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During the period when the ankle joint is kept in a dorsiflexed position, the soleus
(SOL) H-reflex is inhibited. The nature of this inhibition is not fully understood. One
hypothesis is that the decrease in spinal excitability could be attributed to post-activation
depression of muscle spindle afferents due to their higher firing rate during the stretch-
and-hold procedure. As the static stretching position is maintained though, a partial
restoration of the neurotransmitter is expected and should mirror a decrease in H-reflex
inhibition. In the present study, we explored the time course of spinal excitability during a
period of stretching. SOL H-reflex was elicited during a passive dorsiflexion movement,
at 3, 6, 9, 12, 18, 21, and 25 s during maximal ankle dorsiflexion, during plantar
flexion (PF) and after stretching, in 12 healthy young individuals. Measurements during
passive dorsiflexion, PF and after stretching were all performed with the ankle at 100◦

angle; measurements during static stretching were performed at individual maximal
dorsiflexion. H-reflex was strongly inhibited during the dorsiflexion movement and at
maximal dorsiflexion (p < 0.0001) but recovered during PF and after stretching. During
stretching H-reflex showed a recovery pattern (r = 0.836, P = 0.019) with two distinct
recovery steps at 6 and 21 s into stretching. It is hypothesized that the H-reflex inhibition
observed until 18 s into stretching is the result of post-activation depression of Ia
afferent caused by the passive dorsiflexion movement needed to move the ankle into
testing position. From 21 s into stretching, the lower inhibition could be caused by a
weaker post-activation depression, inhibition from secondary afferents or post-synaptic
inhibitions.

Keywords: H-reflex, static stretching, post-activation depression, spinal excitability, ankle dorsiflexion, synaptic
inhibitions

INTRODUCTION

During a passive lengthening movement of ankle plantar flexor muscles a decrease in H-reflex
can be observed (Mark et al., 1968; Delwaide and Hugon, 1969; Burke et al., 1983; Romano
and Schieppati, 1987; Vujnovich and Dawson, 1994; Nielsen et al., 1995; Hultborn et al.,
1996; Voigt and Sinkjær, 1998; Pinniger et al., 2001; Nordlund et al., 2002; Avela et al., 2004;
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Duclay and Martin, 2005; Robertson et al., 2012; Grosprêtre
et al., 2014). This commonly detected phenomenon is generally
attributed to presynaptic inhibitions (Mark et al., 1968; Romano
and Schieppati, 1987; Nielsen et al., 1995; Voigt and Sinkjær,
1998). H-reflex is also inhibited throughout the time when the
muscle is kept at the static end position of a stretch (Robinson
et al., 1982; Etnyre and Abraham, 1986; Guissard et al., 1988,
2001; Vujnovich and Dawson, 1994; Hwang, 2002; Masugi et al.,
2017). In this case though, presynaptic inhibitions having a
short duration (Eccles et al., 1962; Kohn et al., 1997), it has
been suggested that the decrease in spinal excitability could
be attributed to reduced transmitter release from Ia afferents
(Nielsen et al., 1995; Hultborn et al., 1996; Wood et al., 1996).
However, H-reflex recovers immediately as the ankle joint is
returned to its neutral position after a period of static stretching
(Guissard et al., 1988, 2001; Vujnovich and Dawson, 1994;
Yapicioglu et al., 2013; Opplert et al., 2016; Budini et al.,
2018). This supports the hypothesis that the H-reflex goes
through a recovery phase during the passive plantar flexion
(PF) needed to reposition the foot to its neutral angle or
during the application of the static stretch itself. In theory, if
the reduction in spinal excitability is caused by post-activation
depression when the muscle is kept in a static stretch position,
the size of the H-reflex during static stretching should reflect
the availability of neurotransmitter at Ia endings and indirectly
reflect the afferent activity from muscle spindles. Therefore,
neurotransmitter availability should decrease quickly during the
passive dorsiflexion movement until reaching the static end
position of the stretch when muscle spindles afferents activity
is maximal (Matthews, 1933; Cooper, 1961). In combination
with presynaptic inhibitions, this results in a considerable
reduction in H-reflex size. Similarly, during a passive muscle
shortening, since afferent firing of both type I and II fibers
from muscle spindles is drastically reduced (Matthews, 1933;
Cooper, 1961), neurotransmitter should be restored within few
seconds and the H-reflex recover accordingly. In the static
stretching position, the activity from muscle spindles afferents
differentiate markedly: type II afferents is increased, whilst the
activity of Ia afferents is much lower compared to the passive
lengthening although still higher compared to rest condition
and show a slow tendency to further decrease as the position
is maintained (Matthews, 1933; Cooper, 1961). This reduction
in firing rate should give the possibility to partially restore
the neurotransmitter and should mirror a decrease in H-reflex
inhibition. Therefore, by monitoring the time course of H-reflex
inhibition during static stretching one could expect a recovery
pattern.

