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Several studies have demonstrated an acute and chronic increase of brain-derived
neurotrophic factor (BDNF) in relation to different types of physical exercise. Currently,
many individuals seek physical training strategies that present different types of
stimulation and volume/intensity. Thus, the extreme conditioning methodology has
gained great notoriety in the scientific and non-scientific environment. Knowing that
BDNF values increase in an effort-dependent manner, it is necessary to study the effects
of this strategy on BDNF levels. This study aimed to evaluate the acute response of
BDNF in trained men submitted to an extreme conditioning program (ECP) session.
Ten volunteers underwent an acute ECP session using the “as many reps as possible”
(WOD-AMRAP) method, including three types of exercise (clean, wall ball and double or
single-unders) for 9 min. BDNF was measured in the plasma, being collected baseline
and immediately after the session. Total load of the clean exercise was five times
greater than wall ball exercise (p < 0.05; 2096.1 ± 387.4 kg vs 415.8 ± 81.03 kg),
which influenced little in the total load (p < 0.05, 2511.9 ± 358.52 kg) used. For
the total volume, practitioners averaged 1.7 times more repetitions in the wall ball
exercise compared to clean (46.2 ± 9 vs 29.5 ± 3.8 repetitions). The volunteers
averaged 75.7 ± 12.6 double-unders repetitions, bringing the total volume of training
to 151.4 ± 23.7 repetitions. Regarding the BDNF values, there was a significant
difference (p = 0.05) between the pre- vs post-moments (11209.85 ± 1270.4 vs
12132.96 ± 1441.93 pg/ml). Effect size for this change as moderate (ES = 0.79). We
found a positive correlation between total volume of clean exercise and delta BDNF
values (p = 0.049). In conclusion, a single extreme conditioning session, through the
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practice of the WOD-AMRAP method, is capable of increasing the acute concentrations
of plasma BDNF. In practical terms, we may suggest that future studies evaluate
the effect of ECP as a strategy in the treatment of disorders associated with central
degenerative changes.

Keywords: high-intensity interval training, effort, strength training, aerobics, cross training, neurotrophin

INTRODUCTION

Brain-derived neurotrophic factor (BDNF) is a potent
neurotrophin found in many tissues, including hippocampus,
skeletal muscle, cardiac muscle, and liver and adipose cells
(Leibrock et al., 1989; Zafra et al., 1990; Yamamoto et al., 1996;
Marosi and Mattson, 2014; Briana and Malamitsi-Puchner, 2017;
Pius-Sadowska and Machaliński, 2017). In the central nervous
system, this peptide stimulates neuroplasticity, through direct
mediation of the formation of new neuronal circuits, neuronal
survival and synaptogenesis (Gomez-Pinilla et al., 2008; Fargali
et al., 2012; Numakawa et al., 2017). At the cellular level, BDNF
acts via specific tyrosine kinase receptors, being directly involved
in improving memory and learning in both experimental and
human models (Falkenberg et al., 1992; Lapchak et al., 1993; von
Bohlen Und Halbach and von Bohlen Und Halbach, 2018).

In peripheral tissues, as in skeletal muscle, BDNF appears to
act in a paracrine rather than an endocrine manner (Matthews
et al., 2009; Rasmussen et al., 2009; Maekawa et al., 2018). Its
action, via receptor tyrosine kinase, stimulates local metabolism
through enzymatic mechanisms activated by AMP-dependent
kinase (Matthews et al., 2009).

Exercise and physical training seem to be potentially
stimulating for the acute and chronic response of BDNF
(Ferris et al., 2007; Seifert et al., 2010; Yarrow et al., 2010;
Marquez et al., 2015; Liu and Nusslock, 2018). The majority of
research investigating BDNF response to physical activity and
exercise/physical training primarily examined aerobic exercise
(Mackay et al., 2017; Liu and Nusslock, 2018). Acute increases in
plasma BDNF seems to be related to effort duration and intensity
(Ferris et al., 2007; Rojas et al., 2010; Seifert et al., 2010; Cho et al.,
2012; Marquez et al., 2015). Literature data suggest that the higher
volume, or its association with higher intensities, may influence
the acute response of BDNF to aerobic exercise (Ferris et al., 2007;
Cho et al., 2012).

