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Cephalopod and vertebrate neural-systems are often highlighted as a traditional
example of convergent evolution. Their large brains, relative to body size, and complexity
of sensory-motor systems and behavioral repertoires offer opportunities for comparative
analysis. Despite various attempts, questions on how cephalopod ‘brains’ evolved
and to what extent it is possible to identify a vertebrate-equivalence, assuming it
exists, remain unanswered. Here, we summarize recent molecular, anatomical and
developmental data to explore certain features in the neural organization of cephalopods
and vertebrates to investigate to what extent an evolutionary convergence is likely.
Furthermore, and based on whole body and brain axes as defined in early-stage
embryos using the expression patterns of homeodomain-containing transcription
factors and axonal tractography, we describe a critical analysis of cephalopod neural
systems showing similarities to the cerebral cortex, thalamus, basal ganglia, midbrain,
cerebellum, hypothalamus, brain stem, and spinal cord of vertebrates. Our overall aim
is to promote and facilitate further, hypothesis-driven, studies of cephalopod neural
systems evolution.
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INTRODUCTION

Due to shared computational and functional constraints on the evolutionary development of
complex neural systems, phyletically distant animals often exhibit ‘phenotypic’ similarity in their
neural organization (Farris, 2008; Roth, 2013; Wolff and Strausfeld, 2016; Shigeno, 2017). However,
the origin and evolution of neural systems across animal phyla remains uncertain (Moroz, 2009;
Northcutt, 2012; Holland et al., 2013; Holland, 2016). For example, centralization of nervous
systems has occurred on more than five occasions during evolution (e.g., molluscs, annelids,
nematodes, arthropods and chordates; see discussion in Moroz, 2009), and the acquisition of
behavioral ‘capabilities’ such as the need for foraging strategies, spatial-, social- and instrumental-
learning are all considered major driving forces in the evolution of complex brains and “high
intelligence” several times independently in the animal kingdom (Roth, 2015). New evidence
supports the view that nervous systems are not monophyletic, suggesting widespread homoplasy
in nervous systems (Moroz, 2009; Liebeskind et al., 2016).

Invertebrate nervous systems are extremely diversified spanning from diffuse nerve nets (e.g.,
cnidarians) to tetra-neury (molluscs), ventral cords (e.g., annelids, arthropods), nerve net-like
in hemichordates, and do not resemble those of higher chordates that are organized around
a dorsal “hollow tube” (see for example review in Moroz, 2009). To facilitate comparison
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and to favor the identification of “robust homology hypotheses”
Richter et al. (2010) proposed a neuroanatomical terminology of
invertebrate nervous systems. We will not necessarily follow the
neuroanatomical terminology adopted by Richter et al. (2010)
since we will prefer to refer to the classic terms as defined
by Young and coworkers for cephalopod brains (Young, 1971;
review in Nixon and Young, 2003).

In several protostomes, such as annelids and insects, the
‘higher’ centers (here considered as centers of associative
and high-order sensory/motor neural-processing), such as the
mushroom bodies, tend to congregate in anterior nervous
territories, similar to the situation that occurs in the vertebrate
pallium (Arendt, 2008; Loesel and Heuer, 2010; Tomer et al.,
2010; Wiersma and Roach, 2011). In each of these taxa, ‘higher’
neural-centers are found in a few species, but absent in more
’basal’ species of the group, suggesting that complex brains
and higher centers evolve as a consequence of an independent
specialization (Farris, 2008; Hejnol and Martindale, 2008; Moroz,
2009). An alternative explanation is that these species share
molecular machinery with their deep ancestries, and that the ‘loss’
of higher centers in the basal species is the result of secondary
simplification (Tomer et al., 2010). Neural structures such as
the spinal cord, the hypothalamus, and basal ganglia have their
‘equivalents’ in annelids (Denes et al., 2007; Tessmar-Raible et al.,
2007) and insects (Arendt and Nubler-Jung, 1999; Loesel et al.,
2002; Strausfeld and Hirth, 2013) and are considered to share
common molecular and structural profiles.

