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Humans and their associated microbiomes are exposed to numerous xenobiotics

through drugs, dietary components, personal care products as well as environmental

chemicals. Most of the reciprocal interactions between the microbiota and xenobiotics,

such as halogenated compounds, occur within the human gut harboring diverse and

dense microbial communities. Here, we provide an overview of the flux of halogenated

compounds in the environment, and diverse exposure routes of human microbiota to

these compounds. Subsequently, we review the impact of halogenated compounds

in perturbing the structure and function of gut microbiota and host cells. In turn,

cultivation-dependent and metagenomic surveys of dehalogenating genes revealed the

potential of the gut microbiota to chemically alter halogenated xenobiotics and impact

their fate. Finally, we provide an outlook for future research to draw attention and attract

interest to study the bidirectional impact of halogenated and other xenobiotic compounds

and the gut microbiota.

Keywords: xenobiotics, halogenated compounds, gut microbiota, xenobiotic-microbiota interaction,

dehalogenation genes, metagenomics

INTRODUCTION

The term xenobiotic is usually used in the context of environmental pollutants to refer to
synthetic compounds produced in large volumes for industrial, agricultural and domestic use
(Atashgahi et al., 2018c). Xenobiotics can enter the environment at high (µg/L to mg/L range) or
at “micropollutant” concentrations (ng/L toµg/L range) (Schwarzenbach et al., 2006; Meckenstock
et al., 2015). One important group of xenobiotics comprise halogenated compounds with diverse
sources and sinks. Halogenated organic compounds, organohalogens, are usually synthesized for
industrial, agricultural and pharmaceutical applications (Häggblom and Bossert, 2003). It has also
been shown that over 5000 organohalogens are naturally produced from biogenic and geogenic
sources (Gribble, 2010). Inorganic halogenated compounds such as chlorine dioxide, hypochlorite,
and chlorite are commonly applied as bleaching agents and disinfectants (Liebensteiner et al., 2016).
In turn, halogenated compounds can be used as carbon sources, electron donors and acceptors by
a diverse array of aerobic and anaerobic microorganisms in growth-dependent and co-metabolic
modes (Janssen et al., 2001; Van Pée and Unversucht, 2003; Schneidewind et al., 2014; Peng et al.,
2017). As such, microbial degradation represents an important sink of halogenated compounds.

Xenobiotics are also considered as chemical substances from natural or synthetic sources
found within an organism that are not naturally produced by the organism or expected
to be present. As such, the human body is exposed to variety of (halogenated) xenobiotic
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compounds, such as persistent organic compounds (POPs),
pesticides, pharmaceuticals and personal care products (PPCPs),
and food additives. Site-specific microbiomes associated with
the gut, skin, or respiratory tract are the first to encounter
xenobiotics and mediate “first pass” metabolism prior to
compound absorption to internal organ systems (Dietert and
Silbergeld, 2015). Among these portals of entry, most interactions
between xenobiotics and the human microbiota occur within
the human gut (Sousa et al., 2008; Dietert and Silbergeld,
2015). The gut microbiota is a diverse and dense microbial
community composed of bacteria, fungi, archaea, and viruses
(Li et al., 2014; Nielsen et al., 2014). Its immense metabolic
diversity is encoded by the intestinal metagenome, that contains
genetic information for multiple xenobiotic detoxification
and sequestration functions (Haiser and Turnbaugh, 2013;
Spanogiannopoulos et al., 2016). The anoxic environment of the
gut is well-suited for a reductive and hydrolytic metabolism. This
will generate non-polar low-molecular weight by-products that
can be absorbed by the host cells. In contrast, the readily absorbed
non-polar xenobiotics are transported and metabolized in the
liver by a rich collection of oxidative and conjugative enzymes.
Such hepatic metabolism will generate hydrophilic, polar and
high-molecular weight metabolites. The latter are secreted via
the bile and reach the gut where they can be re-metabolized by
reductive and hydrolytic enzymes (Sousa et al., 2008; Claus et al.,
2016; Koppel et al., 2017). Thus, xenobiotic metabolism by gut
microbiota can exert a profound influence on the toxicity and
bioavailability of xenobiotics entering the gut via different routes.
The outcome of xenobiotic metabolism may be beneficial (Shin
et al., 2013), detrimental or even lethal (Okuda et al., 1998) to the
host. In turn, exposure to xenobiotics can alter gut microbiota
composition and change metabolic activity (Maurice et al., 2013).
This may increase predisposition to various diseases (Wang et al.,
2011; Lee et al., 2014; Lu et al., 2015).

Extensive research of the last decades has provided insight
into the metabolism of halogenated xenobiotics and opened
avenues to harness the metabolic machinery of microbes for
bioremediation (Smidt and de Vos, 2004; Sutton et al., 2015;
Atashgahi et al., 2017, 2018c; Weatherill et al., 2018). In
contrast, much less is known about the flux, impact, and fate
of halogenated xenobiotics in host-associated ecosystems like
the human gut. As such, there is only very limited information
about specific microorganisms, genes, and enzymes responsible
for halogenated xenobiotic metabolism in the human gut.
This contrasts with the enormous and expanding interest in
understanding the role of the gut microbiome in health and
disease.

Here, we address the present state of the art on the flux,
impact and fate of halogenated compounds in the gut. We first
provide an overview of the flux of halogenated compounds
to highlight their environmental sources and diverse exposure
routes of human microbiota to these compounds. Subsequently,
we provide an overview of the impact of halogenated compounds
on the structure and function of the gut microbiota and host
cells. Lastly, we review the fate and metabolism of halogenated
compounds in the gut based on published experimental data
and a metagenomic survey of the dehalogenation genes in gut

microbiome. In a larger context, we provide a rationale for
studying the bidirectional impact of (halogenated) xenobiotic
compounds and the gut microbiota, i.e., toxicant-microbiota
interactions.