Recent data suggest that resistance and/or concurrent training
may also potentially stimulate plasma levels of neurotrophins
(Cho et al., 2014; Church et al., 2016). However, an increasing
number of individuals are seeking a type of exercise that mixes
a greater diversity of stimuli within the same training session.
Murawska-Cialowicz et al. (2015) demonstrated that extreme
conditioning programs (ECPs) (such as CrossFit) altered BDNF
levels at rest, after Wingate and treadmill testing, and improved
aerobic capacity of active practitioners.

In the United States, ECP training emerged in the mid-
1980s, emphasizing the need to improve the physical
fitness, becoming a very popular modality (Glassman, 2003;
Murawska-Cialowicz et al., 2015). The ECP is a training
method with a high level of effort/intensity during training

sessions, in which its main goal is the improvement of the
physical capacities (cardiorespiratory endurance, muscular
resistance, strength, power, speed, coordination, flexibility,
agility, balance, and precision). This training modality is based
on Olympic weightlifting exercises (which are characterized
by generating greater muscular power and the need for
motor coordination), gymnastic movements (body weight or
calisthenic exercises) and metabolic exercises (emphasized
with cyclical movements such as running, swimming, cycling,
single/double-unders and others). Also, ECP training centers
is known to work with great amount of repetitions (volume),
high intensity (load), high density (small periods of interval,
or still absent) and small periods of stimulation (minutes),
characterizing a high level of effort. Knowing that high-level
effort (whether by volume or intensity) may affect the acute
response of BDNF (Church et al., 2016), it is intriguing
to investigate the acute response of this neurotrophin to
ECPs and the influence of training parameters on BDNF
changes.

According to Glassman (2010), ECP contributes to the overall
development of an individual’s body and mind performance.
Recently, Murawska-Cialowicz et al. (2015) demonstrated that
3 months of ECP training increased rest levels of BDNF.
However, the study was performed using physically active
individuals, but not previously trained in this modality. In
addition, the acute parameters of BDNF were measured only
using cyclic tests (Wingate and maximum progressive in cycle
ergometer) and not specific ECP exercises or routine. Thus,
based on their results, it is not possible to conclude that the
short, voluminous and intense ECP sessions are efficient in
stimulating a significant acute increase of BDNF in already
trained individuals. Nevertheless, a more complete picture of
the responses of this neurotrophin may indicate ECP as possible
training protocol for people who are deficient in the action of this
protein.

Knowing the need to understand the acute response to the
specific training session of the modality, this study aimed to
evaluate the acute response of BDNF in individuals trained in
ECP undergoing a “workout of the day” (WOD) session. In
addition, we investigated which training parameter (such as
volume, load or specific exercise component) influenced the acute
response of this neurotrophin.

MATERIALS AND METHODS

This study was approved by the Ethics Committee of the São
Judas Tadeu University under number 37330614.7.0000.0089,
in accordance with Resolution 466/12 of the National Health
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Council, which regulates the methodological procedures in
research with human beings.

Volunteers
Adult males who had been training ECP for at least 6 months
(Table 1) were selected for this study (Dinoff et al., 2017). Initially,
12 individuals applied to participate in the research. After
analyzing the profiles according to the inclusion and exclusion
criteria, 10 were selected for the training session. This sample size
is sufficient to answer our research question, as has already been
demonstrated in the literature (Seifert et al., 2010; Murawska-
Cialowicz et al., 2015; Church et al., 2016). Participants who
were in two or more concurrent training programs and/or under
the use of anabolic steroids, psychotropic drugs, antibiotics and
corticosteroids, and injured were excluded.