The time course of H-reflex inhibition during static stretching
has never been explicitly investigated. Previous studies (Robinson
et al., 1982; Guissard et al., 1988) reported some results of
H-reflex recovery during stretching, however, these are presented
only marginally and without sufficient details and analysis to
be able to draw any conclusion. Moreover, as highlighted in a
recent review (Budini and Tilp, 2016), to be able to average an
appropriate number of H-reflexes at the same time point during
or following an intervention, the procedure has to be repeated
several times. Otherwise, what one would be looking at is a mean

value that does not represents the time course with appropriate
time resolution.

The present study overcomes this methodological pitfall
by repeating the stretching procedure several times and aims
to monitor the soleus (SOL) H-reflex inhibition behavior
during the entire period of static stretching of ankle plantar
flexors. Additional aims were to monitor H-reflex values during
dorsiflexion, PF, and after stretching.

MATERIALS AND METHODS

Participants
Twelve healthy volunteers (24.1 ± 1.9 years, body mass
63.2 ± 9.3 kg, and stature 171.2 ± 10.2 cm) were recruited and
required to abstain from any strenuous physical activity on the
testing day. The study was approved by the University of Graz
ethics board (GZ. 39/77/63 ex 2013/14) and written informed
consent was obtained from all volunteers.

Study Design
The experiment consisted in the measurement of H-reflex: during
passive ankle dorsiflexion, at different time points during static
stretching, during passive ankle PF, and following stretching.
Eight H-reflexes stimulations were performed at each of 3, 6,
9, 12, 18, 21, and 25 s into stretching, respectively. Fourteen
H-reflexes were elicited during dorsiflexion, and 16 during PF as
well as 90 s after stretching, respectively.

Experimental Procedures
Subjects sat on an isokinetic dynamometer (CON-TREX MJ,
Dübendorf, Switzerland) with the trunk at 110◦, the right knee
fully extended and the foot resting on the dynamometer footplate
with the ankle angle set at 100◦ (10◦ PF deviating from a neutral
position at 90◦). By using a remote control, the volunteers were
instructed to adjust the dorsiflexion isokinetic rotation operated
by the dynamometer around the foot plate until the point of
perceived maximal dorsiflexion. Participants were asked to keep
their knee extended and to relax during the procedures.

Once the maximal individual dorsiflexion was defined,
subjects left the dynamometer and were prepared for
electromyographic (EMG) recording from SOL muscle.
Subsequently, the volunteers sat down again on the dynamometer
chair (position described above) and were then instructed to
relax meanwhile two complete H-M stimulation ramps and
15 H-reflexes at about 5% Mmax for baseline reference were
collected. During the experiment, stimulations were delivered
either with the ankle at 100◦ (during PF, during dorsiflexion,
and after stretching) or at maximal individual dorsiflexion
(during stretching) (Figure 1). To do this, following the baseline
recordings, the foot was initially passively plantar flexed to a
starting position of 110◦. In this way, the stimulations during
dorsiflexion movements (20◦/s) could be delivered when the
ankle reached 100◦. Once individual maximal dorsiflexion was
reached, the position was kept for 30 s, during this period,
one H-reflex was delivered at one of the investigated time
points (3, 6, 9, 12, 18, 21, and 25 s). After static stretching
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FIGURE 1 | Stretching protocol and stimulation points.