FLUX

The main sources of halogenated (micro)pollutants are from
industry (e.g., POPs), agriculture (e.g., pesticides), domestic
use (e.g., PPCPs) and disinfection by-products (DBPs). Some
examples of the halogenated (micro)pollutants that are discussed
in this review are shown in Figure 1. Humans come into
contact with halogenated xenobiotics through: (i) oral exposure
(eventually ending up in the gut), (ii) inhalation (via nose and
lungs), (iii) dermal exposure (through the skin), and (iv) ocular
exposure (through the eyes) (Figure 2). Oral ingestion is the
main exposure route of the general population to halogenated
xenobiotics. This is especially the case for the chronic exposure
to micropollutant concentrations of residues in food, vegetables,
fruits, and drinking water (Boxall et al., 2006, 2012; Damalas and
Eleftherohorinos, 2011). In contrast, dermal/inhalation exposure
due to showering, bathing, and swimming through daily-life
and/or recreational activities is a more important route of
exposure to DBPs than oral exposure (Villanueva et al., 2006a,b).
Inhalation, dermal and ocular routes are more relevant to
occupational exposure of workers in- or nearby residents of-
industrial production plants, farms or greenhouses that produce
and use halogenated xenobiotics (Damalas and Eleftherohorinos,
2011; Besis and Samara, 2012).

Raw sewer and treated effluents from wastewater treatment
plants play a key role in the spread of halogenated compounds
in the water cycle (Figure 2). Most current waste- and drinking
water treatment plants are not (optimally) designed for the
removal of halogenated compounds or their transformation
products (Heidler and Halden, 2009; Noguera-Oviedo and
Aga, 2016). The latter is particularly relevant as sometimes
the transformation products can be more toxic than the
parent compounds. For example, perfluorooctanesulfonic acid
(compound number 1 in Figure 1) is a POP that can also
be produced through biotransformation of other synthetic
chemicals such as perfluoroalkyl acids in wastewater treatment
plants (Guerra et al., 2014). Similarly, biodegradation of clofibric
acid (9) leads to production of the more toxic 4-chlorophenol
(Salgado et al., 2012). Trace concentrations of such contaminants
of emerging concern may eventually end up in finished drinking
water due to their toxicity and persistence (Benotti et al., 2008).

Biosolids from the treated sewage sludge represent
concentrated sources of hydrophobic organohalogens such
as the flame retardant polybrominated diphenyl ethers (2),
and the biocidal compounds triclosan (18) and triclocarbon
(19). These compounds can desorb and contaminate soil and
water, once biosolids are applied as fertilizer (Andrade et al.,
2015) (Figure 2). Similarly, organohalogen antibiotics such as
fluoroquinolones added to animal feed for disease prevention
or for growth promotion may end up in biosolids from livestock
production (Martínez-Carballo et al., 2007). Once applied as
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FIGURE 1 | Examples of halogenated compounds discussed in this review. (A) persistent organic compounds (POPs), (B) pesticides, (C) pharmaceuticals and

personal care products (PPCP) and (D) disinfection by-products (DBPs). Compounds are: perfluorooctanesulfonic acid (1), polybrominated diphenyl ethers (2),

polychlorinated dibenzo-p-dioxins (3), polychlorinated dibenzofurans (4), dichlorodiphenyltrichloroethane (5), hexachlorobenzene (6), polychlorinated biphenyls (7),

γ-hexachlorocyclohexane (lindane) (8), clofibric acid (9), 2,4-dichlorophenoxyacetic acid (10), chlorpyrifos (11), atrazine (12), 2,6-dichlorobenzamide (13),

2,6-dichlorobenzonitrile (14), pentachlorophenol (15), chlorothalonil (16), trichlorfon (17), triclosan (18), triclocarbon (19), florfenicol (20), enrofloxacin (21), ciprofloxacin

(22), cetirizine (23), thyroxine (L) (24), diclofenac (25), chloroform (26), bromoform (27), bromodichloromethane (28), chlorodibromomethane (29), chloroacetic acid (30),

bromoacetic acid (31), dichloroacetic acid (32), dibromoacetic acid (33), trichloroacetic acid (34), chlorate (35), bromate (36), trichloroacetamide (37).
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FIGURE 2 | Flux of halogenated compounds. Blue arrows show the flux in the environment and red arrows show the flux to humans. WWTP, wastewater treatment

plant; DWTP, drinking water treatment plant.

manure for fertilization of arable land, these compounds can
reach humans via different routes. For example, veterinary
organohalogen drugs such as florfenicol (20) and enrofloxacin
(21) can be taken up by plants such as lettuce (Boxall et al.,
2006).

Recent non-targeted analysis has further highlighted the
environmental footprint of organohalogens. For example,
monitoring of bottlenose dolphins has identified 327
organohalogens of synthetic as well as natural origins (Shaul et al.,
2015). This indicates severe bioaccumulation of organohalogens
in marine food webs. A similar non-targeted screening of the
sediments of Lake Michigan has identified 1,593 organobromine
compounds, many of which were not known previously (Peng
et al., 2015). The deposited organohalogens in sediments can be
chronically released (Yamashita et al., 2000) and bioaccumulate
in organisms in food webs and thereby reach humans.

POPs
POPs are long lived organic compounds that resist biological,
chemical, and photolytic degradation. They exhibit high lipid
solubility and hence bioaccumulate in fatty tissues and become
concentrated as they move up the food chain. POPs are

dominated by organohalogens such as polychlorinated dibenzo-
p-dioxins and furans (3, 4), dichlorodiphenyltrichloroethane
(5), hexachlorobenzene (6), polychlorinated biphenyls (7),
γ-hexachlorocyclohexane (lindane, 8), perfluorooctanesulfonic
acid, polybrominated diphenyl ethers, etc.

Although application of organochlorine pesticides and
polychlorinated biphenyls has been restricted since the late
1970s, they are still among the most ubiquitous and concerning
environmental pollutants due to their persistence, toxicity and
bioaccumulation (Xu et al., 2017). Moreover, electronic waste
(e-waste) continues to produce POPs such as polychlorinated
dibenzo-p-dioxins and furans, polybrominated diphenyl ethers,
and polychlorinated biphenyls. The e-waste recycling industry
in developing countries has drawn the world’s attention as a
new source of environmental contamination by POPs (Leung
et al., 2007; Zhang et al., 2010). POPs can also be produced
naturally. For example, polychlorinated dibenzo-p-dioxins and
furans are formed as by-products of high-temperature processes,
such as volcano outbursts, forest fires and waste incineration. The
endocrine-disrupting flame retardant polybrominated diphenyl
ethers have natural counterparts that are produced by marine
sponges (Agarwal et al., 2017) at levels that can exceed 10%
of the sponge tissue dry weight (Unson et al., 1994). Naturally
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produced organohalogens were reported to bioaccumulate in
marine mammals (Vetter et al., 2002; Teuten and Reddy, 2007)
and humans (Wan et al., 2010; Wang et al., 2012) indicating
human contact through the marine food web. Accordingly, POPs
can come into contact with humans primarily through dietary
intake including fatty fish, red meat and poultry (Kiviranta et al.,
2004; Schecter et al., 2010), but also through inhalation and
dermal absorption (Besis and Samara, 2012).