All volunteers were evaluated (blood collection) at two
different times: baseline (just before start the training session) and
immediately after the end of the training session (Figure 1).

Training Protocol
All evaluations were performed during the afternoon and each
subject was submitted to the training protocol alone, in order to
avoid the lack of attention to the training session and external
influences (each subject was verbally stimulated only by the
evaluators). All analysis was performed on 2 days, separated by
48 h, and volunteers were asked not to do any strenuous exercise
for at least 72 h prior testing.

On day 1, the term of free and informed consent was read
together with the participants and all doubts were clarified. Also,
the consent for both the study participation and publication
of the images was both written and informed for all the
participants (Figures 2, 3). After reading and agreeing to
participate in the survey, individuals respond to the International
Physical Activity Questionnaire (IPAQ), the Physical Activity
Readiness Questionnaire (PAR-Q) and general anamnesis. These
questionnaires showed us that volunteers had the level of physical
activity required in this study and that all were free of any physical
limitation. Afterward, all volunteers performed a load test (RM)

TABLE 1 | Descriptive data of the sample.

Data Characteristics

Subjects (n◦.) 10

Age (years) 31 ± 5

Height (m) 1.75 ± 0.04

Weight (kg) 83.9 ± 3.72

Training experience (months) 22 ± 9

for clean exercise (as protocol described by Ploutz-Snyder and
Giamis, 2001). Thus, the volunteers performed two sets of 5–
10 repetitions, with pauses of 2–3 min. Shortly thereafter, the
volunteers had up to five attempts, separated by 3–5 min, to lift
the maximum load in a single movement. From this moment, we
calculate the load equivalent to 80% RM for the training session.
Finally, we clarify any doubts of the volunteers regarding the
execution of the exercises wall ball and double or single-unders.

On day 2, thirty minutes after the baseline blood collection,
all volunteers were submitted to general body warming exercises
composed of 3 sets of 10 jump air squat and kettlebell swing
movements (Figure 2). This warm-up routine was chosen by
specifically preparing the requested muscle chains to follow.
The training was composed of three fundamental elements in
the practice of ECP (Figure 3): weightlifting exercise (clean),
gymnastic exercise (wall ball throw) and metabolic and/or cyclic
exercise (double-unders and/or single-unders).

The training session was composed of the following: workout
of the day – as many repetitions as possible (method WOD-
AMRAP) in 9 min: 5 repetitions of cleans, 10 repetitions of wall
ball throw, and 20 repetitions of double-unders or single-unders.
After each successful sets of exercises, an extra movement was
added (except for double-unders and/or single-unders), making
the training session more strenuous (e.g., first series 5 cleans,
10 wall ball, 20 double-unders, and/or single-unders; second
series 6 cleans, 11 wall ball, 20 double-unders, and/or single-
unders; and so on until the completion of time). No rest breaks
were allowed during session time. The training load of the clean

FIGURE 1 | Experimental design. WOD-AMRAP: workout of the day – as many reps as possible.
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FIGURE 2 | Illustration of general body warming composed of three jump air squat (A,B) and kettlebell swing (C,D) movements. The consent for both the study
participation and publication of the images was both written and informed for all the participants.

FIGURE 3 | Illustration of the extreme conditioning program training session composed of clean (A,B), wall ball (C,D), and double-unders (E) exercises. Informed
consent was informed, written and obtained from this volunteer for publication of their images.

exercise was 80% RM (estimated in previous session) and for
wall ball throw 9 kg (common load used by trained individuals
for this exercise). Figure 1 presents experimental design of this
study.

To quantify the total volume (TV) and total load volume
(TVL), we used the following procedures: (1) TV, we sum the
total number of repetitions of the clean and wall ball exercises;
and (2) TVL, the TV was multiplied by the total load of each
exercise. For the calculation of TV of the double-unders exercise,
the total number of repetitions performed over time of WOD-
AMRAP was added. Finally, we added the volume reps of all three
exercises as total training volume (TTV).