the foot was passively plantar flexed (20◦/s) back to 110◦ and
a stimulation was delivered during the PF movement when
the ankle reached 100◦. The procedure was repeated a second
time with stimulations delivered only at maximal dorsiflexion,
following stretching the foot was passively rotated to 100◦ for
post-stretching measurements (Figure 1). This was repeated 30
times with randomly varying measurement time points in order
to collect a sufficient number of H-reflexes at the desired time
points.

Stimulations
Electrodes (Blue Sensor N, Ambu A/S, Ballerup, Denmark)
for recording H-reflex from the SOL muscle were placed in
monopolar configuration (as suggested by Hadoush et al., 2009);
the gain for the EMG signal was 180. All stimulations at
baseline (15 H-reflex and 2 H-M ramps), during dorsiflexion
and PF and after stretching were performed with the ankle
joint at 100◦ (Figure 1). Stimulations during stretching were
performed at individual maximal dorsiflexion position. H and
M-waves measured in SOL were elicited by electrical stimulation
(KeyPoint R© 2-channel) delivered to the tibial nerve by rectangular

pulses of 1.0 ms duration. The anode (5 cm × 9 cm; STIMEX
adhesive gel electrode) was placed on the patellar tendon, and
the cathode was placed in the popliteal fossa overlying the nerve
at a position that provided the greatest H-wave amplitude at
the smallest stimulus intensity possible. The stimulation intensity
used throughout the experiment was set to a value at which the
H-wave was still in its ascending phase and an M-wave was visible
(this stimulation intensity was usually close to the Hmax, and
corresponded to about 5% of the Mmax).

Data Analysis
Electromyography, foot displacement, and trigger signals were
synchronized (DEWESoftTM 7.0 recording system, DEWETRON
GmbH, Austria), digitized with a sampling frequency of 10 kHz,
stored on a PC. In order to avoid phase shift no low pass
filter was applied. Limitation of the bandwidth with 60 kHz
was determined by the isolation amplifier. No aliasing effect was
observed. Data was analyzed using custom algorithms developed
in Matlab (R2014b).

The H-reflexes recorded during stretching were checked
for stimulation intensity consistency and those related to

FIGURE 2 | Group average (squares) and individual values (lines) for H-reflex peak to peak at control (H-M ramp) and at each tested time point during stretching.
∗∗∗∗P < 0.0001.
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an M-wave showing peak to peak amplitude exceeding the
average of the 56 M-waves (eight stimulations for each of
the seven time points) by ±2 standard deviations were
discarded (Budini et al., 2017). On average 5.3 H-waves were
retained per measurement. Because the M-wave magnitude
is altered during stretching (Tucker and Türker, 2007), the
stimulation intensity during maximal dorsiflexion could not be
compared to the one used at baseline. For this reason, for
assessing the variation of the reflex during stretching, each
H-wave was compared to the average of as many H-waves
as possible induced with a similar stimulation intensity (±5%
of the elicited M-wave amplitude) collected during the H-M
ramps.

Statistical Analysis
Data were checked for normal distribution by Shapiro–Wilk test.

ANOVA for repeated measures, was used to compare the level
of H-reflex variation (expressed as percentage of control values)
at the different time points during stretching. Time course of
H-reflex during the stretching period was assessed with Pearson’s
correlation.

Comparisons between the amplitude of the H-waves expressed
as percentage of control waves, during dorsiflexion, stretching
(average over the entire stretching time), and PF and post-
stretching were assessed with an ANOVA for repeated measured
and Bonferroni post hoc test.

Comparison between variations from baseline for
dorsiflexion, PF and each stretching time point was assessed by
paired T-test or Wilcoxon with Bonferroni adjustment.