Molluscs allow an exploration of the potential evolutionary
scenarios of nervous system evolution, due to the variety of
different organizations (review in Kandel, 1979) of their acephalic
ganglia, simple medullary cords, and centralized brains (Bullock,
1965a,b,c,d) that appear to be dissimilar to those of insects and
vertebrates (Budelmann, 1995; Budelmann et al., 1997; Hochner,
2010). Molluscs also provide examples where some independent
parallel events of centralization of nervous systems occur (Moroz,
2009).

Within the phylum Mollusca the coleoid cephalopod Octopus
vulgaris has an exceptionally large brain that includes more than
30 differentiated lobes (Young, 1971), numerous cells (Young,
1963) possibly belonging to different cellular-types (Young,
1932; Bogoraze and Cazal, 1944; Young, 1972), highly organized
neuropils and fasciculated tract bundles (Young, 1971; Hochner
et al., 2006).

Here we review recent molecular, anatomical and
developmental data to explore possible “homologies” of
cephalopod neural structures with respect to vertebrate brains,
a challenging task considering the more than 500 million years
of independent evolution (see for example: Packard, 1972;
Kröger et al., 2011; Roth, 2013). It is without doubt that many
sensory-motor systems, locomotor abilities, and behaviors of
cephalopods are traceable into vertebrate equivalents (e.g.,
Budelmann, 1995; Budelmann et al., 1997; Hochner and
Glanzman, 2016; Villanueva et al., 2017). It is also true that
the cephalopod brain is “truly molluscan” in its anatomical
organization, making attempts to draw parallels between more
than 30 lobes identified in its ‘central’ nervous system “and the
brains of vertebrate species unrealistic” (Packard, 1972; see also

Shigeno et al., 2015). However, some very “striking resemblances”
occur (Packard, 1972): (i) the deep retina of fish and the surface
of cephalopod optic lobe, (ii) the neural-architecture of the
peduncle lobe in the octopus brain (which recalls the folia
arrangements of the vertebrate cerebellum), (iii) the vertical lobe
which is considered the analog of the mammalian limbic lobe
(Young, 1991, 1995).

We summarize classic and modern views regarding neural-
functional equivalencies between cephalopods and vertebrates,
and highlight additional insights emerging from recent molecular
and neurophysiological studies. Furthermore, we outline an
embryological approach that allows identification of some
features of relevance to the evolutionary paths leading to the
neural centralization and differentiation of the cephalopod brain
(see also: Focareta et al., 2014; Wollesen et al., 2014, 2015a;
Shigeno et al., 2015; Buresi et al., 2016).

The ‘Brain’ of Cephalopods – An Outline
and a Summary of Novelties
In the octopus, as far other cephalopod species, the ‘brain’ is
assembled through a series of ganglia of molluscan origin to
form lobes that are fused together into masses (for the common
octopus see description in Young, 1971; see also an outline of
the brain and its main connections in Figure 1A). These are
connected to periphery by many nerve trunks regulating the
arms, viscera and other part of the animal’s body connecting with
the sub-esophageal mass (SUB; lower structure in Figure 1B), and
which in turn connects directly or indirectly to the lobes of the
supra-esophageal mass (SEM; Figure 1B, top).

The major connectives, commissures, and matrix of
interneurons have been analyzed extensively using the Golgi and
Cajal reduced silver staining methods (Young, 1971; see also
Figures 1B,C). In addition, horseradish peroxidase, cobalt, and
carbocyanine dye tracing methods have provided further detail
(e.g., Young, 1971; Saidel, 1982; Budelmann and Young, 1985;
Plän, 1987; Robertson et al., 1993).