Blood Collection
Blood samples were collected baseline (before warm-up
exercise) and immediately after the training session. During
the collection, the volunteers remained seated and right arm
resting on a table. Approximately 10 ml of venous blood
was collected in a vacuum-disposed plastic tube with no
additive. After collection, the tubes were left for 30 min at

room temperature and subsequently held in a styrofoam box
with ice.

After the blood collection, the samples were processed in the
Laboratory of Biochemistry of the São Judas Tadeu University,
being centrifuged at 5,000 rpm for 15 min. After centrifugation,
only the supernatant, consisting of 500 µl Eppendorf conical tube
serum, was separated with identification of the individuals at each
time point.

All these procedures were carried out in a clean and sterilized
workbench, using the appropriate protection precautions. The
samples were then stored in a freezer at−80◦C.

After obtaining the biological material from all individuals, the
blood samples were sent to the Laboratory of Pharmacology and
Toxicology of the Faculty of Veterinary Medicine and Animal
Science of the University of São Paulo, in which the serum
concentrations of BDNF were measured.

Serum BDNF concentrations were measured by enzyme-
linked immunosorbent assay (ELISA) technique. The technique
relies on the use of antigens or antibodies labeled with an enzyme,
so that the resulting conjugates have both immunological
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and enzymatic activity. It has one of the components (antigen or
antibody) fixed on an adsorbent support, the antigen conjugate
complex is immobilized, and the reaction can be easily revealed
by the addition of a specific substrate that can act with the enzyme
producing a color visible to the naked eye or quantifiable through
the use of colorimetric and spectrophotometric techniques. The
DuoSet R© Human BDNF kit (R&D Systems, Minneapolis, MN,
United States) was used. The kit was prepared according to the
manufacturer’s standards and instructions, and final results were
expressed in pg/ml.

Statistical Analysis
All results were presented as mean ± standard deviation.
To test the normality of the data we used the Shapiro–
Wilk test. To compare pre vs post-moments, Student’s t-test
was performed. One-way ANOVA was used to compare the
TV and TVL outcomes (post hoc Tukey) between exercises.
For the correlation tests between TV, TVL, and the BDNF
delta values, Pearson’s correlation test was used. The Cohen’s
d effect size calculation (ES = difference between pre- and
post-intervention divided by pre-intervention SD) was used
to evaluate the magnitude of BDNF changes. ES values
were determined from very small (0.01–0.19), small (0.20–
0.49), moderate (0.50–0.79), large (0.80–1.19), and very large
(1.20<). For the calculation of the data we used SPSS
software version 21.0 and the level of significance was
p ≤ 0.05.

RESULTS

The TVL of the clean exercise was five times greater than wall ball
exercise (p < 0.05; 2096.1± 387.4 kg vs 415.8± 81.03 kg), which
influenced little in the total load (p < 0.05, 2511.9 ± 358.52 kg )
used in WOD-AMRAP (Figure 4).

For the TV, practitioners averaged 1.7 times more repetitions
in the wall ball compared to clean exercise (46.2± 9 vs 29.5± 3.8
repetitions). Total volume (adding both exercise repetitions)

FIGURE 4 | Total load volume used during the WOD (workout of the day) for
the clean and wall ball exercises, and the total load of the training session.
∗p < 0.01 vs wall ball exercise. ANOVA (F ) = 32.564, p < 0.05.

FIGURE 5 | Total volume (series × repetitions) used during WOD-AMRAP
(workout of the day, method as many reps as possible) for clean and wall ball
exercises, and the total load of the training session. ∗p < 0.01 vs clean
exercise; #p < 0.01 vs clean and wall ball exercises. ANOVA (F ) = 66.854,
p < 0.01.