Paired T-test was used to compare H-waves at each time point
during stretching to the corresponding control H-waves collected
during the recruitment ramps. H-waves at dorsiflexion, PF and
after stretching were compared to the average H-waves at baseline
through paired T-test.

RESULTS

During Stretching
The amplitude of the H-waves collected at each time point
during stretching was smaller than the amplitude of the H-waves
elicited at similar stimulation intensity during the recruitment
ramps (P < 0.0001 for all comparisons) (Figure 2). This

FIGURE 3 | (A) Superimposed EMG tracks for each time point tested during stretching. (B) Three superimposed H-waves induced at 3, 12, and 25 s into stretching.
(C) Average peak to peak amplitude for eight M- and H-waves for each time point during stretching.
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FIGURE 4 | Time course of H-reflex inhibition during stretching for each
participant (dotted lines with diamonds) and group average (solid line with
squares). Group trend line is shown by the dashed line.

was observed in all but one volunteer who was excluded
due to inconsistency in stimulation intensity. As depicted
from a representative subject in Figure 3, the inhibition
was different between time points with a pattern to recover
from 3 to 25 s into stretching. Group average values
confirm both the differences between time points (P = 0.000,
F = 8.737) and the recovery pattern (r = 0.836, P = 0.019)
(Figure 4).

During Dorsiflexion and Plantar Flexion
H-reflex was on average 60.4% smaller during dorsiflexion than
at baseline (P = 0.000) whereas during PF and after stretching
it did not differ significantly to baseline (−1.8%, P = 0.203 and
+4%, P = 0.299, respectively). The level of H-reflex reduction
observed during dorsiflexion, stretching (average of all the
time points), PF, and post-stretching was different (P = 0.000,
F = 28.208), with a higher inhibition during stretching and
dorsiflexion compared to during PF (P = 0.041 and P = 0.005)
and post-stretching (P = 0.001 and P = 0.000) (Figure 5).
There were no differences between stretching and dorsiflexion
(P = 0.187) and between PF and post-stretching (P = 0.108).
When comparing H-reflexes during dorsiflexion and PF to
each time point during stretching, following Bonferroni-Holmes
correction, the inhibition during dorsiflexion was greater than the
inhibition at time point 21 and 25 only (P = 0.005 and P = 0.004,
respectively). Differently, H-reflex during PF was bigger than
H-reflex at every time point during stretching (P < 0.05 for all
comparison).

FIGURE 5 | Amplitude expressed as percentage of control values.
Comparison to control: ††††P < 0.0001; comparison to dorsiflexion:
∗∗∗P < 0.001 and ∗∗∗∗P < 0.0001; comparison to stretching: ‡P < 0.05 and
‡‡P < 0.01.

DISCUSSION

When a muscle is kept in an elongated position as during muscle
stretching, a reduction in H-reflex is consistently reported (for
review, see Budini and Tilp, 2016). Our result in this respect
is therefore in agreement with literature. About the nature of
this inhibition, mechanisms such as joint mechanoreceptors and
skin receptors (Robinson et al., 1982; Hultborn et al., 1996),
classical pre-synaptic inhibition (Hultborn et al., 1996; Wood
et al., 1996), and moto-neural excitability (Hultborn et al., 1996;
Budini et al., 2017, 2018) have all been excluded. Moreover,
activity from Ib afferents, that would normally feed inhibition

FIGURE 6 | Group average H-waves expressed as percentage of Mmax at
baseline and during stretching.
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to their homonymous muscles when tension is detected in the
tendons, can also be discarded because Golgi organs are relatively
insensitive to passive stretching (Burg et al., 1973; Jami, 1992).
Most of the authors therefore support the hypothesis that the
reduced size of the H-wave is to be attributed to reduced
transmitter release from Ia afferents (post-activation depression)
(Robinson et al., 1982; Nielsen et al., 1995; Hultborn et al., 1996;
Wood et al., 1996).

