactions of I. bartlettii
under aerobic and anaerobic conditions.

TABLE S4 | Influence of oxygen exchange reaction on Synthetic Lethality Analysis
of I. bartlettii.

TABLE S5 | Organism exclusive and shared cellular metabolic pathways.

TABLE S6 | Flux variability analysis for the four bacteria.

TABLE S7 | Short chain fatty acids and metabolite consumption (negative flux)
and production (positive flux) under maximal growth and minimal media
constraints.

TABLE S8 | Minimal media constraints applied on Escherichia sp. and I. bartlettii
models.

REFERENCES
Agren, R., Liu, L., Shoaie, S., Vongsangnak, W., Nookaew, I., and Nielsen, J. (2013).

The RAVEN toolbox and its use for generating a genome-scale metabolic model
for Penicillium chrysogenum. PLoS Comput. Biol. 9:e1002980. doi: 10.1371/
journal.pcbi.1002980

Al Khodor, S., Reichert, B., and Shatat, I. F. (2017). The microbiome and blood
pressure: can microbes regulate our blood pressure? Front. Pediatr. 5:138.
doi: 10.3389/fped.2017.00138

Baek, J. M., Mazumdar, S., Lee, S. W., Jung, M. Y., Lim, J. H., Seo, S. W., et al. (2013).
Butyrate production in engineered Escherichia coli with synthetic scaffolds.
Biotechnol. Bioeng. 110, 2790–2794. doi: 10.1002/bit.24925

Benfeitas, R., Uhlen, M., Nielsen, J., and Mardinoglu, A. (2017). New challenges to
study heterogeneity in cancer redox metabolism. Front. Cell Develop. Biol. 5:65.
doi: 10.3389/fcell.2017.00065

Berríos-Rivera, S. J., Bennett, G. N., and San, K.-Y. (2002). The effect of increasing
NADH availability on the redistribution of metabolic fluxes in Escherichia
coli chemostat cultures. Metab. Eng. 4, 230–237. doi: 10.1006/mben.2002.
0228

Braun, V., and Braun, M. (2002). Iron transport and signaling in Escherichia coli.
FEBS Lett. 529, 78–85.

Brillat-Savarin, A. (1826). You are what you eat. Physiol. Gout 32, 243–245.
doi: 10.1002/cind.786-16.x

Bueno, E., Mesa, S., Bedmar, E. J., Richardson, D. J., and Delgado, M. J.
(2012). Bacterial adaptation of respiration from oxic to microoxic and anoxic
conditions: redox control. Antioxid. Redox Signal. 16, 819–852. doi: 10.1089/
ars.2011.4051

de la Cuesta-Zuluaga, J., Mueller, N. T., Corrales-Agudelo, V., Velasquez-Mejia,
E. P., Carmona, J. A., Abad, J. M., et al. (2017). Metformin is associated with
higher relative abundance of mucin-degrading Akkermansia muciniphila and
several short-chain fatty acid-producing microbiota in the gut. Diabetes Care
40, 54–62. doi: 10.2337/dc16-1324

Derrien, M., Vaughan, E. E., Plugge, C. M., and De Vos, W. M. (2004).Akkermansia
muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading
bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476. doi: 10.1099/ijs.0.
02873-0

Díaz, E., Ferrández, A., Prieto, M. A., and García, J. L. (2001). Biodegradation of
aromatic compounds by Escherichia coli. Microbiol. Mol. Biol. Rev. 65, 523–569.
doi: 10.1128/MMBR.65.4.523

Donaldson, G. P., Lee, S. M., and Mazmanian, S. K. (2015). Gut biogeography of the
bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32. doi: 10.1038/nrmicro3552

Edwards, J. S., Ibarra, R. U., and Palsson, B. O. (2001). In silico predictions of
Escherichia coli metabolic capabilities are consistent with experimental data.
Nat. Biotechnol. 19, 125–130. doi: 10.1038/84379

Eker, S., Krummenacker, M., Shearer, A. G., Tiwari, A., Keseler, I. M., Talcott, C.,
et al. (2013). Computing minimal nutrient sets from metabolic networks via
linear constraint solving. BMC Bioinformatics 14:114. doi: 10.1186/1471-2105-
14-114

Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D.,
et al. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12
MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol.
Syst. Biol. 3:121. doi: 10.1038/msb4100155