FIGURE 6 | Comparison of brain-derived neurotrophic factor (BDNF) values at
baseline and post-training moments. ∗p = 0.05 vs baseline.

(75.7 ± 12.2 repetitions) was statistically higher (p < 0.01) than
each exercise analyzed alone (Figure 5). The volunteers averaged
75.7 ± 12.6 double-unders repetitions, bringing the TTV to
151.4± 23.7 repetitions.

Regarding the BDNF values (Figure 6), there was significant
difference (p = 0.05) between the pre- vs post-moments
(11209.85± 1270.4 vs 12132.96± 1441.93 pg/ml). The effect size
for this change was shown to be moderate (ES= 0.73).

Table 2 shows the correlation values between the training
parameters (total volume and total load) and BDNF delta value
changes. Figure 7 represents a positive correlation between total
volume of clean exercise and delta BDNF values (p = 0.049). For
other comparisons, there was no significant correlation.
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TABLE 2 | Correlation between total volume (series × replicates) and total load
(total volume × weight) of training parameters with values of delta brain-derived
neurotrophic factor (BDNF) changes.

BDNF (delta)

Total clean load (kg) 0.184

Total clean reps (n◦.) 0.633∗

Total wall ball load (kg) 0.259

Total wall ball reps (n◦.) 0.259

Total reps double unders (n◦.) 0.588

Total load (kg) 0.257

Total reps clean + wall ball (n◦.) 0.387

Total reps clean + wall ball + double unders (n◦.) 0.512

Asterisk “∗” indicates significant correlation p < 0.05.

FIGURE 7 | Graphic of Pearson correlation between brain-derived
neurotrophic factor (BDNF) and clean exercise repetitions.

DISCUSSION

Here, we demonstrate two new facts: (1) as other types of exercise,
a single session of ECP is significantly potent to stimulate
acute increase of plasma BDNF levels, and (2) the number of
repetitions of the clean exercise was positively correlated with this
physiological effect.

Our results suggest that the combination of multiple types of
exercise, high effort, high intensity, and high training volume in
a relatively short time (9 min) can be a decisive factor in the
dynamics of post-exercise changes in BDNF. Here, we confirmed
results already found by other research groups, whose purpose
was to investigate the effects of more common types of exercises
on alterations of this neurotrophin (Seifert et al., 2010; Szuhany
et al., 2015; Park and Kwak, 2017; Liu and Nusslock, 2018).

Generally, literature studies give more attention to the
influence of aerobic exercise on BDNF secretion compared
to predominantly anaerobic or strength exercise. Zoladz et al.
(2008) observed an increase in acute levels of BDNF after a
single aerobic exercise session. This phenomenon has being
found in several different populations (Mackay et al., 2017;

Hsueh et al., 2018; Morais et al., 2018). However, the results
of our study do not seem to be influenced by the double-
unders exercise (aerobic type exercise), as presented through
the correlation tests. Therefore, the influence of multi-articular
strength exercises on the BDNF response was fundamental.
In isolation, the results are controversial as to the efficiency
of strength training in increasing the plasma levels of this
neurotrophin (Rojas Vega et al., 2006; Goekint et al., 2010; Yarrow
et al., 2010). Possibly, the circuit training characteristic used
here, was fundamental to our result. Associating the specific
characteristics of the three exercises included in our study,
with the high volume-intensity methodology, we demonstrated
a potent effect of ECP training on BDNF levels. In general,
the literature should better explore various types of program
assembly in order to give practical possibilities of the results
already demonstrated.

Pearson’s correlation positively pointed to the influence of
the number of repetitions performed in the clean exercise on
the BDNF delta. Thus, the type of exercise, the percentage
of the maximum load used and the total volume of exercise
training involving large muscle mass, may influence the acute
responses of this neurotrophin. In accordance with our results,
Lee and Soya (2017) demonstrated that acute loaded wheel
running increased hippocampal BDNF activity in rats. In
addition, Jeon and Ha (2017) demonstrated that moderate
to high effort levels of aerobic training seems to have a
positive effect on levels of BDNF at rest and on cognitive
function. For the other side, Church et al. (2016) indicated
that BDNF levels are increased after an acute session of
resistance exercise, regardless of training differences protocols.
These data confirms the need for more studies regarding the
influence of different training variables on the BDNF acute
responses.