Pesticides
Pesticides such as herbicides, insecticides, and fungicides have
been used since the 1940s for agricultural and non-agricultural
purposes (Schwarzenbach et al., 2010). Chlorinated phenoxy
acid herbicides such as 2,4-dichlorophenoxyacetic acid (10),
the broad-spectrum chlorinated organophosphate chlorpyrifos
(11) and the herbicide atrazine (12) are among the most
intensively used pesticides worldwide (Bradberry et al., 2000;
Arias-Estévez et al., 2008; John and Shaike, 2015). Pesticide
contamination from specific point sources (µg/L to mg/L range)
can be due to accidental releases at manufacturing plants, spills
on farm yards and from wastewater treatment plant effluent
(Vandermaesen et al., 2016). In contrast, diffuse contamination
(ng/L to µg/L range) originates from actual pesticide application
that results in large-scale contamination of groundwater
through leaching, and contamination of surface water through
runoff, erosion, drainage, and drifting (Holvoet et al., 2007).
Moreover, contamination can be due to transformation products.
For example, 2,6-dichlorobenzamide (13) is a highly mobile
and persistent groundwater pollutant that originates from
transformation of the widely used herbicide dichlobenil (2,6-
dichlorobenzonitrile) (14) (Horemans et al., 2017). Besides oral
ingestion as the main route of exposure, human contact with
pesticides could be through: (i) inhalation by breathing the
mobile pesticides e.g., during on farm pesticide spraying, (ii)
dermal, and (iii) ocular routs e.g., during accidental splashing
or spraying pesticides on unprotected skin/eyes of agricultural
workers and workers in the pesticide industry (Damalas and
Eleftherohorinos, 2011).

PPCPs
Pharmaceuticals are used to treat or prevent disease or as feed
additives in animal farming, whereas personal care products
are used in personal hygiene and for beautification, and
include products such as shampoos, toothpastes, moisturizers,
deodorants, lipsticks, perfumes, etc (Boxall et al., 2012). Whereas
the main route of PPCPs release into environment is generally
excretion to the sewage system following use, manufacturing
facilities can be important local point sources (Ebele et al., 2017)
(Figure 2). For example, effluent from a wastewater treatment
plant of a major drug manufacturer contained ciprofloxacin
(22) at a concentration of up to 31 mg/L, that exceeds levels
toxic to some bacteria by over 1000-fold (Larsson et al., 2007).
A subsequent study found ciprofloxacin (up to 6.5 mg/L) and
cetirizine (23) (up to 1.2 mg/L) in two lakes in the same region
impacted by the wastewater treatment plant effluent (Fick et al.,
2009). These mg/L concentrations are 100,000 to 1 million times
higher than reported levels of fluoroquinolones in surface waters

contaminated by effluents from wastewater treatment plants
(Kolpin et al., 2002; Xiao et al., 2008).

Triclosan and triclocarban are broad-spectrum phenolic
organochlorine biocides with activity against both bacteria
and fungi. These chemicals are found in a wide variety of
consumer products, including soaps, detergents, toothpaste,
medical devices, plastics, and textiles (Pycke et al., 2014). As
a result of common and widespread use, humans are exposed
to these chemicals via different routes including absorption
(e.g., soaps, toothpaste), ingestion (e.g., drinking water, food),
inhalation (e.g., aerosols, dust), and injection/implantation (e.g.,
medical sutures and devices) (Halden, 2016). For example,
according to a survey in 2003-2004, triclosan was found in
about three-quarters of urine samples analyzed in the USA
at concentrations of 2.4–3790 µg/L (Calafat et al., 2008).
A later analysis of triclosan, triclocarban, thier metabolites
and by-products in maternal urine and cord plasma in an
urban population in the USA has shown widespread fetal
exposure to these compounds (Pycke et al., 2014). Triclosan and
triclocarban have been detected in aquatic environments such as
groundwater, drinking water, wastewater, sewage sludge, and in
some food sources representing environmental sources, besides
direct consumer-product use (Lindström et al., 2002; Singer et al.,
2002; Halden and Paull, 2005).

DBPs
Water disinfection during the production of drinking water
has been widely implemented to protect human health
against waterborne diseases like cholera, typhoid, dysentery, etc
(Richardson and Ternes, 2018). To this end, strong oxidants
such as free chlorine, chlorine dioxide, chloramines, and
ozone are used, which efficiently kill pathogens. However,
disinfectants can unintentionally form DBPs by further reacting
with other constituents found in waters i.e., natural organic
matter, anthropogenic organic contaminants, and halide ions
(chloride, bromide, iodide) (Richardson et al., 2007; Gonsior
et al., 2014; Postigo and Richardson, 2014). Moreover, DBPs
in pool and spa waters are formed by the reaction of
disinfectants with organic matter including natural organic
matter from source water and human inputs such as urine,
sweat and PPCPs (Daiber et al., 2016; Jmaiff Blackstock
et al., 2017). For instance, more than 100 DBPs were
recently found in swimming pools and hot tubs, and organic
extracts from those samples were more mutagenic than
the corresponding tap water extracts (Daiber et al., 2016).
Although ∼700 DBP have been identified, only three classes
are regularly monitored: trihalomethanes (e.g., chloroform,
bromoform, bromodichloromethane, chlorodibromomethane)
(26–29), haloacetic acids (e.g., chloro-, bromo-, dichloro-,
dibromo-, and trichloro-acetic acid) (30–34), and oxyhalides
(e.g., chlorate and bromate) (35–36) (Richardson and Ternes,
2018). People are exposed to a diverse range of DBPs by
drinking, uptake through the skin upon contact, and inhalation
of volatile DBPs e.g., in indoor swimming facilities (Gonsior
et al., 2014; Daiber et al., 2016). Epidemiological studies have
reported a relation between human ingestion of drinking water
containing DBPs and increased spontaneous abortions, stillbirth,
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birth defects and bladder cancer in particular (Richardson et al.,
2007).

IMPACT

The negative impact of halogenated compounds has been known
since long from a toxicological point of view. However, the
role of the (gut) microbiota has not been well-incorporated into
the study of interactions between environmental exposures and
health outcomes (Dietert and Silbergeld, 2015).

