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In this study, we proposed a novel method for extracting the instantaneous respiratory

rate (IRR) from the pulse oximeter photoplethysmogram (PPG). The method was

performed in three main steps: (1) a time-frequency transform called synchrosqueezing

transform (SST) was used to extract the respiratory-induced intensity, amplitude and

frequency variation signals from PPG, (2) the second SST was applied to each extracted

respiratory-induced variation signal to estimate the corresponding IRR, and (3) the

proposed peak-conditioned fusion method then combined the IRR estimates to calculate

the final IRR. We validated the implemented method with capnography and nasal/oral

airflow as the reference RR using the limits of agreement (LOA) approach. Compared

to simple fusion and single respiratory-induced variation estimations, peak-conditioned

fusion shows better performance. It provided a bias of 0.28 bpm with the 95% LOAs

ranging from −3.62 to 4.17, validated against capnography and a bias of 0.04 bpm

with the 95% LOAs ranging from −5.74 to 5.82, validated against nasal/oral airflow.

This algorithm would expand the functionality of a conventional pulse oximetry beyond

the measurement of heart rate and oxygen saturation to measure the respiratory

rate continuously and instantly.

Keywords: instantaneous respiratory rate, pulse oximetry, photoplethysmogram, respiratory-induced variation,

synchrosqueezing transform

1. INTRODUCTION

Respiratory rate (RR), along with other vital signs like heart rate (HR) and blood pressure, is
monitored for primary or continuous assessment of patient wellness. There is significant evidence
that an abnormal respiratory rate is an important predictor of serious illness. For example, in
children aged 1–5 years old, an elevated RR (>40 breaths/min) is an important criterion for the
diagnosis of pneumonia (WHO, 2013). Furthermore, Fieselmann et al. analyzed the measurements

of vital signs during the 72 h prior to cardiac arrest and showed that a high respiratory rate (>27
breaths/min) was a significant predictor of cardiac arrest in hospitals (Fieselmann et al., 1993). In
addition, Subbe et al. showed that relative changes in respiratory rate are much more significant
than changes in HR or systolic blood pressure in unstable patients and therefore the respiratory
rate is more likely to be a better predictor for identifying the patient at risk (Subbe et al., 2003).
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RR can be measured by a nurse counting the number
of times the chest rises in 1 min (Lovett et al., 2005).
Continuous monitoring of RR, though, needs a monitoring
device and can be performed using capnography, transthoracic
impedance pneumography, nasal/oral pressure transducers and
abdominal/thoracic respiratory inductance plethysmography
belts, among others. However, recent studies have found that
neither the nurses nor the monitoring devices provide accurate
and reliable measurements of RR (Lovett et al., 2005). Therefore,
there is a clear need for a robust, automatic, reliable and non-
invasive measure of RR for performing a spot-check and for
continuous monitoring.

Analysis of the photoplethysmogram (PPG) recorded using a
pulse oximeter could offer an alternative method for monitoring
RR. The PPG waveform contains information about a wide range
of physiological parameters such as HR, heart rate variability
(HRV), oxygen saturation (SpO2), vascular tone, blood pressure,
cardiac output and respiration (Shelley, 2007). However, most
conventional pulse oximeters only provide information aboutHR
and SpO2. In this study, we have presented an algorithm for
robust estimation of instantaneous respiratory rate (IRR) from
PPG with the aim of developing a portable solution based on
pulse oximetry, suitable for both continuous monitoring and
spot-check applications.

1.1. Background
A pulse oximeter measures the blood volume changes or PPG,
based on the light absorption characteristics of the blood at the
measuring site on the body (e.g., finger, forehead, and earlobe).
A conventional transmission pulse oximeter sensor consists of
two LEDs, red and infra-red, and a photo-detector. The LEDs
emit light at both red and infrared wavelengths (650 and 950 nm,
respectively) and the photo-detector captures the transmitted
light. Based on the Beer-Lambert’s law, the transmitted light
density decreases during systole when the peripheral arterial
blood volume is at its maximum value and increases during
diastole. The PPG signal generated in the photo-detector, then,
has a pulsatile waveform (AC) whose peaks and troughs reflect
light transmitted through the tissue when blood volume is
minimal and maximal, respectively. PPG also has a large baseline
component (DC)mainly rises because of constant absorption and
scattering of light traveling through skin, bones and tissues. The
small variation observed in DC is mostly due to venous blood
variation which changes the intensity of the light captured by the
photo-detector (Webster et al., 1997).
Respiration may induce variation in PPG in three different ways
(Meredith et al., 2012) (Figure 1):