Most of the exercises used here, involved moderate to
high external load and could be classified as a predominantly
resisted activity. Still, individuals should perform as many
repetitions as possible within a predetermined time. Thus, the
levels of fatigue achieved were very close to the maximum
for each individual. Marston et al. (2017) used a method of
training to-fatigue based resistance exercise protocol and quoted
that this activity provides the necessary stimulus to increase
peripheral serum BDNF. Perhaps, strenuous exercise or higher
total volume may also have some influence on the outcomes
measured here. Cho et al. (2014) demonstrated that although
there was no difference in serum BDNF levels between aerobic
and combined type exercises, higher stimulus may have a
possibility of positive changes in increase of serum BDNF level
in mid-aged women. Cabral-Santos et al. (2016) indicated that
even different volume training would not change acute BDNF
values if aerobic exercise intensity are maintained. Being so,
Forti et al. (2015) showed that only a very high volume at a
sufficiently high external load was able to increase circulating
BDNF. These data corroborates our findings that fast and
powerful movements with high intensity (80% maximum load)
and higher number of repetitions can be enough to stimulate
the increase in BDNF levels. Also, the amount of muscle mass
used might also have an impact in the neurotrophin levels.
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Walsh et al. (2016) demonstrated a transient increase in serum
BDNF following a single session of strength exercise in older
adults after lower body resistance training. Therefore, training to
voluntary fatigue might be necessary to obtain significant BDNF
levels increase.

The exercises used in ECP involve the whole body, unlike
those exercised in a conventional gym. Here, we include different
types of exercises, such as power (clean), strength resistance
(wall ball throwing) and aerobic (double-unders) exercises. This
variety of exercise stimuli can activate different physiological
mechanisms. According to Cassilhas et al. (2012), both exercise
types (aerobic and strength) present distinct signaling pathways.
Aerobic type exercise presents an increased level of IGF-1,
BDNF, TrkB, and β-CaMKII (calcium/calmodulin-dependent
kinase II) in the hippocampus, whereas the strength type of
training showed an induction of peripheral and hippocampal
IGF-1 with concomitant activation of receptor for IGF-1 (IGF-
1R) and Akt in the hippocampus. These cellular pathways
stimulated synapsin 1 and synaptophysin expression in both
groups. These data confirmed that aerobic and strength exercise
can stimulated different molecular mechanisms with similar
results on learning and spatial memory. These data suggest
that individuals undergoing a session, or training, using
methods with various types of exercise could benefit in both
signaling pathways.

Our training strategy can be effective in improving memory
and learning, as seen in the prescription of more traditional
exercises. In terms of applicability, this methodology can be
classified as time-efficient. Thus, high-level stress sessions can
be done in high training density, making it interesting as a
non-medicament treatment in several degenerative dysfunctions.
Tharmaratnam et al. (2018) demonstrated that 12 weeks of
moderate-to-high intensity training is able to improve working
memory by increasing brain oxygenation, nutrient delivery
and BDNF mRNA expression in adolescents. However, higher
training intensity demonstrates larger and more significant
results on working memory and increase of BDNF compared to
lower intensities (Jeon and Ha, 2017). Etnier et al. (2016) showed
that long-term memory differed as a function of exercise intensity
with better results being presented after maximal intensity
levels, although BDNF increase after all exercise intensities.
Pietrelli et al. (2018) presented data showing that exercise
improves memory and learning thru the system serotonin-
BDNF, protecting the brain against deleterious effects. These
data demonstrate that both acute and chronic changes are
associated with improved memory, learning and cognition, and
are corroborated by other studies in several other conditions
(Hopkins and Bucci, 2010; Hopkins et al., 2011; Håkansson
et al., 2017). However, the large amount of data present
in the literature was investigated using continuous aerobic
exercise, thus requiring more investigations confirming the
same effect in consideration of other types of methodologies
and exercises.

