
PROTOCOLS
published: 06 July 2018

doi: 10.3389/fphys.2018.00787

Frontiers in Physiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 787

Edited by:

Pierre De Meyts,

de Duve Institute, Belgium

Reviewed by:

Katsuhiko Murakami,

Fujitsu Laboratories, Japan

David Phillip Nickerson,

University of Auckland, New Zealand

*Correspondence:

Loïc Paulevé

loic.pauleve@lri.fr

Specialty section:

This article was submitted to

Systems Biology,

a section of the journal

Frontiers in Physiology

Received: 05 April 2018

Accepted: 06 June 2018

Published: 06 July 2018

Citation:

Levy N, Naldi A, Hernandez C, Stoll G,

Thieffry D, Zinovyev A, Calzone L and

Paulevé L (2018) Prediction of

Mutations to Control Pathways

Enabling Tumor Cell Invasion with the

CoLoMoTo Interactive Notebook

(Tutorial). Front. Physiol. 9:787.

doi: 10.3389/fphys.2018.00787

Prediction of Mutations to Control
Pathways Enabling Tumor Cell
Invasion with the CoLoMoTo
Interactive Notebook (Tutorial)
Nicolas Levy 1,2, Aurélien Naldi 3, Céline Hernandez 3, Gautier Stoll 4,5,6,7,8, Denis Thieffry 3,

Andrei Zinovyev 9,10,11,12, Laurence Calzone 9,10,11 and Loïc Paulevé 1*

1 LRI UMR 8623, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Orsay, France,
2 École Normale Supérieure de Lyon, Lyon, France, 3Computational Systems Biology Team, Institut de Biologie de l’École

Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, INSERM U1024, École Normale Supérieure,

PSL Université, Paris, France, 4Université Paris Descartes, Sorbonne Paris Cité, Paris, France, 5 Équipe 11 Labellisée Ligue

Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France, 6 Institut National de la Santé et de la

Recherche Médicale, Paris, France, 7Université Pierre et Marie Curie, Paris, France, 8Metabolomics and Cell Biology

Platforms, Gustave Roussy Cancer Campus, Villejuif, France, 9 Institut Curie, PSL Research University, Paris, France,
10 INSERM U900, Paris, France, 11MINES ParisTech, PSL Research University, CBIO-Centre for Computational Biology, Paris,

France, 12 Lobachevsky University, Nizhni Novgorod, Russia

Boolean and multi-valued logical formalisms are increasingly used to model complex

cellular networks. To ease the development and analysis of logical models, a series of

software tools have been proposed, often with specific assets. However, combining

these tools typically implies a series of cumbersome software installation and model

conversion steps. In this respect, the CoLoMoTo Interactive Notebook provides a joint

distribution of several logical modeling software tools, along with an interactive web

Python interface easing the chaining of complementary analyses. Our computational

workflow combines (1) the importation of a GINsim model and its display, (2) its format

conversion using the Java library BioLQM, (3) the formal prediction of mutations using

the OCaml software Pint, (4) the model checking using the C++ software NuSMV,

(5) quantitative stochastic simulations using the C++ software MaBoSS, and (6) the

visualization of results using the Python library matplotlib. To illustrate our approach,

we use a recent Boolean model of the signaling network controlling tumor cell invasion

and migration. Our model analysis culminates with the prediction of sets of mutations

presumably involved in a metastatic phenotype.

Keywords: Boolean networks, stochastic simulations, model verification, software tools, reproducibility

1. INTRODUCTION

Boolean and multi-valued logical formalisms are increasingly used to model complex cellular
networks (see e.g., Helikar et al., 2012; Zaudo and Albert, 2015; Collombet et al., 2017). A logical
model is usually defined in three steps:

1) The delineation of a regulatory graph, where the vertices (nodes) represent signaling or
regulatory components (proteins, genes, microRNAs, etc.), while the arcs (arrows) represent
regulatory interactions between pairs of components. These arcs are labeled by a sign: positive
in the case of activation, negative in the case of an inhibition (multiple arcs between two nodes
may be considered but are not used here).

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.00787
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.00787&domain=pdf&date_stamp=2018-07-06
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:loic.pauleve@lri.fr
https://doi.org/10.3389/fphys.2018.00787
https://www.frontiersin.org/articles/10.3389/fphys.2018.00787/full
http://loop.frontiersin.org/people/547648/overview
http://loop.frontiersin.org/people/201686/overview
http://loop.frontiersin.org/people/131666/overview
http://loop.frontiersin.org/people/106132/overview
http://loop.frontiersin.org/people/366843/overview
http://loop.frontiersin.org/people/470785/overview

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

2) A discrete variable is associated with each node. In the
simplest cases, as hereafter, these variables are Boolean,
i.e., they can take only two values (0 or 1), denoting
the absence/inactivity or the presence/activity of the
corresponding components.