(1) Respiratory-Induced Intensity Variation (RIIV): Changes in
venous return due to changes in intra-thoracic pressure
throughout the respiratory cycle cause a baseline (DC)
modulation of the PPG signal. During inspiration, decreases
in intra-thoracic pressure result in a small decrease in central
venous pressure increasing venous return. The opposite
occurs during expiration. As the venous bed at probing
site cyclically fills and drains, the baseline is modulated
accordingly.

FIGURE 1 | From top, PPG with no modulation, Respiratory-Induced Intensity

Variation (RIIV), Respiratory-Induced Amplitude Variation (RIAV), and

Respiratory-Induced Frequency Variation (RIFV). Adapted from Addison et al.

(2012).

(2) Respiratory-Induced Amplitude Variation (RIAV): During
inspiration, left ventricular stroke volume decreases due to
changes in intra-thoracic pressure leading to the decreased
pulse amplitude. The opposite happens during expiration.

(3) Respiratory-Induced Frequency Variation (RIFV): HR
varies throughout the respiratory cycle; HR increases
during inspiration and decreases during expiration. This
phenomenon well-known as respiratory sinus arrhythmia
(RSA) is mainly due to the autonomic regulation of HR
during respiration.

Respiration may induce variation in PPG differently among
different individuals in health and disease. For instance, RIFV,
as an indicator of autonomic activity, maybe affected by diseases
and disorders (e.g., myocardial infarction, diabetic neuropathy
or sleep breathing disorders Dehkordi et al., 2016). RIAV and
RIIV are also very sensitive to dehydration and hypovolemia. In
addition, respiratory-induce variations are different for women
and men (Li et al., 2010). Estimation of IRR by combining the
information from three respiratory-induce waveform variations,
then, improves the algorithm performance and increases the
robustness of results (Karlen et al., 2013).

Many algorithms have been proposed to estimate RR from
PPG. Auto-regression (Thayer et al., 2002), Fourier transform
analysis (Karlen et al., 2013), correntropy spectral density
(Garde et al., 2014), digital filters (Nakajima et al., 1996)
and empirical mode decomposition (Garde et al., 2013) were
successfully used, among others. These algorithms have mostly
focused on estimating average RR from a window of PPG.
For example, Karlen et al. (2013) and Garde et al. (2014)
estimated RR every second using 16, 32, 64-s windows of PPG
data.

Few algorithms, however, have proposed to estimate RR
instantaneously (IRR), mostly performed by the time-frequency
approaches based on a continuous wavelet (Clifton et al., 2007;
Addison et al., 2012), variable frequency complex demodulation
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methods (VFCDM) (Chon et al., 2009) and short-time Fourier
analysis (STFT) (Shelley et al., 2006).

In this study, we have proposed a novel method for extracting
the instantaneous respiratory rate (IRR) from PPG. The method
was performed in three main steps: extraction of RIIV, RIAV, and
RIFV signals from PPG, estimation of IRR from each extracted
respiratory-induced variation signals and fusion of IRR estimates.
A time-frequency transform called synchrosqueezing transform
(SST) (Daubechies et al., 2011) was used to extract RIIV, RIAV,
and RIFV from PPG. Later, a second SST was applied to estimate
IIR from respiratory-induced variation signals (Addison and
Watson, 2004). To combine IRR estimates corresponding to
each respiratory-induced variation signal, a novel method, called
peak-conditioned fusion algorithm was proposed.

2. ALGORITHM DESCRIPTION

2.1. Instantaneous Frequency (IF)
The instantaneous frequency is the frequency at a given time.
Consider a multicomponent signal f that can be modeled as

f (t) =

K
∑

k = 1

fk(t) =

K
∑

k = 1

Ak(t) cos(2πφk(t)) (1)

where Ak(t) and φk(t) are the time-varying amplitude and phase
of kth frequency component, respectively.