According to the classical view, the SEM, lying above the
esophagus, is dorsal with respect to the body-axis, while the SUB,
extending below the esophagus, is ventral. The foremost dorsal
structure of the SEM, the vertical lobe (vtL in Figures 1B,C),
is considered one of the most distinctive structures in the
cephalopod brain. It comprises about 14% of the volume of the
entire supra-esophageal mass in an adult octopus (Frösch, 1971;
Maddock and Young, 1987), and has over 25 million nerve cells,
more than half of all the cells located in the supraesophageal mass
(Young, 1963). When considered with the nearby center, i.e., the
superior-frontal lobe (sFL in Figure 1B), the ‘vertical lobe system’
is recognized as the largest learning and memory (‘higher’) center
among all known invertebrate neural structures (Young, 1991;
Shomrat et al., 2015; Marini et al., 2017; Turchetti-Maia et al.,
2017).

The dorso-ventral orientation of the brain with respect to
the body-axis, as described above (see also Figure 1) seems
unconfirmed by developmental studies. The antero-posterior
expression of Hox genes (a family of transcription factors
responsible for defining axial identity in bilaterians, Pearson et al.,
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FIGURE 1 | The adult Octopus vulgaris brain. (A) Schematic outline of octopus body and the relative relationships to the main components of its nervous system.
(B) A longitudinal section of the supra- and sub-esophageal mass of O. vulgaris (parasagittal plane). (C) A cross section of the vertical lobe (supra-esophageal
mass), showing the five distinct gyri. The esophagus lies at the center between the supraesophageal and subesophageal mass. Sections of stained with the Cajal
silver method. abL, anterior basal lobe; ASM, anterior subesophageal mass; dbL, dorsal basal lobe; eso, esophagus; ifL, inferior frontal lobe; MSM, middle
subesophageal mass; PSM, posterior subesophageal mass; sbL, superior buccal lobe; sfL, superior frontal lobe; spL, subpedunculate lobe; svtL, subvertical lobe;
vtL, vertical lobe. Scale bars: 500 µm.

2005) in structures such as the cephalopod brachial and buccal
crown, funnel, and stellate ganglia are not predicted by Hox
collinearity. Their expression along the axis does not appear
to demonstrate the canonical nested domains characteristic of
these transcription factors (see Lee et al., 2003). Furthermore,
as defined by embryological orientation along the body axis (see
for example: Shigeno et al., 2008, 2010; Buresi et al., 2016), the
brain areas controlling arms and brachial centers are considered
ventral, while those controlling the mantle and visceral organs
appear dorsal: a remarkable shift.

Despite some initial interest, the phylogenetic origins of
cephalopod neural centers remain largely unexplored (Young,
1977a; Nixon and Young, 2003; see also discussion in Grasso and
Basil, 2009). The recent genomic sequencing of O. bimaculoides
(Albertin et al., 2015) and the possible availability of other
cephalopod genomes in the near future opens a new era. The
analysis of O. bimaculoides genome revealed that the basic
neuronal gene repertoire of cephalopods is shared with that of
many other invertebrates. However, the octopus genome appears
to be characterized by extensive expansion of transposons and
other gene families, including an unusual (for invertebrates)
expansion in the protocadherins and the C2H2 superfamily of
zinc-finger transcription factors (Albertin et al., 2015). These
genome level novelties are rendered more complex by the already
well established extensive RNA editing, particularly in nervous
system cells, which allows diversification of the proteins that the
cells can produce (Garrett and Rosenthal, 2012a,b; Liscovitch-
Brauer et al., 2017).

A short list of cephalopod novelties, excluding a discussion
on the Bauplan, may include: (i) an extraordinarily large
cadherin gene encoding over 70 extracellular cadherin domains
found to be highly expressed in octopus suckers; (ii) gene
families expansions (e.g., protocadherins, zinc finger proteins,
interleukin-17 like genes, G-protein coupled receptors, chitinases
and sialines); (iii) novel octopus-specific genes expressed in
specialized structures such as skin and brain; (iv) Vascular
Endothelial Growth Factor (VEGF) pathway, a possible