3) Finally, a logical rule is associated with each component to
specify the combinations enabling its activation. More
precisely, this rule combines the different variables
corresponding to the regulatory components using the
logical negation (denoted by !), conjunction (denoted by
&) and disjunction (denoted by |). For example, the rule
associated with the component GF in the model considered
below is !CDH1 & (GF | CDH2), which reads as “the
component GF will be activated in the absence of CDH1 and
in the presence of CDH2 or GF itself.” In other words, CDH2
is required transiently for GF activation, in the absence of
CDH1.

To support the development and analysis of logical models, a
series of software tools have been proposed, often with specific
assets (Naldi et al., 2009; Klarner et al., 2017; Paulevé, 2017; Stoll
et al., 2017).

The CoLoMoTo Interactive Notebook1 (Naldi et al., 2018b)
relies on Docker2 and Jupyter3 technologies to assist on editing
and sharing reproducible analysis workflows for logical models.
In addition to the distribution of a set of software tools to define
and analyse Boolean andmulti-valued networks, a unified Python
interface for each of the integrated tools is provided, greatly
easing the execution and chaining of complementary analyses.

This protocol describes in details the usage of the CoLoMoTo
Interactive Notebook to provide a reproducible analysis of a
recently published model of the signaling network controlling
tumor cell invasion andmigration.More specifically, we combine
different tools (Table 1) to compute the model stable states,
perform stochastic simulations, compute (sets of) mutations
controlling the reachability of specific stable states, and evaluate
their efficiency.

2. MATERIALS AND EQUIPMENT

2.1. Executable and Reproducible Model
Analysis
This protocol has been actually edited entirely as a
Jupyter notebook before being converted to a LaTeX
document for journal-specific editing purposes. The
original notebook file is provided as Supplemental
Material. It can also be visualized and downloaded for
execution in the CoLoMoTo Interactive Notebook at
https://nbviewer.jupyter.org/gist/pauleve/a86717b0ae8750440dd
589f778db428f/Usecase%20-%20Mutations%20enabling%20
tumour%20invasion.ipynb.

The blocks beginning with In [..] correspond to Jupyter
code cells, which contain the Python instructions to execute.

1Available at http://colomoto.org/notebook
2https://docker.com
3https://jupyter.org

When relevant, the blocks beginning withOut [..] display the
result of the last instruction of the corresponding code cell.

Provided Docker and Python are installed, the CoLoMoTo
Interactive notebook can be installed by typing and executing
the following command4 on GNU/Linux, macOS, and Microsoft
Windows:

pip install -U colomoto-docker

Once installed, the notebook can be executed by typing

colomoto-docker -V 2018-05-29

The execution of this command will open a web page with the
Jupyter notebook interface, enabling the loading and execution
of the code. Note that “SHIFT+ENTER” must be used to execute
each code cell. More information on colomoto-docker usage
can be obtained by typing colomoto-docker --help and
by visiting https://github.com/colomoto/colomoto-docker.

2.2. Notebook Preparation
This notebook makes use of the following Python modules:

In [1]: import ginsim

import biolqm

import maboss

import pypint

from colomoto_jupyter import tabulate

for fixpoint table display

from itertools import combinations

for iterating over sets

import matplotlib.pyplot as plt

for modifying plots

3. STEPWISE PROCEDURES

3.1. Model
We analyse a Boolean model of the signaling network controlling
cell tumor invasion, which was recently reported in Cohen et al.
(2015). This model can be loaded directly from the GINsim
model repository at http://ginsim.org/models_repository.

We first show how to use GINsim (Naldi et al., 2018a) to fetch
and parse the GINML file (GINsim graph-based XML format,

TABLE 1 | List of software tools used in this notebook.

Tool Website Role in this notebook

GINsim ginsim.org Model input and display, conversion to bioLQM

and NuSMV

bioLQM colomoto.org/biolqm Fixpoint computation, conversion to MaBoSS

and Pint

MaBoSS maboss.curie.fr Stochastic simulations, assess impact of

mutations on propensity of reaching phenotypes

Pint loicpauleve.name/pint Formal prediction of mutants

NuSMV nusmv.fbk.eu Formal verification of phenotypes reachability

and stability

4You may have to use pip3 instead of pip depending on your configuration.

Frontiers in Physiology | www.frontiersin.org 2 July 2018 | Volume 9 | Article 787

https://nbviewer.jupyter.org/gist/pauleve/a86717b0ae8750440dd589f778db428f/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/gist/pauleve/a86717b0ae8750440dd589f778db428f/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
https://nbviewer.jupyter.org/gist/pauleve/a86717b0ae8750440dd589f778db428f/Usecase%20-%20Mutations%20enabling%20tumour%20invasion.ipynb
http://colomoto.org/notebook
https://docker.com
https://jupyter.org
https://github.com/colomoto/colomoto-docker
http://ginsim.org/models_repository
http://ginsim.org
http://colomoto.org/biolqm
https://maboss.curie.fr
http://loicpauleve.name/pint
http://nusmv.fbk.eu
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

encapsulated in a zginml archive) and display the regulatory
graph of the network. To load the model, we copied the URL
of the .zginml file from the model repository page at http://
ginsim.org/node/191. The file is also available as Supplemental
Data (Data Sheet 1).