In theory, the instantaneous frequency (IF) is defined as the
derivative of the phase function with respect to time as

IFf = {φ′k(t)}1≤k≤K
(2)

2.2. Synchrosqueezing Transform
Synchrosqueezing Transform (SST) was first introduced by
Daubechies et al. (2011) in 1996 and then implemented by
Thakur et al. (2013). SST is a combination of wavelet analysis
and a reallocation method which sharpens a time-frequency
representation by allocating its points to another locations in the
time-frequency plane. SST can provide an accurate estimation of
IF.

As defined in Daubechies et al. (2011), SST involves three
steps:

Step 1: Estimation of the continuous wavelet transform
(CWT)

The CWT of f is calculated as

Wf (a, b) =

∫

f (t)a
−1/2ψ(

t − b

a
)dt (3)

where ψ is a wavelet with ψ̂(ξ ) = 0 for ξ ≤ 0 and a and b
are scale and location variables, respectively. ψ(ξ ) is the complex
conjugate of ψ(ξ ) and ψ̂(ξ ) is the Fourier transform of ψ(ξ )
estimated as

ψ̂(ξ ) =

∫

ψ(ξ )e−i(2πξ )tdt (4)

Step 2: Estimation of the instantaneous frequency

If ψ̂(ξ ) is concentrated around ξ = ω0, then Wf (a, b) will be
spread out around the horizontal line a = ω0/ω on the time-scale
presentation for a given frequency of ω. However, Daubechies
et al. (2011) showed that the oscillation of Wf (a, b) around b
tends to the original frequency ω, irrespective of the value of a.
Therefore, for any (a, b) where Wf (a, b) 6= 0, the instantaneous
frequency ωf (a, b) for signal f can be defined as

ωf (a, b) = −
i

2π
((Wf (a, b))

−1 ∂

∂b
Wf (a, b)) (5)

Step 3: Transfer to the time-frequency plane

In this step, each point on the time-scale plane is allocated to
a point on the time-frequency plane using the map (a, b) →

(ωf (a, b), b). The frequency variable ω and the scale variable a
are both binned:Wf (a, b) is computed only at discrete values ak,
with ak − ak−1 = (1a)k and its SST, Tf (ω, b), is estimated only

at the centers ωl of the successive bins [ωl −
1
2 ,ωl +

1
2 ], with

ωl − ωl−1 = 1ω, by summing different points:

Tf (ωl, b) = (1ω)−1
∑

ak : |ω(ak,b)−ωl|≤
1ω
2

Wf (ak, b)a
−3
2

k
(1a)k. (6)

3. MATERIALS AND METHODS

3.1. Data Set
3.1.1. Capnobase Data Set
The Capnobase contains test and calibration data sets (Karlen
et al., 2010). Test data set contains forty-two 8-min segments of
recordings obtained from 29 pediatric and 13 adults receiving
general anesthesia at the British Columbia Children’s Hospital
and St. Paul’s Hospital, Vancouver, BC, respectively. Calibration
data set contains one hundred twenty-four 2-min segments
of recordings used for tuning the parameters of the proposed
algorithm.

In both data sets, the recordings included ECG, capnometry,
and PPG (sampled at 300, 300, and 100 Hz, respectively)
obtained with S/5 collect software (Datex-Ohmeda, Finland).
The capnography waveform was used as the reference gold
standard recording for RR. A research assistant manually labeled
each breath in the capnogram. The beginning and end of all
artifacts in the PPG waveforms were also manually labeled.
Both datasets can be downloaded from the on-line database,
CapnoBase.org.

3.1.2. Sleep Data Set
Sleep database contains forty-three 20-min segments of
recording from 43 children (age = 9.1 ± 4.1, Apnea/Hypopnea
Index = 8.9 ± 17.9) referred to the British Columbia Children’s
Hospital for overnight standard polysomnography (PSG). The
children had been recruited following approval by the University
of British Columbia Clinic Research Ethics Board (H11-01769)
and informed parental consent. Parental/guardian written
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informed consent was obtained for all children. Children with
a cardiac arrhythmia or abnormal hemoglobin were excluded
from the study.