The impact of halogenated compounds on gut microbiota
has mostly been studied using rodent models (Table 1). For
example, dietary exposure to 2,3,7,8-tetrachlorodibenzofuran
has been shown to induce inflammation and decrease the
Firmicutes to Bacteroidetes ratio in mice (Zhang L. et al.,
2015). A similar decreased Firmicutes/Bacteroidetes ratio in
mice was reported due to exposure to trichloroacetamide
(37) (Zhang L. et al., 2015) or chlorpyrifos (11) (Zhao
et al., 2016), and in juvenile goldfish due to exposure to
pentachlorophenol (15) (Kan et al., 2015) (Table 1). In contrast,
the Firmicutes/Bacteroidetes ratio increased in mice after 2,3,7,8-
tetrachlorodibenzo-p-dioxin exposure (Lefever et al., 2016).
Changes in the Firmicutes/Bacteroidetes ratio was first observed
in obesity studies and was subsequently addressed by various
studies, confirming or challenging its impact, or pointing to
technical artifacts (Ley et al., 2005; Schwiertz et al., 2010;
Bahl et al., 2012). Nevertheless, these ratios may in any case
indicate different levels of short chain fatty acids production, pH
and activity in the gut, and hence could be meaningful when
methodological bias is excluded (Duncan et al., 2009; Kolmeder
et al., 2015). Accordingly, treatment of mice with 2,3,7,8-
tetrachlorodibenzofuran enriched Butyrivibrio spp., common
butyrate-producing gut microbes, coupled with elevation of
butyrate and propionate in feces and cecal contents (Zhang L.
et al., 2015). In another study, oral exposure to polychlorinated
biphenyls decreased the overall abundance of bacterial species
in mice gut microbiota primarily by decreasing the levels
of Proteobacteria (Choi et al., 2013). Interestingly, exercise
attenuated alterations of mice gut microbiota composition (Choi
et al., 2013). Exercise has been shown to increase beneficial
metabolites, such as butyrate in the rat cecum (Matsumoto et al.,
2008).

Organohalogen POPs accumulate in adipose tissue in humans
because of their lipophilicity. These POPs have been shown to
bind to aryl hydrocarbon receptor (AHR), that is a transcription
factor involved in the regulation of biological responses to
planar aromatic (aryl) hydrocarbons (Arsenescu et al., 2008).
This xenobiotic sensor modulates the activity of immune and
nonimmune cells in the gut, and may represent an important
link between the environment and immune system perturbations
(Monteleone et al., 2012). In line with this, ahr-knockout
(Ahr−/−) mice did not show large shifts in gut microbial
composition in response to 2,3,7,8-tetrachlorodibenzofuran
exposure (Zhang L. et al., 2015). Modulation of gut microbiota
by AHR was proposed to play an important role in the induction
of obesity by chronic POP exposure (Myre and Imbeault,

2014). For instance, exposure to polychlorinated biphenyls has
been shown to impair glucose homeostasis in mice (Baker
et al., 2013). Furthermore, higher body burden of dioxins,
and polychlorinated biphenyls was reported in obese people as
opposed to lean people (Kim et al., 2011). A comprehensive
literature review on the impact of chlorinated POPs in humans
showed that rather than a few individual POPs, background
exposure to low-dose POP mixtures may promote type 2
diabetes and obesity (Lee et al., 2014). In another survey,
evaluation of 72 epidemiological studies revealed the strongest
positive correlation of diabetes with organochlorine than non-
organochlorine POPs (Taylor et al., 2013).

In a recent in vitro study, the Simulator of the Human
Intestinal Microbial Ecosystem (SHIME) model was inoculated
with feces from healthy humans, and subsequently exposed
to chronic and low-doses of the insecticide chlorpyrifos (11).
This induced major changes in the microbial community, in
particular, increased numbers of Enterococcus and Bacteroides
spp., and decreased numbers of lactobacilli and bifidobacteria,
the latter including probiotics commonly associated with
health benefits (Joly et al., 2013). Compositional shifts in
intestinal bacterial community structure and distortion of
their metabolic functions were similarly reported due to
exposure of rats to chlorpyrifos (Zhao et al., 2016; Fang
et al., 2018) (Table 1). In another study, oral exposure of bees
to the organochlorine fungicide chlorothalonil (16) induced
microbial changes, increased putative genes for oxidative
phosphorylation and declined sugar metabolism and peptidase
potential (Kakumanu et al., 2016). In contrast to these reports,
early-life exposure to the estimated environmental concentration
of atrazine (12) (200 µg/L) did not affect gut bacterial diversity
or community composition of tadpoles (in vivo or in vitro) or
adult frogs (Knutie et al., 2018). Discrepancies may arise due to
dose, timing, route of exposure, host type and metabolism, and
the applied chemical differences.

Besides the known impact of (halogenated) antibiotics in
inducing major but partly reversible changes in gut microbiota
composition (Dethlefsen and Relman, 2011; Vrieze et al.,
2014), an increasing number of studies have shown microbiota
perturbations by non-antibiotic biocides. For example, a recent
comprehensive screening of more than 1,000 non-antibiotic
drugs against 40 representative gut bacterial strains showed that
24% of the drugs with human targets inhibited the growth
of at least one strain in vitro (Maier et al., 2018). Some
intensively used organohalogen drugs such as thyroxine (L) (24),
a medication used to treat thyroid hormone deficiency, and
the anti-inflammatory diclofenac (25) were among the tested
compounds (Maier et al., 2018). In another study, adolescent
rats receiving triclosan orally at levels comparable to human
exposures showed lower gut microbiota diversity and more
noticeable compositional changes, whereas these differences
were diminished in adult rats (Hu et al., 2016). Moreover,
triclosan exposure was reported to reduce alpha diversity in
the gut microbiota of rats (Kennedy et al., 2016; Gao et al.,
2017) (Table 1). In contrast, triclosan exposure experiments in
humans have not shown major perturbations in the gut and oral
microbiota (Poole et al., 2016; Ribado et al., 2017) (Table 1).
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TABLE 1 | Impact of halogenated compounds on gut microbiota and host (where applicable).