In [2]: lrg = ginsim.load("http://ginsim.org/sites/

default/files/SuppMat_Model_Master_Model.zginml")

The regulatory graph (using the graphical setting specified in the
model file) can be displayed with the following command:

In [3]: ginsim.show(lrg)

The resulting graphics is reproduced in Figure 1.
In this regulatory graph, the gray boxes denote input and

output vertices (nodes). Green arrows and red T arrows
respectively denote activatory and inhibitory interactions. A set
of rules combining the vertices with the Boolean operators NOT,
AND, and OR, which must be consistent with the regulatory
graph, then allows the computation of enabled transitions for
each network state. These rules have been defined in Cohen et al.
(2015) and are specified within the GINsim model.

3.2. Identification of Stable States
First, we compute the complete list of logical stable states (or
fixpoints) of the model using the Java library bioLQM (Naldi,
2018). We thus need to convert the GINsim model into bioLQM:

In [4]: lqm = ginsim.to_biolqm(lrg)

At that stage, lrg is a Python object representing the model
suitable for GINsim, and lqm is a Python object representing the
equivalent model suitable for bioLQM.

The list of stable states of a bioLQM model is computed as
follows:

In [5]: fixpoints = biolqm.fixpoints(lqm)

Here, fixpoints is a Python list of states. A
state is encoded as a Python association table
(dictionary), which maps each node of the network to a
value.

For a nice display of the list of stable states, one can use the
tabulate function provided in the colomoto_jupyter

Python library, imported at the beginning of the
notebook:

In [6]: tabulate(fixpoints)

Figure 2 shows the table as displayed in the notebook. The
complete table is given in Supplemental Data.

It results that the model has nine stable states, each
corresponding to a row in the table, four of which enable
apoptosis (rows with value 1 in fourth column “Apoptosis”). Note
that the input node DNAdamage is also active in each of these
four states.

FIGURE 1 | Graphical output resulting from the input code: In [3]: ginsim.show(lrg).

Frontiers in Physiology | www.frontiersin.org 3 July 2018 | Volume 9 | Article 787

http://ginsim.org/node/191
http://ginsim.org/node/191
http://ginsim.org/sites/default/files/SuppMat_Model_Master_Model.zginml
http://ginsim.org/sites/default/files/SuppMat_Model_Master_Model.zginml
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 2 | Graphical output resulting from the input code: In [6]: tabulate(fixpoints).

A state can be visualized on the regulatory graph using
GINsim. For example, the third stable state can be displayed using
the following command:

In [7]: ginsim.show(lrg, fixpoints[2])

The resulting graphics is reproduced in Figure 3.
In this graph, the vertices shown in white or orange denote

components that are OFF (value 0) or ON (value 1) respectively.

3.3. Assessing the Probabilities to Reach
Alternative Attractors Using MaBoSS
MaBoSS (Stoll et al., 2017) is a C++ software enabling the
stochastic simulation of Boolean networks by translating them
into continuous time Markov processes. Each node activation
and inactivation is associated with an up and a down rate,
which specify the propensity of the corresponding transitions.
From a given state, the simulation integrates all the possible
node updates and derives a probability and a duration for each
transition. By default, all transitions are assigned the same rate.
For a given set of initial conditions, MaBoSS produces time
trajectories and estimates probabilities of model states over the
whole simulation time. Steady state distributions can thus be
approximated, provided that a sufficient number of sufficiently
long simulations have been performed.

The aim of this section is to reproduce part of the results
obtained by Cohen et al. (2015), which show that a Notch (NICD)
gain-of-function together with a p53 loss-of-function prevent
reaching a stable apoptotic phenotype.

First, we convert the bioLQMmodel to MaBoSS:

In [8]: wt_sim = biolqm.to_maboss(lqm)

The variable wt_sim is a Python object that gathers both
the Boolean network rules and the settings for the simulations,
including the transition rates.

3.3.1. Simulation Setup
The stochastic simulation of Boolean networks with MaBoSS
requires the specification of several parameters.

3.3.1.1. Initial states
First, a distribution of initial states must be specified: each
simulation then starts from a state sampled from this
distribution. The distribution is determined by assigning a
probability to start in state 0 or in state 1 to each node. By default,
a node has a probability 1 to start in state 0.