Standard PSG recordings included overnight measurements
of ECG, electroencephalography (EEG), oxygen saturation
(SpO2), PPG, chest and abdominal movement, nasal and
oral airflow, left and right electrooculography (EOG),
electromyography (EMG) and video capture. The PSG
recordings were performed with the Embla Sandman S4500
(Embla Systems, ON, Canada).

In addition to PSG, the PPG was recorded simultaneously
using the Phone OximeterTM (Karlen et al., 2011) sampled at
62.5Hz with 32-bit resolution.

For each subject, the 20 min of recordings were selected after
2 h of sleep. Apnea/hypopnea events were annotated as the
artifacts and no specific sleep stage was selected.

The nasal/oral airflow waveform was used as the reference
gold standard recording for RR. Two experts manually labeled
each breath in nasal/oral airflow waveform. The beginning and
end of all artifacts in the oral/nasal waveforms were alsomanually
labeled.

Sleep database is available for download at https://figshare.
com/s/552ec33f37ae8d99c032 (doi: 10.6084/m9.figshare.6683
807).

3.2. Estimation of IRR From PPG
To perform IRR estimation, after a preprocessing stage, a first
SST was applied to PPG to extract RIIV, RIAV and RIFV.
Later, a second SST was performed to estimate IIR from
a respiratory-induced variation signals. The peak-conditioned
fusion algorithm was then used to fuse simultaneous IRR
estimates. This procedure, inspired by the method known as
secondary wavelet feature decoupling (SWFD) (Addison and
Watson, 2004), involves the following steps (Figure 2):

(1) The first SST is applied to the PPG signal.
(2) In the STT surface, two components are identified: a strong

cardiac component in the cardiac band (0.5–3 Hz, 30–180

beats/min) and a respiratory component in the respiratory
band (0.14–0.9 Hz, 8–54 breaths/min) (Figure 3).

In this study, reference ranges of cardiac and respiratory bands
were extracted from a review of observational studies that used
HR from 143,346 children and RR data from 3,881 children (from
6 months to 18 years old) (Fleming et al., 2011). Based on 99th
and 1st centiles for children and young adults, the HR could
range from 30 to 180 beats/min (0.50 to 3 Hz, respectively) and
RR from 8 to 54 breaths/min (0.14 to 0.9 Hz, respectively). The
range in adults is muchmore restricted, thus it would be included
in this range.

(3) The respiratory component in SST surface shows RIIV and its
ridge in the frequency-time plane represents RIIV-derived IRR
(IRRriiv) (Figure 3).

(4) The ridge of cardiac component is followed either in the
amplitude-time plane to get RIAV or in the frequency-time
plane to get RIFV. This is done by projecting the cardiac ridge
points onto the amplitude-time or frequency-time planes,
respectively.

(5) The second SST applied to RIAV results in a dominant
single component in the respiratory band (0.14–0.9 Hz, 8–
54 breaths/min) whose ridge represents RIAV-derived IRR
(IRRriav).

(6) A second SST is applied to the RIFV signal as well to get a
dominant single component in the respiratory band whose
ridge represents RIFV-derived IRR (IRRrifv).

(7) Estimation of final IRR (IRRppg) is performed using a
proposed peak frequency tracking method (so-called peak-
conditioning fusion) which combines the instantaneous
frequency information from (IRRriiv), (IRRriav) and
(IRRrifv).

3.2.1. Preprocessing
The PPG signals were lowpass filtered by a lowpass
Chebyshev Type I IIR filter of order 8 and down sampled to
10Hz.

FIGURE 2 | To extract IRR from PPG, the first SST was applied to PPG to extract RIIV, RIAV, and RIFV. Later, the second SST was performed to estimate IIR from a

respiratory-induced variation signals. The peak-conditioned fusion algorithm was then used to fuse simultaneous IRR estimates.
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FIGURE 3 | In the STT surface of PPG, two components are identified: a

strong cardiac component in the cardiac band (0.5–3 Hz, 30–180 beats/min)

and a respiratory component in the respiratory band (0.14–0.9 Hz, 8–54

breaths/min).