Compound,

concentration and

duration of use

Compound

type

Study model Impact on gut microbiota Impact on host References

2,3,7,8-

tetrachlorodibenzofuran, 24

µg/kg for 5 days

POP C57BL/6J mice

(Ahr+/+) and

C57BL/6J

congenic mice

(Ahr−/−)

Decreased Firmicutes/Bacteroidetes

ratio; enriched Butyrivibrio spp. and

depleted Oscillibacter spp. in cecal

contents; production of short chain

fatty acids like butyrate

Altered bile acid metabolism;

significant inflammation and host

metabolic disorders as a result of

activation of bacterial fermentation;

altered hepatic lipogenesis,

gluconeogenesis and glycogenolysis

in an Ahr-dependent manner

(Zhang L.

et al., 2015)

Polychlorinated biphenyls

(PCB) congeners (PCB153,

PCB138, and PCB180) total

dose of 150µmol/kg for 2

days

POP C57BL/6 mice Decreased overall abundance of

bacterial species; decreased levels of

Proteobacteria; exercise attenuated

PCB-induced alterations of gut

microbiota composition; abundant

Lactobacillales and depleted

Erysipelotrichaceae bacterium

C11_K211 (Tenericutes phylum) in the

exercised group

Exercise provided protection against

PCB-induced changes in the gut

microbiota than sedentary mice.

Choi et al.,

2013

2,3,7,8-tetrachlorodibenzo-

p-dioxin, 0-30 µg/kg every

4 days for 28 and 92 days

POP C57BL/6 mice Significant increase of fourteen

antimicrobial resistance genes and

mobile genetic elements genes

typically observed in

Enterobacteriaceae

Increased hepatic fat accumulation;

depletion of immune cell expression

and populations of macrophage and

dendritic cells in the intestinal lamina

propria

Fader et al.,

2015;

Stedtfeld

et al., 2017

2,3,7,8-tetrachlorodibenzo-

p-dioxin, biweekly with a

dose of 6 µg 2,3,7,8-

tetrachlorodibenzo-p-dioxin

/kg for 26 weeks

POP CD-1 mice Increased Firmicutes/Bacteroidetes

ratio; increased Lactobacillaceae and

Desulfovibrionaceae, and decreased

Prevotellaceae and ACKM1

Liver toxicity, polydipsia (excessive

thirst), polyphagia (increased appetite)

and prediabetes

Lefever et al.,

2016

Chlorpyrifos, 1mg everyday

for 30 days

Pesticide Human

Intestinal

Microbial

Ecosystem

(SHIME)

Compositional change in the

microbial community; increased

numbers of Enterococcus and

Bacteroides spp. and decreased

numbers of lactobacilli and

bifidobacteria

Joly et al.,

2013

0.3 or 3mg chlorpyrifos/kg

bodyweight/day or for 9

weeks in rats fed a normal

(NF) or high fat (HF) diet

Pesticide Wistar rats Reduced relative abundance of

Aerococcus, Brevundimonas, and

Trichococcus in NF-fed rats, and

Olsenella, Clostridium sensu stricto 1,

Amphibacillus, Enterorhabdus, and

Alloprevotella in HF-fed rats

Pro-obesity phenotype in NF-fed rats;

significantly reduced serum insulin,

C-peptide, and amylin concentrations

in NF- and HF-fed rats; no impact on

serum glucose and lipid profiles

Fang et al.,

2018

1mg chlorpyrifos /kg

bodyweight in corn oil once

daily for 30 days

Pesticide Mus musculus

mice

Decreased Firmicutes/Bacteroidetes

ratio; reduced relative abundance of

Lactobacillaceae and increased

relative abundance of Bacteroidaceae

Alterations of urine metabolites

related to the metabolism of amino

acids, energy, short chain fatty acids,

phenyl derivatives and bile acids

Zhao et al.,

2016

Chlorothalonil, 10 µg/L in a

30% sucrose solution for 6

weeks

Pesticide Honey bees

(Apis mellifera)

Perturbed bacterial communities but

not fungal communities; reduced

relative abundance of

Lactobacillaceae and increased

relative abundance of

Enterobacteriaceae and

Caulobacteraceae; increased putative

genes for oxidative phosphorylation

and declined genes for sugar

metabolism and peptidase

Kakumanu

et al., 2016

Pentachlorophenol, 0–100

µg/L for 28 days

Pesticide Goldfish

(Carassius

auratus)

Decreased Firmicutes/Bacteroidetes

ratio; increased relative abundance of

Bacteroides and decreased relative

abundance of Chryseobacterium,

Microbacterium, Arthrobacter and

Legionella

Accumulation of PCP in the fish

intestinal tract in a time- and

dose-dependent manner; reduced

fish body weight and liver weight;

antioxidant system disturbance

Kan et al.,

2015

(Continued)
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TABLE 1 | Continued

Compound,

concentration and

duration of use

Compound

type

Study model Impact on gut microbiota Impact on host Reference

Triclosan at 0.05 mg/kg

body weight, administration

through milk until 28 days

and afterwards through oral

gavage three times a week

till day 181

PPCP Sprague

Dawley rats

Decreased Firmicutes /Bacteroidetes

ratio; increased Deltaproteobacteria

and Lactobacillus, increased

Lachnospiraceae

Reduction in the bodyweight in

adolescent rats

Hu et al.,

2016

Triclosan in water solution (2

mg/L) for 13 weeks

PPCP C57BL/6 mice Decreased alpha diversity; depletion

of Turicibacteraceae,

Christensenellaceae and Clostridiales;

enrichment of gut bacterial genes

related to triclosan resistance, stress

response, antibiotic resistance and

heavy metal resistance

Gao et al.,

2017

Triclocarbon, supplemented

in feed (0.1% w/w) for 12

days

PPCP Sprague

Dawley rats

Significantly reduced phylogenetic

diversity of gut among exposed dams

and neonates during gestation and

lactation; dominance of

Enterobacteriaceae

Kennedy

et al., 2016

Commercially available

wash products either

containing or not containing

triclosan for 1 year

PPCP Humans: 39

pairs of

mothers and

babies

No global reconstruction or loss of

microbial diversity of either infant or

maternal gut microbiotas; broadly

antibiotic-resistant species from the

phylum Proteobacteria were enriched

in stool samples from mothers

Ribado et al.,

2017

Triclosan-containing PPCP

(4 months) and

non-triclosan-containing

PPCP (4 months)

PPCP Humans (16

persons)