prerequisite for the development of a closed vascular system; (v)
octopressin/cephalotocin co-occurrence, never before reported
in invertebrates; (vi) horizontal gene transfer as a possible origin
of reflectin gene, allowing dynamic iridescence and structural
color change in the skin, in cephalopod clades (Albertin et al.,
2015; Guan et al., 2017; Wang and Ragsdale, 2017). These may
originate by increase in genome complexity in the clade linked
to polyploidy, differential arrangements of key genes (e.g., Hox
appearing not clustered), exceptional RNA editing capacities,
expansion of transposable elements (e.g., Packard and Albergoni,
1970; De Marianis et al., 1979; Lee et al., 2003; Albertin et al.,
2015; Liscovitch-Brauer et al., 2017).

THE VERTEBRATE-LIKE NEURAL
SYSTEMS IN CEPHALOPODS

It is without doubt that the most classic examples of vertebrate/
mammalian-like comparison of cephalopod brain-functioning is
provided by the work of Young (1961, 1964, 1965b, 1976a, 1991,
1995) and Hobbs and Young (1973).

The parallelism is seen in different structures and functional
analogies; these differences encouraged later authors to consider
cephalopod brains as unfamiliar structures, when compared to
bird and mammalian brains, and as examples of analogous
functions worth exploring as examples of phyletic boundaries of
consciousness (Edelman and Seth, 2009).

Evolutionarily Conserved Axes as
Defined by the Developmental
Framework
Developmental approaches have been used to probe how the
complex brain centers and body parts developed during the
evolutionary history of cephalopods (Figure 2). Embryological
studies suggest that all molluscan nervous systems share an
early developmental stage in which three neurogenic domains
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FIGURE 2 | Comparison of the early stage embryonic nervous systems in three invertebrates. (A) Acoelomorph or planula-like larva (left), a gastropod veliger larva
(middle), and nautiloid embryo (right), defining the comparable topography of neural patterns (modified after permission of Tokai University Press following Shigeno
et al., 2010). The cerebral-, ventral- and laterally situated neural cords are shaded in red, green and blue, respectively. Due to their diffuse nature, the homology of
these nerve cords remains unclear, but the putative ancestral condition is shown for comparison. (B) Schematic drawing of embryonic brain development in
O. bimaculoides (inspired to information contained in Shigeno et al., 2015), showing a transition from medullary cords to a centralized brain. The foregut or mouth (fg)
initially lies at the anterior, but it moves to a more ventral position at the later stage. Reference to the A–P and D–V axes are provided. ASM, anterior sub-esophageal
mass; ax, arm axial cord; CeC, cerebral cord; CG, cerebral ganglion; eso, esophagus; fg, foregut or mouth; man, mantle; MSM, middle subesophageal mass; PeC,
pedal cord; PSM, posterior subesophageal mass; PvC, palliovisceral cord; SUP, supraesophageal mass.

of the ganglia or medullary cords at the cerebral, ventral,
and lateral position are present (Naef, 1928; Haszprunar,
1992; Shigeno et al., 2010, 2015; Figure 2A). These neural
cords correspond to the cerebral, pedal, and palliovisceral
ganglia (or cords), respectively (Marquis, 1989; Shigeno
et al., 2015; Figure 2B). Based on topographical criteria
and the neural composition (exemplified by the form of
neurons and organization of tracts, for example) these may be
compared to analogous structures in vertebrates such as the
mammalian spinal cord (Figure 3) and fore- and mid-brains
(Figure 4).

In particular, the dorso-ventral (D-V) neural arrangement of
the cephalopod subesophageal mass may allow comparison with
the medio-ventral parts of the vertebrate spinal cord; the ventral
peripheral layer of cells of the subesophageal mass (see dark red
in Figures 3B, 4) resembling the midline cells of the spinal cord,
and most of the inputs (sensory) and outputs (motor) to/from the
structures are conserved along their respective dorsal and ventral
arrangements (Figure 3B).