3.2.2. Estimation of IRRriiv

Consider a PPG signal as a vector ppg ∈ Rn, n = 2L+1 where L
is a nonnegative integer. The CWT of ppg, Wppg , was calculated
using the Morlet wavelet, ψ , where its Fourier transform was
concentrated around 1.25 Hz. The Wppg was sampled at the
location (aj, b), where aj = 2j/nv , j = 1, ..., Lnv, nv = 32 and

b = 1, ..., n. The result is a Lnv × nmatrix denoted W̃ppg .

When W̃ppg > 0, ω̃ppg was implemented as follow

ω̃ppg = −
i

2π
DbW̃ppg(aj, b)W̃ppg(aj, b)

−1 (7)

where DbW̃ppg was the finite differences of W̃ppg with respect to
b.

Then frequency variable, ω, was binned into frequency
division ωl = 2l△ωω, l = 0, ..., Lnv − 1, where △ω =

1
Lnv−1 log2(

n
2 ), ω = 1

n△t and ω̄ = 1
2△t . ω̄ and ω, were maximum

andminimum frequencies respectively and were chosen based on
Nyquist sampling theorem.

The SST of PPG was calculated as

Tppg(ωl, b) =
∑

aj : |ω(aj ,b)−ωl|≤
1ω
2

log2

Lnv
W̃ppg(aj, b)a

−1
2
j . (8)

Tppg over time shows both cardiac and respiratory bands
(Figure 3).

A ridge fitting the dominant area of Tppg in the respiratory
band (0.14–1 Hz) represented IRRriiv and was extracted by
tracking the local maximum values in this region.

3.2.3. Estimation of IRRriav

Consider RIAV as a vector riav ∈ Rn, where n is the length
of ppg. In the amplitude-time plane of Tppg , riav estimated as a
ridge fitting the dominant area of Tppg in the cardiac band (0.5–3
Hz, 30–180 beats/min). The ridge extracted by finding the local

maximum values which minimize the following cost function
(Abid et al., 2007):

Cost =

n
∑

b = 1

[−|Tppg(riav(b), b)|
2 + |riav(b)− riav(b− 1)|2] (9)

The SST of riav, Triav was calculated using the same
implementation described in the previous section.

A ridge fitting the dominant area of Triav in the respiratory
band (0.14–0.9 Hz) represented the RIAV-derived IRR (IRRriav)
and can be extracted by tracking the local maximum values in this
region.

3.2.4. Estimation of IRRrifv

Consider RIFV as a vector rifv ∈ Rn, where n is the length
of ppg. In the frequency-time plane of Tppg , rifv estimated as a
ridge fitting the dominant area of Tppg in the cardiac band (0.5–3
Hz, 30–180 beats/min). The ridge extracted by finding the local
maximum values which minimize the following cost function
(Abid et al., 2007):

Cost =

n
∑

b = 1

[−|Tppg(rifv(b), b)|
2 + |rifv(b)− rifv(b− 1)|2] (10)

The SST of riav, Triav was calculated using the same
implementation described in the section 3.2.2.

A ridge fitting the dominant area of Triav in the respiratory
band (0.14–0.9 Hz) represented the RIFV-derived IRR (IRRrifv)
and can be extracted by tracking the local maximum values in
this region.

3.2.5. Peak-Conditioned Fusion
The peak-conditioned fusion method, inspired by Lázaro Plaza
(2015), was proposed to combine the IRR estimates from three
respiratory-induced variations to provide the final IRRppg .

The calculated Tppg , Triav and Trifv are two-dimensional

matrices ∈ RLnvn, n = 2L+1 where L is a nonnegative integer and
nv = 32. Each column of Tppg , Triav and Trifv matrices shows the
frequency distribution of PPG, RIAV and RIFV signals at each
time instance, respectively. To reduce the variance, each matrix
is averaged in time dimension using a moving window of length

Tm = 16 s every ts = 5 s. The averaged matrix is denoted as T̂k,
where k refers to ppg, riav, or rifv (Figure 4).

At instant b, the location of the largest peak in respiratory

band of each T̂k(:, b) column (for k= ppg, riav or rifv) is detected
and denoted as irI

k
(b). Then, a reference frequency interval,

�k(b), was defined as

�k(b) = [f (b− 1)− δ, f (b− 1)+ 2δ] (11)

where (b− 1) was a respiratory rate reference estimated from the
b− 1 previous step.