Forslund, K., Hildebrand, F., Nielsen, T., Falony, G., Le Chatelier, E., Sunagawa, S.,
et al. (2015). Disentangling type 2 diabetes and metformin treatment signatures
in the human gut microbiota. Nature 528, 262–266. doi: 10.1038/nature15766

Fuchs, G., Boll, M., and Heider, J. (2011). Microbial degradation of aromatic
compounds — from one strategy to four. Nat. Rev. Microbiol. 9, 803–816.
doi: 10.1038/nrmicro2652

Henry, C. S., Dejongh, M., Best, A. A., Frybarger, P. M., Linsay, B., and Stevens, R. L.
(2010). High-throughput generation, optimization and analysis of genome-
scale metabolic models. Nat. Biotechnol. 28, 977–982. doi: 10.1038/nbt.1672

Hyotylainen, T., Jerby, L., Petaja, E. M., Mattila, I., Jantti, S., Auvinen, P., et al.
(2016). Genome-scale study reveals reduced metabolic adaptability in patients
with non-alcoholic fatty liver disease. Nat. Commun. 7:8994. doi: 10.1038/
ncomms9994

Imielinski, M., Belta, C., Rubin, H., and Halasz, A. (2006). Systematic analysis
of conservation relations in Escherichia coli genome-scale metabolic network
reveals novel growth media. Biophys. J. 90, 2659–2672. doi: 10.1529/biophysj.
105.069278

Jahng, J., Jung, I. S., Choi, E. J., Conklin, J. L., and Park, H. (2012). The effects
of methane and hydrogen gases produced by enteric bacteria on ileal motility
and colonic transit time. Neurogastroenterol. Motil. 24, 185–191. doi: 10.1111/j.
1365-2982.2011.01819.x

Ji, B., and Nielsen, J. (2015). From next-generation sequencing to systematic
modeling of the gut microbiome. Front. Genet. 6:219. doi: 10.3389/fgene.2015.
00219

Kaelin, W. G. Jr. (2005). The concept of synthetic lethality in the context of
anticancer therapy. Nat. Rev. Cancer 5, 689–698. doi: 10.1038/nrc1691

Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergstrom, G., Behre, C. J.,
Fagerberg, B., et al. (2013). Gut metagenome in European women with normal,
impaired and diabetic glucose control. Nature 498, 99–103. doi: 10.1038/
nature12198

Frontiers in Physiology | www.frontiersin.org 13 June 2018 | Volume 9 | Article 775

https://www.frontiersin.org/articles/10.3389/fphys.2018.00775/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2018.00775/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.1002980
https://doi.org/10.1371/journal.pcbi.1002980
https://doi.org/10.3389/fped.2017.00138
https://doi.org/10.1002/bit.24925
https://doi.org/10.3389/fcell.2017.00065
https://doi.org/10.1006/mben.2002.0228
https://doi.org/10.1006/mben.2002.0228
https://doi.org/10.1002/cind.786-16.x
https://doi.org/10.1089/ars.2011.4051
https://doi.org/10.1089/ars.2011.4051
https://doi.org/10.2337/dc16-1324
https://doi.org/10.1099/ijs.0.02873-0
https://doi.org/10.1099/ijs.0.02873-0
https://doi.org/10.1128/MMBR.65.4.523
https://doi.org/10.1038/nrmicro3552
https://doi.org/10.1038/84379
https://doi.org/10.1186/1471-2105-14-114
https://doi.org/10.1186/1471-2105-14-114
https://doi.org/10.1038/msb4100155
https://doi.org/10.1038/nature15766
https://doi.org/10.1038/nrmicro2652
https://doi.org/10.1038/nbt.1672
https://doi.org/10.1038/ncomms9994
https://doi.org/10.1038/ncomms9994
https://doi.org/10.1529/biophysj.105.069278
https://doi.org/10.1529/biophysj.105.069278
https://doi.org/10.1111/j.1365-2982.2011.01819.x
https://doi.org/10.1111/j.1365-2982.2011.01819.x
https://doi.org/10.3389/fgene.2015.00219
https://doi.org/10.3389/fgene.2015.00219
https://doi.org/10.1038/nrc1691
https://doi.org/10.1038/nature12198
https://doi.org/10.1038/nature12198
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-00775 June 21, 2018 Time: 15:56 # 14

Rosario et al. Modeling Gut Microbiota Nutritional Requirements

Keseler, I. M., Mackie, A., Peralta-Gil, M., Santos-Zavaleta, A., Gama-Castro, S.,
Bonavides-Martínez, C., et al. (2013). EcoCyc: fusing model organism databases
with systems biology. Nucleic Acids Res. 41, 605–612. doi: 10.1093/nar/gks1027

Koppenol, W. H. (1993). The centennial of the Fenton reaction. Free Radic. Biol.
Med. 15, 645–651.