The maboss Python library provides widgets to ease the
assignment of this initial distribution. The following code enables
the definition of a distribution of initial states with all nodes at 0,
exceptDNAdamage and ECMicroenvwith equiprobable 0 and
1 values. After pressing “OK,” the notebook cell will be replaced
by the actual Python call resulting in equal probabilities for these
two nodes to start in active or inactive states.

In [9]: maboss.wg_set_istate(wt_sim)

The notebook will then display the widgets reproduced in
Figure 4. The selection of nodes and of initial conditions shown
in this figure are then translated in the following code:

In [9]: #maboss.wg_set_istate(wt_sim)

maboss.set_nodes_istate(wt_sim,["DNAdamage",

"ECMicroenv"],[0.5, 0.5])

3.3.1.2. Output nodes
Using MaBoSS, we can focus on the output nodes and ignore
the other nodes, which enable us to identify the corresponding
phenotypes. This can be done using the following code:

In [10]: #maboss.wg_set_output(wt_sim)

wt_sim.network.set_output(('Metastasis',

'Migration', 'Invasion','EMT', 'Apoptosis',

'CellCycleArrest'))

3.3.1.3. Simulation parameters
The update_parameters method can be used to specify
several parameters for the stochastic simulation algorithm. We
show below the complete list of parameters with the values
obtained by default when translating a model from GINsim. The
method can be called with any subset of these parameters.

Among the parameter list, sample_count corresponds to
the number of simulations performed to compute statistics, while

Frontiers in Physiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 3 | Graphical output resulting from the input code: In [7]: ginsim.show(lrg, fixpoints[2]).

FIGURE 4 | Graphical output resulting from the input code: In [9]:

maboss.wg_set_istate(wt_sim).

max_time is the maximum (simulated) duration of a trajectory.
Note that for a proper estimation of probabilities of the stable
states, max_time needs to be long enough for the simulation to
reach an asymptotic solution.

In [11]: wt_sim.update_parameters(discrete_time=0,

use_physrandgen=0, seed_pseudorandom=100,

sample_count=50000, max_time=75,

time_tick=0.1, thread_count=4,

statdist_traj_count=100,

statdist_cluster_threshold=0.9)

3.3.2. Simulation of the Wild-Type Model
The object wt_sim represents the input of MaBoSS,
encompassing both the network and simulation parameters. The
simulations are triggered with the .run()method and return a
Python object for accessing the results.

In [12]: %time wt_results = wt_sim.run()

CPU times: user 4.61 ms, sys: 406 s,

total: 5.02 ms Wall time: 2.89 s

The resulting object gives access to the output data generated by
MaBoSS. It includes notably the mean probability over time for
the activity of the output states integrated over all the performed
simulations.

The function plot_piechart displays proportionally the
mean probability of each output state at the last time point.
Provided the simulation time has been set high enough, this
gives an approximation of the probabilities of the stable states
reachable from the specified initial conditions.

In [13]: wt_results.plot_piechart()

The resulting graphics is reproduced in Figure 5.
In this chart, a state is described by the set of its active
output nodes and is associated to a phenotype. For
instance, the “<nil>” phenotype has all output nodes set

Frontiers in Physiology | www.frontiersin.org 5 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

to 0, which was referred to as the “homeostatic state” in
the original article; in the case of the “Apoptosis --

CellCycleArrest” phenotype, the two output nodes
Apoptosis and CellCycleArrest are simultaneously
active, while the other output nodes are inactive; the “EMT
-- CellCycleArrest” phenotype denotes cells that
have gone through the epithelial to mesenchymal transition
(EMT), but did not invade the tissue, hence the output nodes
Invasion, Migration and Metastasis are inactive;
finally the “Migration -- Metastasis -- Invasion

-- EMT -- CellCycleArrest” phenotype corresponds
to a metastatic state, i.e., to cells that went through EMT, invaded
the tissue and migrated to a distant site.

From this plot, we can deduce that, from the specified set of
initial conditions, the apoptotic state (orange section), the EMT
(purple section) and the metastatic states (green section) can be
reached (the proportion of simulations that reached none of these
phenotypes correspond to the red section).

The mean value of each output node during the simulations
can be plotted with the following command:

In [14]: wt_results.plot_node_trajectory(until=40)

The resulting graphics is reproduced in Figure 6.

3.3.3. Simulation of Double Mutant Notch++/p53--
In the original article (Cohen et al., 2015), the authors analyzed
the double Notch++/p53-- mutant, i.e., the combination of a
Notch gain-of-function combined with a p53 loss-of-function,
showing that all trajectories lead to a metastatic state.