All peaks larger than 85% of irI
k
(b) inside �(b) were detected

and irII
k
(b) was chosen as the nearest to f(b−1). By reaching to this

point, irIIriiv(b), ir
II
riav(b) and ir

II
rifv

(b) were available simultaneously.

The final respiratory peak at instant b, IIRppg((b)), was then
chosen among irIIriiv(b), ir

II
riav(b) and irII

rifv
(b) estimates with the
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FIGURE 4 | The peak-conditioned fusion method combined the IRR estimates from three respiratory-induced variations to provide the final IRR.

largest Pk. Pk is a measure of the peakness and was defined as
the ratio of power contained in an interval centered around the
largest peak to the power of �k(b). P mathematically calculated
as

pk(b) =

∑min{if II
k
(b)+0.6δ,f (b)+2δ}

max{if II
k
(b)−0.6δ,f (b)−δ}

ˆTk(:, b)

∑f (b)+2δ

f (b)−δ
T̂k(:, b)

(12)

Estimation of respiratory rate as the largest peak in the
respiratory band would increase the risk of choosing the location
of false peaks. To decrease this risk, the search for the largest peak
was limited to the reference frequency interval, �k(b) (Lázaro
Plaza, 2015). This is an asymmetric interval of 3δ centered around
a reference frequency. At each step the respiratory rate reference
was updated using

f (b+ 1) = β ∗ f (b)+ (1− β) ∗ IRRppg(b) (13)

where f (b) = arg max(T̂k(:, 1)) in the frequency band of
[0.2Hz, 0.7Hz].

Value of δ was set as 0.1 and the value of a was tuned as 0.6
over the calibration data set.

3.3. Algorithm Evaluation
To evaluate the performance of SST-based algorithms, agreement
between reference IRR and estimated IRR (using peak-
conditioned fusion, simple fusion, single respiratory-induce

variation) was assessed using the limits of agreement (LOA)
technique. The bias and 95% LOA were estimated using
the Bland-Altman plot. Since for each subject multiple
measurement were observed, the Bland-Altman method
for multiple observations per individual (Zou, 2013) was
used instead of the standard Bland-Altman method. The
bias was calculated as mean of IRRest - IRRref and the
95% LOAs as mean bias ± 1.95 standard deviations. Two
standard deviations (2SD) were also estimated in the
purpose of ranking the proposed algorithm in this study
based on the statistical analysis reported by Charlton et al.
(2016).

The coverage probability (CP2) was also reported as the
probability of measurement error falling within pre-defined
bounds, set as 2 breaths per minute (bpm) in this study (Barnhart
et al., 2007).

In addition, the performance of algorithms was assessed
using the root mean square error (RMSE) (breaths/min)

defined as

RMSE =

√

√

√

√

1

n

n
∑

i = 1

(IRRref − IRRest)2 (14)

where n is the number of observations and IRRref and
IRRest are the reference and the algorithm estimates,
respectively.
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4. RESULTS

4.1. Capnobase Data Base
IRR extracted from the capnography waveform (IRRCO2) was
used as the reference gold standard. The distribution of the
respiratory rates contained 3,542 data points estimated every 5 s
from IRRCO2 for the 16 smoving windows over the whole dataset.
The respiratory rates ranged from the lowest value of 3.6521 bpm
to the highest value of 44.22 bpm. The mean rate was 15.02 bpm
with standard deviation of 7.66 bpm. About 7.7% of the data
points were excluded from the further analysis due to to poor
signal quality of the capnography signals.

For each algorithm, the measures of agreement between the
estimated IRR from PPG (IRRest) and IRRCO2 and also RMSE
were estimated (Table 1). For peak selection algorithm, bias was
estimated as 0.28 bpm with the 95% LOAs from −3.62 to 4.17
(Figure 5). The value of 2SD was estimated as 3.97 bpm. The
value of CP2 showed that for 89% of the IRR estimates, the
measured error was less than 2 breaths/min. RMSEwas estimated
as 1.8 bpm.

The values of 2SD of the other algorithms ranged from 8.32
bpm to 16.00 bpm.