No differences in microbiota

composition, species richness and

overall diversity of the stool, molar, or

incisor

Higher urinary concentrations of

triclosan in all volunteers during the

triclosan period; no differences in

metabolic or endocrine markers, or

weight

Poole et al.,

2016

Chloroacetate,

bromoacetate,

dichloroacetate,

dibromoacetate,

trichloroacetate,

tribromoacetate, or

bromochloroacetate; 1

gm/ml of each compound in

selective gorwth media

DBP Incubations of

CDF rat cecal

microbiota

Toxic impacts on cecal microbiota

especially to the enterococci;

increased activities for

β-glucuronidase, β-galactosidase,

β-glucosidase, azoreductase,

nitroreductase, dechlorinase, and

dehydrochlorinase that can affect the

biotransformation of co-exposed

compounds

Nelson et al.,

2001

Trichloroacetamide, 50, 500

and 5000 µg/l for 90 days

DBP Mus musculus

mice

Decreased Firmicutes/Bacteroidetes

ratio with an increase in the

concentration of trichloroacetamide;

Increased relative abundance of

Bacteroidaceae,

Porphyromonadaceae,

Sphingobacteriaceae,

Aerococcaceae, and

Erysipelotrichaceae and decreaseed

relative abundance of Bacillaceae,

Heliobacteriaceae,

Syntrophomonadaceae

Disruption of the host metabolism,

weight loss, altered choline

metabolites in urine samples;

decreased urine tyrosine and

intestinal lesions; disordered amino

acid and lipid metabolism, alterations

in the serum metabolome, including

altered choline, trimethylamino oxide,

as well as hepatotoxicity and

cytotoxicity

(Zhang et al.,

2013; Zhang

Y. et al., 2015)

Since humans experience much lower triclosan exposures in
products such as soap and toothpaste that are rinsed off
immediately, the impacts observed in high-dose and acute
animal exposures might not be observed in humans. However,
a positive correlation was reported between the exposure to
triclosan and the occurrence of Staphylococcus aureus as an
opportunistic pathogen in the human nasal microbiota (Syed

et al., 2014). There are also concerns regarding contribution
of non-antibiotic antimicrobials to antibiotic resistance due to
cross-resistance (Hartmann et al., 2016; Maier et al., 2018).
For example, prolonged exposure to triclosan was associated
with developing resistance and cross-resistance to ampicillin
and/or ciprofloxacin in S. aureus and Escherichia coli (Wesgate
et al., 2016). Exposure of a susceptible Pseudomonas aeruginosa
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strain to triclosan has been shown to select multidrug-resistance
mediated by multidrug efflux pumps (Chuanchuen et al., 2001).
Similarly, abundance of several multidrug-resistance efflux pump
genes was reported to significantly increase after triclosan
exposure (Gao et al., 2017). Recent studies on the mouse gut
indicated the selective pressure of 2,3,7,8-tetrachlorodibenzo-p-
dioxin in promoting blooms of Enterobacteriaceae, that harbor
antimicrobial resistance genes (Stedtfeld et al., 2017) (Table 1).
Similar increased levels of Enterobacteriaceae were reported in:
(i) the gut of honey bees exposed to the organochlorine fungicide
chlorothalonil (16) (Kakumanu et al., 2016), and (ii) the human
gut due to gastrointestinal infection (Lupp et al., 2007) and
antibiotic therapies (Sekirov et al., 2008). Finally, DBPs have
the potential to select for antibiotic resistance (Li et al., 2016;
Zhang et al., 2016). These reports indicate similar impacts despite
different types of stressors and hosts.

FATE

Extensive studies have been performed to understand the
fate of xenobiotics by oxidative and conjugative enzymes in
the liver (Zanger et al., 2008; Zanger and Schwab, 2013).
Among the hepatic enzymes, cytochrome P-450s are the major
oxidative enzymes for transformation of (halogenated) lipophilic
xenobiotics and drugs e.g., PCDDs (Hu and Bunce, 1999) and
diclofenac (Leemann et al., 1993). In contrast, much less is known
about the dehalogenation and/or degradation of halogenated
xenobiotics by intestinal microbiota that employ hydrolytic and
reductive mechanisms (Sousa et al., 2008).

Cultivation-Dependent View
Understanding of the fate of halogenated xenobiotics using
cultivation-based studies has been derived from the exposure of
the intestinal contents or specific microbial isolates of intestinal
origin. For example, incubation of chloramphenicol, that
contains a nitrobenzene group and an amide of dichloroacetic
acid, with human fecal bacteria led to the hydrolysis of the
amide linkage and reduction of the nitro group to an amine
on the aromatic ring (Figure 3A) (Holt, 1967). Nitroreductases
reducing nitro (–NO2) functional groups to the corresponding
amines are an important group of enzymes identified for the
gut microbial xenobiotic metabolism (Rickert et al., 1981; Claus
et al., 2016). Another example of nitroreductive metabolism
of organohalogens was shown for clonazepam, a medication
used to prevent and treat seizures and panic disorder, that
was converted to 7-aminoclonazepam by rat intestinal lumen
microbiota (Figure 3B) (Elmer and Remmel, 1984). In contrast
to such amine group formation, amine group removal by
human intestinal microbiota was reported for the anti-fungal
5-fluorocytosine (Figure 3C) (Harris et al., 1986; Vermes
et al., 2003). Susceptible fungi contain a cytosine deaminase
which converts 5-fluorocytosine to 5-fluorouracil (Figure 3C).
The latter is further metabolized to 5-fluorodeoxyuridylic
acid, an inhibitor of thymidylate synthetase and subsequently
DNA synthesis (Vermes et al., 2000). Although human host
cells lack the deaminase enzyme, 5-fluorocytosine conversion
to 5-fluorouracil by the human intestinal microbiota plays

an important role in the development of hematologic and
gastrointestinal toxicity (Harris et al., 1986). Co-administration
of 5-fluorocytosine with the antiviral drug sorivudine led to
18 acute deaths due to an unknown lethal gut microbial
metabolism (Okuda et al., 1998). Further research has revealed
that intestinal Bacteroides species, namely Bacteroides vulgatus,
B. thetaiotaomicron, B. fragilis, B. uniformis, and B. eggerthii can
convert sorivudine to (E)-5-(2-bromovinyl)uracil (Nakayama
et al., 1997) (Figure 3D), whereas the latter was barely
detected in the plasma of germ-free rats (Ashida et al.,
1993). A key liver enzyme that regulates the systemic 5-
fluorocytosine level is subsequently inactivated by (E)-5-(2-
bromovinyl)uracil, leading to toxic levels of 5-fluorocytosine
and death in rats and humans (Okuda et al., 1998). This is an
important example of the role of gut microbiota in toxification
processes.