Traditional terminology for the adult cephalopod brain
distinguishes between the anterior and posterior parts of the
subesophageal mass (Young, 1971). By contrast, the cephalopod
embryological axis, as defined by Fioroni (1978), allows us to
identify the antero-posterior (A–P) axis of the cephalopod body
as corresponding to the D–V axis of vertebrates and thus allowing
a comparison with the vertebrate spinal cord.

Developmental regulatory gene studies seem to support the
cephalopod A–P/vertebrate D–V axis definition (see Lee et al.,
2003). Recent molecular studies of various cephalopod species
provide mixed evidence regarding the evolutionarily conserved
nature of the axes. Tomarev et al. (1997) first found that a paired
homeobox gene, Pax-6, is commonly expressed in the developing
eyes and anterior cerebral fields of squid and vertebrate embryos.
Along the A–P embryonic axis, the expression of the homeobox
genes otx, nkx2.1, hox, and other homeodomain-containing
genes, successfully distinguishes the developing brain fields (Lee
et al., 2003; Buresi et al., 2012, 2016; Focareta et al., 2014). The
Pax2/5/8 expression domain has also been shown to mark a
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FIGURE 3 | Similarities in the developmental plans of the vertebrate spinal
cord and cephalopod sub-esophageal mass. (A) Comparison of the
neurogenic territories along the embryonic dorso-ventral axes. The color
codes indicate the candidates of comparable territories. (B) Oblique
cross-dissected views of the vertebrate spinal cord and of octopus
sub-esophageal mass. Red areas indicate the midline cells in the spinal cord,
and possible comparable parts of the ventral position of the sub-esophageal
mass. A dorso-ventral segregation pattern of input sensory (green) or output
motor neurons (blue) exists in the spinal cord, while no such segregation is
obvious in the octopus sub-esophageal mass (see the text for further
explanation). PeC, pedal cord; PvC, palliovisceral cord; D, dorsal; V, ventral.

boundary between the A–P neural territories (Wollesen et al.,
2015b), similar to those in the midbrain-hindbrain boundary of
vertebrate brains. Furthermore, in cuttlefish embryos the D–V or
medio-lateral axis expression domains of pax6-pax2/5/8-pax3/7
genes successfully detect the topographically equivalent genes in
the developing spinal cords of vertebrates (Buresi et al., 2016; see
also Navet et al., 2017).

A number of other molecular studies involving neurogenic
and signaling molecule genes have suggested evolutionarily
conserved domains as well as ‘endemic’ novelties in the
developing cephalopod brain (Baratte et al., 2007; Farfán et al.,
2009; Navet et al., 2009; Ogura et al., 2013; Wollesen et al., 2014,
2015b; Yoshida et al., 2014; Shigeno et al., 2015; Focareta and
Cole, 2016; Koenig et al., 2016).

The Sensory and Motor Systems: The
Spinal Cord and Hindbrain Analogy
The spinal cord is a principal sensory and motor center in
vertebrate nervous systems (see Figures 3, 4). The dorsal neurons
receive inputs from the sensory receptors, and the ventral motor
neurons regulate motor actions, such as rhythmic movements of
body muscles (e.g., Cohen et al., 1988; Grillner and Wallén, 1999;
see also: Ayali et al., 2015; Berg et al., 2015) that are modulated by
these inputs.

In an attempt to provide a possible comparative overview
of vertebrate neural structures such as the spinal cord and the

hindbrain and their putative cephalopod analogs we will consider
below a few examples based on neural organization including
somatotopy, dorso-ventral segregation of sensory- and motor-
neural systems, peripheral vs. central neural domains, and fast
escape responses in cephalopods.

Somatotopic Organization?
In the spinal cord, and in their invertebrate analog as for
example in insects (e.g., Packard, 1884; Arendt and Nubler-Jung,
1999; Svidersky and Plotnikova, 2002), neurons are organized in
columns with intrasegmental interneurons arranged functionally,
representing a kind of somatotopic map (e.g., Butler and Hodos,
2005; Kiehn, 2016; Mantziaris et al., 2017).