A mutant can be configured by copying the wild-type model,
and use the mutate method to model the desired gains and
losses of function:

In [15]: mut_sim = wt_sim.copy()

mut_sim.mutate("p53", "OFF")

mut_sim.mutate("NICD", "ON")

The modified model can then be simulated exactly as for the
wild-type case:

In [16]: %time mut_results = mut_sim.run()

CPU times: user 5.13 ms, sys: 137 s,

total: 5.27 ms Wall time: 2.99 s

In [17]: mut_results.plot_piechart()

The resulting graphics is reproduced in Figure 7.
Using the same parameters as for the wild-type model, all

the trajectories obtained for the double mutant model reach
the metastatic invasive state exclusively. This suggests that such
a double mutation can be responsible for a loss of apoptotic
capability of cancer cells.

3.4. Formal Analysis With Pint and NuSMV
In the above section, the conclusion regarding the loss of
apoptotic stable state relies on stochastic simulations, which,
in general, may not offer a complete coverage of the possible
trajectories. Therefore, one may want to formally verify whether
the loss of reachable stable apoptosis state is total or not.
First, we show how to use Pint (Paulevé, 2017) to predict
combinations of mutations which are guaranteed to prevent
the activation of apoptosis. Next, we use the software NuSMV
(Cimatti et al., 2002) to evaluate formally the Notch++/p53--

FIGURE 6 | Graphical output resulting from the input code: In [14]:

wt_results.plot_node_trajectory(until=40).

FIGURE 5 | Graphical output resulting from the input code: In [13]: wt_results.plot_piechart().

Frontiers in Physiology | www.frontiersin.org 6 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 7 | Graphical output resulting from the input code: In [17]: mut_results.plot_piechart().

double mutant. Finally, we use MaBoSS to assess the efficiency
of new combinations of mutations predicted by Pint.

3.4.1. Formal Predictions of Mutations From the

Wild-Type Model
Pint implements formal methods that allow deducing
combinations of mutations guaranteed to block the reachability
of a given state.

First, we convert the bioLQMmodel to Pint:

In [18]: an = biolqm.to_pint(lqm)

Then, we transfer the initial conditions defined in MaBoSS to the
Pintmodelan. LikeMaBoSS, Pint supportsmultiple initial values
for a single node. However, in contrast to MaBoSS, Pint does not
consider probability distributions.

In [19]: an.initial_state.update(wt_sim.get_initial_

state())

an.initial_state.changes()

display non-default (0) initial value

Out[19]: {'DNAdamage': (0, 1), 'ECMicroenv': (0, 1)}

Given a (partial) state specification, Pint provides the method
oneshot_mutations_for_cut, which returns different
sets of mutations guaranteed to prevent any trajectory from any
possible initial state to reach, even transiently, the specified state.

In [20]: %time \

an.oneshot_mutations_for_cut(Apoptosis=1, \

exclude={"ECMicroenv", "DNAdamage"})

CPU times: user 6.11 ms, sys: 158 s,

total: 6.27 ms Wall time: 191 ms

Out[20]: [{'ZEB2': 1},

{'AKT1': 1},

{'AKT2': 1},

{'ERK': 1},

{'NICD': 1, 'SNAI2': 1, 'ZEB1': 1},

{'SNAI2': 1, 'ZEB1': 1, 'p63': 0},

{'SNAI2': 1, 'ZEB1': 1, 'miR203': 1},

{'NICD': 1, 'SNAI2': 1, 'p73': 0},

{'SNAI2': 1, 'p63': 0, 'p73': 0},

{'SNAI2': 1, 'miR203': 1, 'p73': 0},

{'NICD': 1, 'ZEB1': 1, 'p53': 0},

{'ZEB1': 1, 'p53': 0, 'p63': 0},

{'ZEB1': 1, 'miR203': 1, 'p53': 0},

{'NICD': 1, 'p53': 0, 'p73': 0},

{'p53': 0, 'p63': 0, 'p73': 0},

{'miR203': 1, 'p53': 0, 'p73': 0}]

Among the returned mutation sets, one can spot the mutation
{'NICD': 1, 'p53': 0, 'p73': 0}, which combines
a gain-of-function of Notch ('NICD': 1) with a loss-of-
function of p53 ('p53': 0), along with a loss-of-function of
p73 ('p73': 0).

Noteworthy, forbidding transient reachability entails a
stronger constraint than just preventing any stable state with
the specified property. Indeed, some mutations may remove the
stability of the specified states, while some trajectories may still
traverse these states, but only transiently.

Therefore, the sets of mutations returned by Pint, albeit
correct, might be non-minimal for controlling only the long-term
dynamics of the system. Finally, note that the analysis of Pint can
give incomplete results. This is due to the technology on which
the computation relies (static analysis), which allows addressing
very large scale networks.

3.4.2. Revisiting the Notch++/p53-- Double Mutant
We will first formally analyse the Notch++/p53-- double mutant
to show that asymptotic apoptosis is forbidden, although
transient activation of apoptosis node might still be possible.

One can apply a mutation on a Pint model using the lock
method. A new model is returned with a constant value for the
corresponding nodes.