Mechanisms that altered resting BDNF levels in bloodstream
can be different. During exercise with high intensity or volume
(as used here), lactate plasma levels are frequently increased due
to the high mobilization of glycolytic metabolism. Schiffer et al.

(2011) demonstrated a significant increase in BDNF levels while
administering sodium lactate adult individuals. The authors
quoted that lactate might participate in the regulation of BDNF
production levels. However, according to Marston et al. (2017),
the presence of lactate does not appear to stimulate the BDNF
response during resistance exercise. Clearly, there is the need of
further studies on this subject.

Further, exhaustive training sessions may stimulate increased
expression and protein production of oxidative stress. Sakr
et al. (2015) observed a significant augment in the levels
of cortical malondialdehyde, a reduction in antioxidant
activity (decreased glutathione, superoxide dismutase, and
catalase) and a significant increase in BDNF expression in
rats subjected to chronic effort under hypoxic conditions.
These data presents evidence that oxidative stress could be an
important factor stimulating BDNF expression. For the first
time, Freitas et al. (2018) demonstrated a significant effect
of HIIT on reducing oxidative stress, lipoperoxidation and
inflammatory markers, as well enhancing antioxidant defenses
and BDNF content.

In ECP sessions, adrenergic levels rise, modulating the
energy response, and may stimulate feelings of well-being in the
post-session. Chen and Russo-Neustadt (2007) demonstrated
that norepinephrine and serotonin are responsible for inducing
BDNF expression. Norepinephrine induces phosphorylation
of cAMP-response element binding protein (CREB) and
stimulates expression of both BDNF and nerve growth factor
(NGF) (Counts and Mufson, 2010). Also, norepinephrine
activates phosphatidylinositol-3 kinase (PI-3K)/Akt and
mitogen-activated protein kinase (MAPK) and NO/cGMP
pathways, in hippocampal neurons (Chen and Russo-Neustadt,
2013). BDNF activates the Trk receptor and participate
in neuron plasticity, growth, development and survival
of neurons.

Finally, the realization of ECP sessions requires high energy
demand. It is fundamental to understand the action of BDNF
in central and peripheral tissues. Wrann et al. (2013) link
endurance exercise and the important metabolic mediators,
PGC-1α and FNDC5, with BDNF expression in the brain.
FNDC5, a muscle protein cleaved and secreted as irisin, is also
elevated by endurance exercise in the hippocampus of rodents.
Further, neuronal Fndc5 gene expression is regulated by PGC-
1α, and PGC-1α knockout mice show reduced Fndc5 expression
in the brain. Importantly, peripheral delivery of FNDC5 to
the liver via adenoviral vectors, resulting in elevated blood
irisin, induces expression of Bdnf and other neuroprotective
genes in the hippocampus (Wrann et al., 2013). The findings
from this work indicate that endurance exercise increase the
activity of the ERRα/PGC-1α proteins, which increases levels
of FNDC5 in skeletal muscle and hippocampus (Xu, 2013).
Murawska-Cialowicz et al. (2015) demonstrated that 3 months
of ECP training was able to increase resting BDNF levels
without any alterations in irisin plasmatic concentration. This
data may show that irisin may act as a paracrine regulator
of BDNF.

Based on the results found here, we can conclude that a single
ECP session, through the practice of the WOD-AMRAP method,
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is capable of increasing the acute concentrations of plasma
BDNF. Secondly, we can also conclude that the total volume of
repetitions of the clean Olympic exercise, when performed with
high intensity (80% RM), correlates positively with the increase
of BDNF found.
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