Lee, S., Zhang, C., Arif, M., Liu, Z., Benfeitas, R., Bidkhori, G., et al. (2018). TCSBN:
a database of tissue and cancer specific biological networks. Nucleic Acids Res.
46, D595–D600. doi: 10.1093/nar/gkx994

Lee, S., Zhang, C., Liu, Z., Klevstig, M., Mukhopadhyay, B., Bergentall, M., et al.
(2017). Network analyses identify liver-specific targets for treating liver diseases.
Mol. Syst. Biol. 13:938. doi: 10.15252/msb.20177703

Lewis, S., and Cochrane, S. (2007). Alteration of sulfate and hydrogen metabolism
in the human colon by changing intestinal transit rate.Am. J. Gastroenterol. 102,
624–633. doi: 10.1111/j.1572-0241.2006.01020.x

Louis, P., and Flint, H. J. (2009). Diversity, metabolism and microbial ecology of
butyrate-producing bacteria from the human large intestine. FEMS Microbiol.
Lett. 294, 1–8. doi: 10.1111/j.1574-6968.2009.01514.x

Lovley, D. R., and Phillips, E. J. (1986). Organic matter mineralization with
reduction of ferric iron in anaerobic sediments. Appl. Environ. Microbiol. 51,
683–689.

Magnusdottir, S., Heinken, A., Kutt, L., Ravcheev, D. A., Bauer, E., Noronha, A.,
et al. (2017). Generation of genome-scale metabolic reconstructions for 773
members of the human gut microbiota. Nat. Biotechnol. 35, 81–89. doi: 10.1038/
nbt.3703

Mardinoglu, A., Boren, J., and Smith, U. (2016). Confounding effects of metformin
on the human gut microbiome in type 2 diabetes. Cell Metab. 23, 10–12.
doi: 10.1016/j.cmet.2015.12.012

Mardinoglu, A., Boren, J., Smith, U., Uhlen, M., and Nielsen, J. (2018). Systems
biology in hepatology: approaches and applications. Nat. Rev. Gastroenterol.
Hepatol. 15, 365–377. doi: 10.1038/s41575-018-0007-8

Mardinoglu, A., and Nielsen, J. (2012). Systems medicine and metabolic modelling.
J. Intern. Med. 271, 142–154. doi: 10.1111/j.1365-2796.2011.02493.x

Mardinoglu, A., Shoaie, S., Bergentall, M., Ghaffari, P., Zhang, C., Larsson, E.,
et al. (2015). The gut microbiota modulates host amino acid and glutathione
metabolism in mice. Mol. Syst. Biol. 11:834. doi: 10.15252/msb.20156487

Moreno-Vivian, C., Cabello, P., Martinez-Luque, M., Blasco, R., and Castillo, F.
(1999). Prokaryotic nitrate reduction: molecular properties and functional
distinction among bacterial nitrate reductases. J. Bacteriol. 181, 6573–6584.

O’Neil, N. J., Bailey, M. L., and Hieter, P. (2017). Synthetic lethality and cancer.
Nat. Rev. Genet. 18, 613–623. doi: 10.1038/nrg.2017.47

Pratapa, A., Balachandran, S., and Raman, K. (2015). Fast-SL: an efficient algorithm
to identify synthetic lethal sets in metabolic networks. Bioinformatics 31,
3299–3305. doi: 10.1093/bioinformatics/btv352

Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., et al. (2012). A metagenome-
wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60.
doi: 10.1038/nature11450

Schellenberger, J., Thiele, I., and Orth, J. D. (2012). Quantitative prediction of
cellular metabolism with constraint-based models. Nat. Prot. 6, 1290–1307.
doi: 10.1038/nprot.2011.308

Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos-
Guillot, E., et al. (2015). Quantifying diet-induced metabolic changes of the
human gut microbiome. Cell Metab. 22, 320–331. doi: 10.1016/j.cmet.2015.
07.001

Shoaie, S., Karlsson, F., Mardinoglu, A., Nookaew, I., Bordel, S., and Nielsen, J.
(2013). Understanding the interactions between bacteria in the human gut
through metabolic modeling. Sci. Rep. 3:2532. doi: 10.1038/srep02532

Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the
gut microbiota and host metabolism. Nature 489, 242–249. doi: 10.1038/
nature11552

Turanli, B., Grøötli, M., Borén, J., Nielsen, J., Uhlen, M., Arga, K. Y., et al. (2018).
Drug repositioning for effective prostate cancer treatment. Front. Physiol. 9:500.
doi: 10.3389/fphys.2018.00500

Uhlen, M., Zhang, C., Lee, S., Sjostedt, E., Fagerberg, L., Bidkhori, G., et al. (2017).
A pathology atlas of the human cancer transcriptome. Science 357:eaan2507.
doi: 10.1126/science.aan2507

Varemo, L., Scheele, C., Broholm, C., Mardinoglu, A., Kampf, C., Asplund, A.,
et al. (2015). Proteome- and transcriptome-driven reconstruction of the human
myocyte metabolic network and its use for identification of markers for
diabetes. Cell Rep. 11, 921–933. doi: 10.1016/j.celrep.2015.04.010

Wattam, A. R., Davis, J. J., Assaf, R., Boisvert, S., Brettin, T., Bun, C., et al.
(2017). Improvements to PATRIC, the all-bacterial bioinformatics database and
analysis resource center. Nucleic Acids Res. 45, D535–D542. doi: 10.1093/nar/
gkw1017

Wu, H., Esteve, E., Tremaroli, V., Khan, M. T., Caesar, R., Mannerås-Holm, L., et al.
(2017). Metformin alters the gut microbiome of individuals with treatment-
naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat.
Med. 23, 850–858. doi: 10.1038/nm.4345

Zhang, C., and Hua, Q. (2016). Applications of genome-scale metabolic models in
biotechnology and systems medicine. Front. Physiol. 6:413. doi: 10.3389/fphys.
2015.00413

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Rosario, Benfeitas, Bidkhori, Zhang, Uhlen, Shoaie and
Mardinoglu. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original author(s) and the copyright owner
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 14 June 2018 | Volume 9 | Article 775

https://doi.org/10.1093/nar/gks1027
https://doi.org/10.1093/nar/gkx994
https://doi.org/10.15252/msb.20177703
https://doi.org/10.1111/j.1572-0241.2006.01020.x
https://doi.org/10.1111/j.1574-6968.2009.01514.x
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1038/nbt.3703
https://doi.org/10.1016/j.cmet.2015.12.012
https://doi.org/10.1038/s41575-018-0007-8
https://doi.org/10.1111/j.1365-2796.2011.02493.x
https://doi.org/10.15252/msb.20156487
https://doi.org/10.1038/nrg.2017.47
https://doi.org/10.1093/bioinformatics/btv352
https://doi.org/10.1038/nature11450
https://doi.org/10.1038/nprot.2011.308
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1016/j.cmet.2015.07.001
https://doi.org/10.1038/srep02532
https://doi.org/10.1038/nature11552
https://doi.org/10.1038/nature11552
https://doi.org/10.3389/fphys.2018.00500
https://doi.org/10.1126/science.aan2507
https://doi.org/10.1016/j.celrep.2015.04.010
https://doi.org/10.1093/nar/gkw1017
https://doi.org/10.1093/nar/gkw1017
https://doi.org/10.1038/nm.4345
https://doi.org/10.3389/fphys.2015.00413
https://doi.org/10.3389/fphys.2015.00413
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles

	Understanding the Representative Gut Microbiota Dysbiosis in Metformin-Treated Type 2 Diabetes Patients Using Genome-Scale Metabolic Modeling
	Introduction
	Materials and Methods
	Genome Scale Metabolic Model Retrieval, Curation, and Modeling
	Synthetic Lethality Analysis
	Metabolic Pathway Sensitivity to Essential Reactions and Nutrient Changes
	Extracellular Nutrient Uptake and Alternative Aerobic and Anaerobic Escherichia sp. Growth
	Maximal Growth-Coupled Extracellular Nutrient Production and Consumption

	Results
	In Silico Identification of Different Growth Requirements in Representative Gut Bacteria
	Identification of Sensitive Pathways to Inhibition of Lethal and Non-essential Exchange Reactions
	Tyrosine, Phenylalanine, and Vitamin B6 Permit Escherichia sp. Growth Under Aerobic but Not Anaerobic Conditions
	Commensal and Competing Metabolic Behavior of Gut Bacteria in the Utilization of Amino Acids and Short Chain Fatty Acids

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References