In [21]: mut_an = an.lock(NICD=1, p53=0)

Then, we use the temporal logic CTL (Clarke and
Emerson, 1982) to specify formally the dynamical
properties to verify. CTL expression can be built using the
colomoto.temporal_logics Python module.

In [22]: from colomoto.temporal_logics import *

First, the existence of a trajectory leading to a transient state
where Apoptosis is active can be specified as follows:

Frontiers in Physiology | www.frontiersin.org 7 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

In [23]: transient_apoptosis = EF(S(Apoptosis=1))

EF is a temporal logic operator that is true if there exists at least
one trajectory leading to a state verifying the properties given as
argument. Here the property S(Apoptosis=1) specifies that
the state has the node Apoptosis active.

Next, the existence of a trajectory leading to a stable
Apoptosis activation can be specified as follows:

In [24]: stable_apoptosis = EF(AG(S(Apoptosis=1)))

Here, AG enforces that all the states reachable via any trajectory
have the node Apoptosis active.

Finally, we gather these two properties in a Python dictionary
for later use:

In [25]: ctl_specs = {

"reach-apoptosis": transient_apoptosis,

"stable-apoptosis": stable_apoptosis

}

The adequation of a model with a CTL property can be assessed
using amodel-checker such as NuSMV (Abou-Jaoudé et al., 2015).

Pint provides a conversion to NuSMV models. By default,
the NuSMV model considers any initial state. With the
skip_init=False option, we enforce that the properties are
verified only from the initial states defined earlier.

In [26]: smv = mut_an.to_nusmv(skip_init=False)

We then add the properties defined above, and ask NuSMV to
verify them.

In [27]: smv.add_ctls(ctl_specs)

%time smv.verify()

CPU times: user 0 ns, sys: 4.68 ms,

total: 4.68 ms Wall time: 12.4 s

Out[27]: {'reach-apoptosis': True,

'stable-apoptosis': False}

Interestingly, the Notch++/p53-- double mutant can still
reach an apoptotic state, but only transiently: the property
stable-apoptosis being false, it is guaranteed that all
trajectories eventually lead to stable apoptosis inactivation.

To complete our analysis, we now consider the triple mutant
obtained by adding a loss-of-function of p73. As predicted by
Pint, transient reachability of apoptosis is impossible in this triple
mutant. We can use NuSMV to further verify that it is the case,
using the following code:

In [28]: smv_mut3 = an.lock(NICD=1, p53=0, \

p73=0) .to_nusmv(skip_init=False)

smv_mut3.add_ctls(ctl_specs)

smv_mut3.verify()

Out[28]: {'reach-apoptosis': False,

'stable-apoptosis': False}

3.4.3. Analysis of Formally Predicted

SNAI2++/ZEB1++/miR203++ Triple Mutant
The mutant combinations predicted with Pint should be refined
when the aim is to control specifically stable behaviors. In general,
given a set of mutations guaranteed to block any transient
activation of a node, onemay verify whether only a subset of them
are sufficient to achieve proper control of the sole stable states.

We show here how we can take advantage of the Python
environment to provide a small program, which, for each
subset of mutations of a multiple mutant (here a triple gain-of-
function for SNAI2, ZEB1 and miR203), performs stochastic
simulations with MaBoSS to assess the probabilities to reach the
different stable behaviors from the specified set of states.

The computation can take a couple of minutes. The results are
shown in a graphical form (colored pie charts) for each single and
double loss-of-function combination. In the pie charts, “Others”
regroup states with an individual probability less than 1%, which
often correspond to simulated trajectories having not reached an
attractor in the given amount of time.

In [29]:

formal_mutant = {'SNAI2': 1, 'ZEB1': 1, 'miR203': 1}

for i in [1, 2]:

for any subset of mutations of size 1 then 2

for mutants in combinations(formal_mutant, i):

copy the wild-type MaBoSS model

masim = wt_sim.copy()

apply the mutations

for m in mutants:

masim.mutate(m, "ON" if formal _mutant[m] \

else "OFF")

run the simulations

mares = masim.run()

plot the piechart of stable states

mares.plot_piechart()

print the mutation in the title

def mutname(m):

return m + ("++" if formal_mutant[m] \

else "--")

name = "/".join(map(mutname,mutants))

plt.title("%s mutant" % name)

The resulting graphics are reproduced in Figures 8–13.
Note that only one of the pie charts shows an absence

of apoptotic state: the SNAI2++/miR203++ double mutant
(Figure 13).

This can be formally verified with NuSMV, as we did for the
Notch++/p53-- mutant:

In [30]: smv_mut_test = an.lock(SNAI2=1, \

miR203=1).to_nusmv(skip_init=False)

smv_mut_test.add_ctls(ctl_specs)

smv_mut_test.verify()

Out[30]: {'reach-apoptosis': True,

'stable-apoptosis': False}

4. ANTICIPATED RESULTS

With this protocol, we showed how the Python interface and
Jupyter integration of GINsim, bioLQM, MaBoSS, and Pint ease

Frontiers in Physiology | www.frontiersin.org 8 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 8 | Graphical output resulting from the input code: In [29].