In cephalopods somatotopic maps are considered not to exist
(Zullo et al., 2009). In the higher motor centers such as the
basal lobes (supra-esophageal mass), electrical stimulation has
failed to identify any kind of somatomotor map, suggesting that
there may be none in the cephalopod brain (Zullo et al., 2009;
but see Gutnick et al., 2011), thus suggesting that cephalopods
evolved a ‘unique’ solution for motor control (Gutnick et al.,
2011; Hochner, 2012, 2013).

However, a somatotopic map has been suggested to occur
in the sub-esophageal mass (e.g., Boycott, 1961; Monsell, 1980;
Saidel, 1981; Dubas et al., 1986; Gaston and Tublitz, 2004;
Gaston and Tublitz, 2006). A multi-color neuro-tracing study
of the central distribution and the resulting three-dimensional
arrangement of fin chromatophore motoneurons in the cuttlefish
(Gaston and Tublitz, 2006), provided preliminary possible
topographic organization of fin chromatophore motoneurons.
These data support previous findings by Boycott (1961)
who proposed a type of ‘somatotopy’ when considering the
neural representation (in the chromatophore lobes, SUB) of
chromatophores in the skin of the animals, depending on the
species.

It is clear that the identification of segregated sensory- and
motor-maps in cephalopod brains will require further studies.

Dorso-Ventral Segregation of Sensory-Motor Neural
Systems
Along the D–V axis (as depicted above for cephalopod brain),
centers characterizing the sub-esophageal mass and controlling
specific body parts are arranged in the same order as those body
parts: the pallial cavity, then the viscera, collar, funnel, head,
ocular system, oculomotor system, and finally arms (Young,
1976a; Budelmann and Young, 1985; Gaston and Tublitz, 2006;
Figure 4). However, and based on the available knowledge,
neuronal segregation of the ventral motor and dorsal sensory
neurons has not been reported for cephalopod sub-esophageal
mass, and an analogy with the vertebrate arrangement seems
difficult.

Despite differences (Figure 3B), in the octopus the great
majority of inputs are collated in the dorsal- and mid-parts
of the supra-esophageal mass (pedal and palliovisceral cords
in Figure 3B), and most of the outputs project from the
palliovisceral cord (ventral, Figure 3B), thus challenging a
possible analogy with vertebrates. It is also true that the
putative motor nerves projecting to the arms, as for the sensory
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FIGURE 4 | A brain-wide, flat-map comparison of the mouse and octopus brain. Topographical similarities are highlighted using color-coding. Note similarities with
the pallium and basal ganglia, and neurosecretory centers (hypothalamus). The hypothalamus and the octopus neurosecretory systems differ superficially in adult
brains with the neurovenous tissues (Young, 1970), considered neurosecretory areas in cephalopod brain, such as the para-vertical and the sub-pedunculate that
are situated more laterally together with the optic lobes (omitted for simplification in this figure). The sensory inputs and motor outputs indicate functionally equivalent
centers. The maps are arranged along the embryonic A–P and D–V axes (outline of mouse brain inspired by the information included in: Rubenstein et al., 1994,
1998; Puelles and Rubenstein, 2003; Swanson, 2007). Cephalopod embryonic brains are initially cord-like, and the topographic position of adult brain centers is
traced back to embryological position via successive histological observation (Marquis, 1989; Shigeno et al., 2001, 2015). The main driver pathways (see text for
details) are selected following Young (1971) and Plän (1987). (mouse): Cer, cerebellum; Ctx, cerebral cortex; HB, hindbrain; Hyp, hypothalamus; Sc, superior
colliculus; Str, striatum; Th, thalamus; Tg, tegmentum; (cephalopod): ARM, arm nerve cord; bL, basal lobe; fvL, frontal and vertical lobe; EYE, eyes; FUN, funnel;
HEAD, head; MAN, mantle; SM, subesophageal mass; sbL, superior buccal lobe; spL, sub-pedunculate lobe; VIS, visceral organs.

information originating from the arms, usually come from both
the ventral and dorsal sides of the SUB (Budelmann and Young,
1985). This is due to the arrangement of the anterior brachial
lobes (SUB) with their intricate neuropil and connections, from
where the four pairs of brachial nerves and the arm nerve
cords originate (see description in: Young, 1971; Budelmann and
Young, 1985; but see Lee et al., 2003).