Reductive dehalogenation of dichlorodiphenyltrichloroethane
to dichlorodiphenyldichloroethane (Figure 3E) has been shown
in anoxic incubations of the strictly anaerobic human intestinal
bacterium Eubacterium limosum (Yim et al., 2008) and rat
intestinal microbiota (Mendel and Walton, 1966). However, it is
not known if this is a bioactivation or detoxification mechanism
as dichlorodiphenyldichloroethane is still an endocrine disruptor
(Claus et al., 2016). Reductive dehalogenation can be mediated
co-metabolically by vitamin B12 (cobalamin) that is synthesized
by some human gut microbes (Degnan et al., 2014). In contrast,
metabolic reductive dehalogenation is mediated by specific
bacterial groups that can use organohalogens as their terminal
electron acceptors (Smidt and de Vos, 2004; Atashgahi et al.,
2016). A co-culture of Clostridium perfringens and C. beijerinckii
was also shown to reductively dehalogenate hexachlorobiphenyl
to pentachlorobiphenyl (Figure 3F) and tetrachlorobiphenyl to
trichlorobiphenyl (De et al., 2006). Gut microbiota was also
shown to be involved in generation of methylsulfone (MeSO2)
metabolites from polychlorinated biphenyls (PCBs) through a
series of reactions in combination with the host cells (Figure 3G)
(Bakke et al., 1982; Brandt et al., 1982). MeSO2–PCBs can bind
to specific proteins and accumulate in the lipophylic tissues with
adverse effects (Shigematsu et al., 1978). Exposure to 2,3,7,8-
tetrachlorodibenzofuran has been shown to enhance the level of
Flavobacteria in the gut of mice (Zhang L. et al., 2015). These
bacteria are reported to possess glutathione-dependent reductive
dehalogenase activity (Xun et al., 1992), although 2,3,7,8-
tetrachlorodibenzofuran dehalogenation by the gut microbiota
has not been shown yet.

Intestinal lactobacilli have been reported to degrade
organohalogens in vitro. For instance, Lactobacillus lactis,
L. fermentum, L. plantarum, E. coli, and Enterococcus faecalis
were tested for chlorpyrifos degradation potential. The results
indicated that besides E. coli, L. lactis and L. fermentum
could grow in the presence of over 1.5 mg/mL chlorpyrifos
(Harishankar et al., 2013). Similarly, four lactic acid bacteria
isolated from kimchi fermentation in the presence of 200 mg/L
chlorpyrifos were reported to use this pesticide as the sole
source of carbon and phosphorus (Cho et al., 2009). Moreover,
lactic acid bacteria seeded to skimmed milk were shown to
degrade the insecticide trichlorfon (17) (Zhao and Wang, 2012).
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FIGURE 3 | Proposed reactions for different organohalogens (A–G) mediated by gut microbiota. Reaction sites are indicated with red dashed circles.

Frontiers in Physiology | www.frontiersin.org 10 July 2018 | Volume 9 | Article 888

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Atashgahi et al. Reciprocal Xenobiotic-Microbiota Interactions

FIGURE 4 | Genes encoding different dehalogenases found in 216 out of 670 bacterial and archaeal genomes of gut origin. The code to reproduce the figure is

available at https://github.com/mibwurrepo/Atashgahi-et-al.-XenobioticReview2018.

However, the actual impact of lactobacilli on organohalogen
fate in the gut is not known, especially since this bacterial
group seems particularly sensitive to organohalogen exposure
(Table 1).

Cultivation-Independent View
As a complementary approach to cultivation, metagenomic
approaches can also be used to infer xenobiotic metabolism
potential by the gut microbiota (Haiser and Turnbaugh,
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2013; Spanogiannopoulos et al., 2016). Due to environmental
persistence and toxicity, great attention has been given
to understand microbial transformation of halogenated
xenobiotics in environmental studies with the end goal of
bioremediation. Indeed a variety of microbial dehalogenation
mechanisms have been described that can remove halogens from
organic compounds by oxidation, reduction and substitution
mechanisms that are employed in co-metabolic and/or energy-
yielding modes (van Pée, 1996; Fetzner, 1998; Janssen et al., 2001;
Smidt and de Vos, 2004).

Although a metagenomic view of xenobiotic metabolism
in the gut has been provided (Haiser and Turnbaugh, 2013;
Spanogiannopoulos et al., 2016), specific information on the
prevalence and diversity of known dehalogenase-encoding genes
in the gut metagenome is lacking. Therefore, we surveyed
the Joint Genome Institute Integrated Microbial Genomes
& Microbiome System (JGI-IMG/MER) database for the
occurrence of different dehalogenating gene classes (Table S1)
in 670 bacterial and archaeal genomes from fecal origin (Table
S2), 254metagenomes obtained from human fecal samples (Table
S3) and 86 metagenomes obtained from gut/rumen fluid/fecal
samples of animals (Table S4). The metadata and criteria used
for the selection of genomes and metagenomes are listed in
Tables S2–4. The codes used for the analysis and visualization
are provided in supplementary information. The results showed
that at least one dehalogenating gene was present in 32.2% of
the bacterial and archaeal genomes, and in 61 and 75.6% of
the metagenomes derived from human and non-human origins,
respectively (Tables S5–S7). Among these, five types of genes
were found in the bacterial genomes (Figure 4, Table S5) and
human metagenomes (Table S6), and six types of genes in non-
human metagenomes (Table S7). Four types of genes were shared
among the three datasets and were predicted to code for (S)-
2-haloacid dehalogenase (EC:3.8.1.2), haloacetate dehalogenase
(EC:3.8.1.3), haloalkane dehalogenase (EC:3.8.1.5), and reductive
dehalogenase (EC:1.21.99.5). In contrast, a canonical gene for
chlorate dismutase (EC: 1.13.11.49) was not found in the
human metagenomes whereas that for atrazine chlorohydrolase
(EC:3.8.1.8) was absent from the bacterial genomes. Atrazine
chlorohydrolase catalyzes the conversion of the herbicide
atrazine to hydroxyatrazine, the first step in the atrazine
degradation pathway (Mandelbaum et al., 1995).