FIGURE 9 | Graphical output resulting from the input code: In [29].

FIGURE 10 | Graphical output resulting from the input code: In [29].

Frontiers in Physiology | www.frontiersin.org 9 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

FIGURE 11 | Graphical output resulting from the input code: In [29].

FIGURE 12 | Graphical output resulting from the input code: In [29].

FIGURE 13 | Graphical output resulting from the input code: In [29].

Frontiers in Physiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

the delineation of sophisticated re-executable computational
analyses of qualitative models of biological networks,
combining and chaining different software with a unified
interface.

Leaning on the CoLoMoTo Docker image and on the
companion Jupyter notebook, we have demonstrated the
benefits of this framework by revisiting the analysis of a
recent Boolean model of the signaling network controlling
cancer cell metastasis. We could reproduce results previously
obtained with GINsim and MaBoSS, which demonstrate that
the Notch++/p53-- double mutant can suppress the apoptotic
outcome. Furthermore, a formal analysis of trajectories with Pint
enabled us to deduce novel “anti-apoptotic” combinations of
mutations, including a triple mutant that forbids even transient
activation of apoptosis, which were subsequently quantified using
MaBoSS.

The predicted of mutations point to potential synergistic
genetic interactions underlying uncontrolled tumor
proliferation. These combinations would deserve further
analysis, in particular regarding potential correlations with
specific clinical outcomes. For example, one could check whether
the loss of apoptosis triggering correlates with higher tumor
grades.

Similar computational analyses could be performed to predict
combinations of perturbations enforcing the existence of a given
stable phenotype, e.g., apoptosis, which could then serve as a basis
to design novel therapeutic strategies.

AUTHOR CONTRIBUTIONS

NL, AN, CH, LP implemented the necessary Python modules,
their integration in the Jupyter interface, and the Docker image.
NL, AN, GS, DT, AZ, LC, LP participated to the general design
of the notebook. All authors participated to the writing of the
article.

FUNDING

DT and CH acknowledge support from the French Plan Cancer,
in the context of the projects CoMET (2014-2017) and SYSTAIM
(2015-2019). DT and AN acknowledge support from the French
Agence Nationale pour la Recherche (ANR), in the context of
the project SCAPIN [ANR-15-CE15-0006-01]. AZ acknowledges
support by the Ministry of education and science of Russia
(Project No. 14.Y26.31.0022). AZ and LC acknowledge support
from ITMO Cancer, in the context of the INVADE grant
(Call Systems Biology 2012), and from the EU ERACoSysMed
programme, in the context of the COLOSYS project. AZ, LC, and
LP acknowledge support from the ANR in context of the ANR-
FNR project AlgoReCell [ANR-16-CE12-0034]. LP acknowledge
support from Paris Ile-de-France Region (DIM RFSI) and Labex
DigiCosme [ANR-11-LABEX-0045-DIGICOSME] operated by
ANR as part of the program Investissement d’Avenir Idex Paris-
Saclay [ANR-11-IDEX-0003-02].

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.00787/full#supplementary-material

The supplemental data “Notebook” (Data Sheet 1) includes
the source notebook file (.ipynb extension) which can
be uploaded and executed within the Jupyter interface
of the CoLoMoTo notebook, using the Docker image
colomoto/colomoto-docker:2018-05-29. We further
provide a static HTML file to preview the Jupyter rendering of
the notebook, along with the file containing the Boolean model
used.

The supplemental data “Fixpoints” (Data Sheet 2) gives the
complete description of the fixpoints computed by code cell
In [6].

REFERENCES

Abou-Jaoudé, W., Monteiro, P. T., Naldi, A., Grandclaudon, M., Soumelis, V.,

Chaouiya, C., et al. (2015). Model checking to assess t-helper cell plasticity.

Front. Bioeng. Biotechnol. 2:86. doi: 10.3389/fbioe.2014.00086

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

et al. (2002). “NuSMV 2: An opensource tool for symbolic model checking,”

in Computer Aided Verification, Vol. 2404 of Lecture Notes in Computer

Science, eds E. Brinksma and K. G. Larsen (Copenhagen: Springer), 359–364.

doi: 10.1007/3-540-45657-0_29

Clarke, E. M., and Emerson, E. A. (1982). “Design and synthesis of synchronization

skeletons using branching-time temporal logic,” in Logic of Programs,

ed D. Kozen (New York, NY: Springer), 52–71. doi: 10.1007/BFb00

25774

Cohen, D. P. A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., and

Calzone, L. (2015). Mathematical modelling of molecular pathways enabling

tumour cell invasion and migration. PLoS Comput. Biol. 11:e1004571.

doi: 10.1371/journal.pcbi.1004571

Collombet, S., van Oevelen, C., Sardina Ortega, J. L., Abou-Jaoudé, W., Di Stefano,

B., Thomas-Chollier, M., et al. (2017). Logical modeling of lymphoid and

myeloid cell specification and transdifferentiation. Proc. Natl. Acad. Sci. U.S.A.