4.2. Sleep Database
IRR extracted from the nasal/oral airflow waveform (IRRnas) was
used as the reference gold standard in the sleep dataset. The
distribution of the respiratory rates contained 10,553 data points
estimated every 5 s from IRRnas over the 16 s moving window for
all subjects. The respiratory rates ranged from the lowest value of
9.561 bpm to the highest value of 50.85 bpm. The mean rate was
18.64 bpm with standard deviation of 5.66 bpm. About 0.66% of
the data points were excluded from the further analysis due to to
poor signal quality of the nasal/oral airflow signals.

The measures of agreement between the estimated IRR from
PPG (IRRest) and IRRnas also RMSE were estimated for each
algorithm (Table 1). For peak selection algorithm, bias was
estimated as 0.04 bpm with the 95% LOAs from −5.74 to 5.82
(Figure 6). The value of 2SD was estimated as 5.90 bpm. The
value of CP2 showed that for 85% of the IRR estimates, the

measured error was less than 2 breaths/min. RMSEwas estimated
as 2.3 bpm.

The values of 2SD of the other algorithms ranged from 8.4
bpm to 21.3 bpm.

5. DISCUSSION AND CONCLUSION

In this study, we presented an algorithm to extract IRR
from PPG. We extracted RIIV, RIAV, and RIFV from PPG
using Synchrosqueezing Transform (SST), a sharpening time-
frequency method which provides instantaneous frequency rate.
The peak-conditioned fusion was proposed to combine the
extracted information from three respiratory induced variations
waveforms to estimate respiratory rate at each instance. We
validated the implemented method with capnography and
nasal/oral airflow as the reference RR. Compared to simple
fusion and single respiratory-induced variation estimations,
peak-conditioned fusion shows better performance (Table 1). It

FIGURE 5 | Bland-Altman plot for comparison of IRRCO2 to IRRref for all

subjects. The bias and 95% LOAs are shown as solid lines. The bias was 0.28

and the limits of agreement −3.62 to 4.17.

TABLE 1 | The performance of different method for estimation IRR from PPG.

Proportion

Different IRR of windows with

estimation method 2SD Bias 95% LOA CP2 IRR estimate (%) RMSE

RIIV 8.8 0.3 −8.3 to 9.0 88 100 4.1

RIAV 16.0 1.3 −14.5 to 16.9 60 100 7.5

Capnobase RIFV 9.2 0.04 −9.0 to 9.1 74 100 4.2

dataset Simple Fusion 8.3 0.5 −7.6 to 8.7 63 100 4.0

Peak-Conditioned Fusion 4.0 0.3 −3.6 to 4.2 89 100 1.8

RIIV 11.0 0.7 −10.1 to 11.4 80 100 5.1

RIAV 21.3 5.6 −15.4 to 26.5 31 100 11.3

Sleep RIFV 8.4 −0.1 −8.4 to 8.2 79 100 3.7

dataset Simple Fusion 9.5 2.0 −7.3 to 11.3 41 100 4.6

Peak-Conditioned Fusion 5.9 0.04 −5.7 to 5.8 85 100 2.3
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FIGURE 6 | Bland-Altman plot for comparison of IRRnas to IRRref for all

subjects. The bias and 95% LOAs are shown as solid lines. The bias was 0.04

and the limits of agreement −5.74 to 5.82.

provided a bias of 0.28 bpm with the 95% LOAs ranging from
−3.62 to 4.17, validated against capnography (in the Capnobase
dataset) (Figure 5) and a bias of 0.04 bpm with the 95% LOAs
ranging from −5.74 to 5.82, validated against nasal/oral airflow
(in the Sleep dataset) (Figure 6).

In this study, the proposed method estimated IRR from three
sources of respiratory-induced variation and fused the estimated
rates to measure the final IRR. Our findings showed that fusion
of estimation rates would increase the accuracy and robustness
of RR estimation. Even the simple fusion compared to single
respiratory-induced variation estimations showed higher rank
(narrower 2SD and greater CP2). It is consistent with the findings
of Li et al. (2010) that respiratory activity may induce variation in
PPG differently in different individuals. As discussed by Karlen
et al. (2013), ventilatory conditions (spontaneous or mechanical
ventilation) can change the behavior of respiratory induced
variations.