The time course of the H-reflex inhibition (Figure 4)
provides sustaining evidence to the post-activation depression
hypothesis. Indeed, as we anticipated, the reflex recovered
during the stretching time and this can be attributed to a
replenishment of neurotransmitter in response to reduced Ia
afferent activity. Type I fibers from muscle spindles have a basal
firing rate which increases during elongation of the spindle
which quickly decrease at the end of the elongation and then
further slowly decrease as the stretch is maintained (Matthews,
1933; Cooper, 1961). As the firing frequency decreases, more
transmitter becomes again available. Interestingly though, the
recovery phase we observed was not linear. As it can
be observed from the representative subject in Figure 3,
the inhibition was larger at 3 s into stretching, plateaued
between 6 and 18 s for then start recovering again from
21 s. This result was confirmed in almost every participant
(Figures 4, 6).

These recovery steps reflect the spindle behavior (for review,
see Hulliger, 1984) and can be attributed to the much higher
Ia firing rate during the dorsiflexion movement that caused
a stronger reduction of neurotransmitter release for several
seconds. Therefore the inhibition at 3 s into stretching should be
considered more as a protracted effect of the passive dorsiflexion
than the response to stretching itself. Similarly, the second
recovery step (6–18 s) can be thought as a weaker long lasting
effect of the dorsiflexion. Comparable results were reported
after a single passive ankle dorsiflexion where the inhibition
decreases drastically during the first 6 s for disappearing only
after 15 s (Nielsen et al., 1993, 1995; Hultborn et al., 1996;
Wood et al., 1996; Voigt and Sinkjær, 1998). In agreement,
in our study, the H-reflex reduction during dorsiflexion was
not different to the inhibition during stretching until 21 s into
stretching. In this perspective, the inhibition induced by the
static stretching alone should be considered the one starting 21 s
into stretching. Not having further time points after 25 s we do
not know whether a new plateau or a new recovery step will
follow.

The nature of the H-reflex inhibition from 21 s into stretching
remains unclear. We excluded the possibility that this could
be attributed to a long lasting inhibiting effect caused by the
passive dorsiflexion, but whether the inhibition is still caused by
a weaker post-activation depression of Ia terminals or some other
neuro mechanism cannot be distinguished with our protocol.
Firing frequency of muscle spindle secondary afferents increase
when a muscle is kept in elongated position (Matthews, 1933;
Cooper, 1961) and could possibly have a role as inhibiting
factors at presynaptic level. Alternatively, the depression of the
H-reflex can be the consequence of post-synaptic inhibition as

proposed by Guissard et al. (2001). Among the post-synaptic
inhibitory mechanisms, a variation in recurrent inhibition by
Renshaw cell, as already suggested (Guissard et al., 2001), could
be considered.

Study Limitations
A methodological requirement for the present study consisted
in repeating the stretching procedure several times. This can
raise the question whether some cumulative effects might have
influenced our results. In a recent work (Budini et al., 2018), we
adopted the same protocol and observed that H-reflex recovers
immediately to baseline level after stretching even if static
stretching bouts of 30 s are repeated many times. This result
suggests that in the present study the neuromuscular parameters
related to spinal excitability were likely reset after each stretching
bout without cumulative effects.

CONCLUSION

In conclusion, for the first time the course of H-reflex inhibition
throughout a period of static stretching was thoroughly explored.
H-reflex showed a greater inhibition within the first 3 s and a clear
recovery at 6 s; from 6 to 18 s a plateau was observed followed
by another recovery step at 21 s into stretching. This behavior
resembles the response of muscle spindles to a stretch-and-hold
procedure, which suggests that until 18 s the inhibition can be
attributed to the passive DF movement with related increased
activity from primary afferents and subsequent depletion of
neurotransmitter. Starting from 21 s the inhibition can be
attributed to static stretching and possibly caused by a weaker
post-activation depression, inhibition from secondary afferents
or post-synaptic inhibitions. Whatever the cause the H-reflex
shows a complete recover during PF and no effects were observed
after the procedure.
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