114, 5792–5799. doi: 10.1073/pnas.1610622114

Helikar, T., Kowal, B., McClenathan, S., Bruckner, M., Rowley, T., Madrahimov,

A., et al. (2012). The cell collective: toward an open and collaborative

approach to systems biology. BMC Syst. Biol. 6:96. doi: 10.1186/1752-

0509-6-96

Klarner, H., Streck, A., and Siebert, H. (2017). Pyboolnet: a python package for the

generation, analysis and visualization of boolean networks. Bioinformatics 33,

770–772. doi: 10.1093/bioinformatics/btw682

Naldi, A. (2018). bioLQM: a java library for the manipulation and conversion of

Logical QualitativeModels of biological networks. bioRxiv. doi: 10.1101/287011

Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., and Chaouiya, C.

(2009). Logical modelling of regulatory networks with GINsim 2.3. Biosystems

97, 134–139. doi: 10.1016/j.biosystems.2009.04.008

Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P. T., Chaouiya, C., and

Thieffry, D. (2018a). Logical modelling and analysis of cellular regulatory

networks with GINsim 3.0. Front. Physiol. 9:646. doi: 10.3389/fphys.2018.

00646

Naldi, A., Hernandez, C., Levy, N., Stoll, G., Monteiro, P. T., Chaouiya, C., et al.

(2018b). The CoLoMoTo interactive notebook: accessible and reproducible

computational analyses for qualitative biological networks. Front. Physiol.

9:680. doi: 10.3389/fphys.2018.00680

Paulevé, L. (2017). “Pint: a static analyzer for transient dynamics of qualitative

networks with IPython interface,” in CMSB 2017 - 15th Conference on

Frontiers in Physiology | www.frontiersin.org 11 July 2018 | Volume 9 | Article 787

https://www.frontiersin.org/articles/10.3389/fphys.2018.00787/full#supplementary-material
https://doi.org/10.3389/fbioe.2014.00086
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1371/journal.pcbi.1004571
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1186/1752-0509-6-96
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1101/287011
https://doi.org/10.1016/j.biosystems.2009.04.008
https://doi.org/10.3389/fphys.2018.00646
https://doi.org/10.3389/fphys.2018.00680
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

Levy et al. Prediction of Mutations With the CoLoMoto Interactive Notebook

Computational Methods for Systems Biology, Vol. 10545 of Lecture Notes in

Computer Science, eds J. Feret and H. Koeppl (Darmstadt: Springer), 309–316.

doi: 10.1007/978-3-319-67471-1_20

Stoll, G., Caron, B., Viara, E., Dugourd, A., Zinovyev, A., Naldi, A.,

et al. (2017). MaBoSS 2.0: an environment for stochastic Boolean

modeling. Bioinformatics 33, 2226–2228. doi: 10.1093/bioinformatics/b

tx123

Zaudo, J. G. T., and Albert, R. (2015). Cell fate reprogramming

by control of intracellular network dynamics. PLoS

Comput. Biol. 11:e1004193. doi: 10.1371/journal.pcbi.100

4193

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Levy, Naldi, Hernandez, Stoll, Thieffry, Zinovyev, Calzone and

Paulevé. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 12 July 2018 | Volume 9 | Article 787

https://doi.org/10.1007/978-3-319-67471-1_20
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.1371/journal.pcbi.1004193
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Prediction of Mutations to Control Pathways Enabling Tumor Cell Invasion with the CoLoMoTo Interactive Notebook (Tutorial)
	1. Introduction
	2. Materials and Equipment
	2.1. Executable and Reproducible Model Analysis
	2.2. Notebook Preparation

	3. Stepwise Procedures
	3.1. Model
	3.2. Identification of Stable States
	3.3. Assessing the Probabilities to Reach Alternative Attractors Using MaBoSS
	3.3.1. Simulation Setup
	3.3.1.1. Initial states
	3.3.1.2. Output nodes
	3.3.1.3. Simulation parameters

	3.3.2. Simulation of the Wild-Type Model
	3.3.3. Simulation of Double Mutant Notch++/p53--

	3.4. Formal Analysis With Pint and NuSMV
	3.4.1. Formal Predictions of Mutations From the Wild-Type Model
	3.4.2. Revisiting the Notch++/p53-- Double Mutant
	3.4.3. Analysis of Formally Predicted SNAI2++/ZEB1++/miR203++ Triple Mutant

	4. Anticipated Results
	Author Contributions
	Funding
	Supplementary Material
	References