In this study, we applied the proposed algorithm to two
different data sets to include a broad range of subjects into the
study. The Capnobase data set includes children adults, under
controlled ventilation or spontaneously breathing over a wide
RR range. The subjects were under general anesthesia and were
continuously monitored. The sleep dataset includes children
from 1-month to 17 years old spontaneously breathing during the
overnight sleep in a sleep lab. During the overnight recordings,
respiratory rates might change significantly during different sleep
stages (light sleep, deep sleep or rapid eye movement (REM)
sleep). In addition, some of the children may have experienced
periods of breathing cessation, or obstructive sleep apnea. Since
the apnea/hypopnea events induce changes on themorphology of
nasal/oral airflow, i.e., flat line during apnea or very fast and low-
amplitude oscillations during hypopnea, to extract the accurate
reference RR from the nasal/oral airflow waveform, we labeled
the apnea/hypopnea events as the artifact on nasal/oral airflow
waveform.

A recent study (Charlton et al., 2016) presented a very
complete assessment of RR estimation using PPG. A wide range
of available techniques for estimation of respiratory-induced
variations from PPG, estimation of RR from respiratory-induced
variations, and fusion of RR estimates were identified and then
more than 300 algorithms were implemented by assembling all
possible combinations of available techniques. The algorithms
were applied to the Vortal data set of 39 resting adults, with
RR ranging between 5 and 32 bpm and ranked based on 2SD.
The first ten top-ranked algorithms had the 2SD values ranging
from 6.2 to 7.9. To be able to compare the performance of our
algorithm with the ten top-ranked algorithms, we applied our
proposed method on the same data set. For peak conditioned
algorithm, the value of 2SD was estimated as 6.83 bpm. It
ranked our algorithm among the top ten algorithms; however,
the performance of our algorithm slightly decreased when RR
was lower than 8 breaths/min. In addition, for the top ranked
algorithms, the value of CP2 was reported as 71.5 while we
obtained a CP2 of 75 applying our proposed algorithm.

It is important to note that all top ranked algorithm reported
in Charlton et al. (2016) estimated RR using 32-s windows while
our method can estimate RR instantaneously. It suggests that
our algorithm shows better performance compared to methods
that extract IRR based on time-frequency analysis (Li et al., 2010;
Addison et al., 2012).

In Charlton et al. (2016), the methods for extracting RR from
ECGwere assessed as well. The findings of that study showed that
algorithms performed better when using ECG than PPG. The best
algorithm had 95% LOAs of −4.7 to 4.7 bpm and a bias of 0.0
bpm when using the ECG.

In Charlton et al. (2016), the performance of thoracic
Impedance Pneumography (IP) were assessed as well providing
a bias of−0.2 bpm with 95% LOAs of−5.6 to 5.2 bpm. Thoracic
IP is a commonly-used technique for continuous monitoring
of RR that measures changes in the electrical impedance of
the person’s chest during respiration. Our results showed that
the performance of our algorithm is comparable with the
performance of thoracic IP.

Several studies based on the continuous wavelet transform
(CWT) (Clifton et al., 2007; Addison et al., 2012), the short-time
Fourier transform (STFT) (Shelley et al., 2006), and empirical
mode decomposition (EMD) (Garde et al., 2014) have been
proposed to detect RR from PPG. The results of a study
conducted by Thakur et al. (2013) to compare SST to CWT, STFT
and EMD showed the superior precision of SST at identifying
components of complicated oscillatory signals. Moreover, the
study showed that time-varying instantaneous frequencies could
be clearly distinguished in the SST while there is much more
smearing and distortion in the CWT and STFT.

In this study, the SST algorithm has been implemented
with O(nlog(n)) computations per scale and peak-conditioned
fusion algorithm has been implemented with O(n) computations
where n is the number of samples. However, there are some
fast algorithms to reduce the number of computations of SST
implementation to O(n) per scale Rioul and Duhamel (1992).

This study introduces a new method to estimate IRR from
pulse oximetry. This would expand the functionality of a
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conventional pulse oximetry beyond themeasurement of HR and
SpO2 to measure the respiratory rate continuously and instantly
in the clinical setting and at home. Importantly, these are all
achievable with a simple, cheap, single-sensor solution.
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