A gene for (S)-2-haloacid dehalogenase was the most
abundant in both the genome (214 genes) and metagenome
(2612 genes in human and 4549 genes in non-human)
datasets indicating exposure of gut microbiota to haloacids
that are common DBPs (Richardson et al., 2007). Many of
the known core gut genera, such as Faecalibacterium, Blautia,
Roseburia, Alistipes, Eubacterium (Shetty et al., 2017) harbor
a (S)-2-haloacid dehalogenase gene in their genome (Figure 4,
Table S5). The encoded enzyme belongs to the family of
hydrolases, acting specifically on halide bonds in α-substituted
haloacids (Janssen et al., 2001). Interestingly, a (S)-2-haloacid
dehalogenase encoding gene co-occurred with that of chlorite
dismutase in 14 microbial genomes (Figure 4, Table S5). Chlorite
dismutase mediates the last step in chlorate reduction splitting
chlorite to chloride and oxygen (Liebensteiner et al., 2016).

An environmental bacterium, Pseudomonas chloritidismutans
AW-1T, which similarly harbored these two genes, was recently
shown to concurrently degrade haloacids and chlorate as the
electron donor and acceptor, respectively (Peng et al., 2017). This
is an interesting finding considering that haloacids and chlorate
are common DBPs in drinking water resources (Richardson
et al., 2007) that might be degraded by the gut microbes
harboring these genes. Further, the oxygen produced from
chlorite dismutation can be used for degradation of haloacids
(Peng et al., 2017) or other organic compounds (Oosterkamp
et al., 2013; Atashgahi et al., 2018b) in an “intra-aerobic” pathway.
If functional, this can be an important metabolism in the gut
environment where oxygen is largely unavailable to serve as a
terminal electron acceptor.

The well-studied reductive dehalogenase genes were more
abundant in the non-human than in the human metagenomes
(Table S7). Interestingly, of the 59 reductive dehalogenase genes
found in the non-human metagenomes, 53 were from the
rumen content of sheep, goat and cow. This implies that the
rumen content of ruminant farm animals is an appropriate
environment for the reductive dehalogenation metabolism
that represents useful but largely unexplored sources for
future enrichment/isolation of organohalide-respiring bacteria.
These bacteria reductively dehalogenate organohalogens by
replacing the halogen substitutes with hydrogen in a process
known as organohalide respiration (Smidt and de Vos, 2004;
Atashgahi et al., 2016). This metabolism usually reduces
the toxicity of organohalogens and makes the otherwise
chemically locked organohalogens available to other microbial
metabolisms such as fermentative and aerobic degradation.
Organohalide-respiring bacteria have only been found in
pristine and contaminated environments impacted by natural
or anthropogenic organohalogens (Atashgahi et al., 2018a). The
activity of these microbes in host-associated ecosystems and
their potential impacts on the organohalogen fate especially
in the gut remains largely unknown. There is only one study
showing reductive dehalogenation of polychlorinated biphenyls
by the co-culture of Clostridium perfringens and C. beijerinckii as
prominent species in the human gut (De et al., 2006) (Figure 3F).
Interestingly, we found six reductive dehalogenase genes in the
genomes of Clostridia (Figure 4, Table S5). This may point to
an unrecognized reductive dehalogenation potential in the gut
microbiota. Of interest, the gut isolate strain DP7, belonging to
the genus Desulfitobacterium (Clostridia) that is known for its
active organohalogen respiration metabolism (Kruse et al., 2017),
was reported to lack reductive dehalogenation activity (van de Pas
et al., 2001) and the corresponding genes (Kruse et al., 2017).

CONCLUSIONS AND OUTLOOK

The toxicant-microbiota interaction has emerged in recent years
as one of the novel concepts from the intensive research
on the human microbiome. The gut microbiota constitutes a
critical zone for xenobiotic (de)toxification and sequestration
at the interphase between the external environment and our
mucosal epithelial cells. An important class of toxicants are
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halogenated compounds from anthropogenic and natural sources
that come into contact with the human gut and other body
parts mainly by ingestion of, or exposure to contaminated food
and water. Although canonical toxicological approaches using
short-term high-dose exposure experiments are informative
about the toxicity and impact of halogenated compounds, they
do not represent scenarios of chronic exposure to low-level
xenobiotic cocktails throughout life. The ingested concentrations
of the halogenated xenobiotics in food and water resources
are in most cases below the regulatory thresholds. However,
little is known about the physiological impact, reactivity,
bioaccumulation in food chains, additive/cumulative toxicity
of these emerging contaminants, and their (bio)transformation
products. For example, even at trace concentrations, mixtures
of biocides, antibiotics, and heavy metals have the potential
to contribute to the emergence, maintenance and transmission
of antibiotic-resistant and disease-causing bacteria (Gullberg
et al., 2014; Pal et al., 2015). Therefore, future studies are
necessary to reveal the impact of halogenated (micro)pollutants
on the gut microbial community membership, gene expression,
physiology, metabolite profile, antibiotic resistance genes, and
also parallel impacts on the host. Long-term incubations of
the gut contents/isolates with environmentally relevant doses
and diversity of halogenated compounds, in combination with
other micropollutants, should aid in understanding the actual
consequences of chronic low-dose exposures.

Even less information is available on the specific
microorganisms responsible for halogenated xenobiotic
metabolism, the molecular mechanisms and biotransformation
pathways involved that can either diminish or enhance the
toxicity. The metagenomic approach described here showed that
genes involved in dehalogenation are widespread among gut
bacteria, and this may impact flux, toxicity, bioavailability and
fate of halogenated compounds. Future cultivation and omics
experiments are necessary to test the actual metabolism of the
halogenated compounds by the gut microbiota. To this end, we
can immensely benefit from the wealth of knowledge gained
about the metabolism of halogenated xenobiotic compounds

in terrestrial and aquatic environments (Janssen et al., 2001;
Smidt and de Vos, 2004; Atashgahi et al., 2018a) and high-
throughput cultivation of the gut microbiota (Ingham et al.,
2007; Lagier et al., 2016). These approaches should be coupled
with untargeted metabolomics using high-resolution mass
spectroscopy to identify xenobiotics and biotransformation
products. Untargeted metabolomics has the potential to aid in
determination of pathways and mechanisms of action (Warth
et al., 2017).

Given the immense potential of gut microbiota to alter
the chemical structure and bioactivity of xenobiotics with
beneficial (Shin et al., 2013) or severely detrimental impacts
(Okuda et al., 1998), assessments of xenobiotic metabolism
should be an integral part of designing drugs and chemicals
such as PPCPs and pesticides, informing toxicology risk
assessment, improving nutrition, and guiding personalized
medicine.
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