Peripheral vs. Central Nervous System: The Case of
the Arm Nerve Cord
Following Bullock (1965b), the foremost anterior part of the
sub-esophageal mass accounts for “masses probably representing
new ganglia associated with arms” (Bullock, 1965b, p. 1440)
including the brachial ganglion (in the SUB) sensu stricto, the
brachial nerves “to arms and suckers” and the interbrachial
nerves (see also: Graziadei, 1971; Young, 1971). In the following
pages, Bullock provided a description of the “complex nervous
apparatus” characterizing arms and suckers as a “structure of the
peripheral nervous system” (Bullock, 1965b; p. 1467, 1475–1479).
It is interesting to note that Bogoraze and Cazal illustrated the
central nervous system of the octopus including stellate ganglia
and the related pallial nerves (see Figure 1 in Bogoraze and
Cazal, 1944), a possible suggestion of an extended and distributed
‘central nervous system.’ It may be worth pointing out that the
‘brain’ is contained within the cranium (cf. skull) and that the
‘brain + spinal cord’ is in vertebrates considered as the central
nervous system, as compared with the peripheral nervous system.

The overall arrangement of the arm nerve cord, medullary
in the center with four small lateral cords, and its main

features as “bilateral symmetry, segregation of tracts from
synaptic regions, segmented outflow, and continuous medullary
character of the axial cord” provides a strong analogy with “the
vertebrate spinal cord; the similarity is increased on consideration
of the physiological evidence of local, intersegmental, and
superimposed higher mechanisms” (Bullock, 1965b; p. 1475).

The detailed descriptions provided by Graziadei, Young
and coworkers (Graziadei, 1971; Young, 1971; Budelmann and
Young, 1985; see also Margheri et al., 2011) are an example of a
challenge for current neuroscience: to attribute a neural structure
as complex as the arm nerve cord of octopods to the peripheral
or to the central nervous system. Despite the typical invertebrate
organization, we believe that the analogy with the vertebrate
spinal cord is still largely unexplored, but likely.

Characterization of the acetylcholine synthetic enzyme
choline acetyltransferase (ChAT) and serotonin in octopus arm
nervous system supports this analogy. In the octopus arm two
types of cholinergic nerves, cChAT-positive nerves from brain
ganglia and pChAT-positive nerves intrinsic to the arm, have
been identified (i.e., common type ChAT, cChAT; and peripheral
type ChAT, pChAT; Sakaue et al., 2014). cChAT positive fibers
appear in the arm ganglia and are likely related to brain efferents,
appearing limited to fibers in octopus arm-nerve cord and in the
cerebro-brachial tract. On the other hand, pChAT occurs in the
intrinsic innervation of the octopus arm and is widely distributed
in different nerve centers, probably associated with the sensory
system (Sakaue et al., 2014). Similarly, two types of serotonin-
like innervation have been shown in the arm: one type with fibers
originating from the brain and innervating the periphery through
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the cerebro-brachial tract, and the other providing an intrinsic
network to the cellular layer of the axial nerve cord (Bellier et al.,
2017).

We reiterate here that the idea that the arm-nerve cord of
cephalopods is not simply a neural structure belonging to the
peripheral nervous system (as traditionally accounted, see for
example Hochner, 2012), but a case of convergent evolution
with functional and structural analogies existing between the
vertebrate spinal cord and the octopus arm-nerve cord.

Neural Structures Controlling Fast Escape
Responses in Cephalopods, a Case of Analogy With
the Hindbrain?
Mauthner cells (Sillar, 2009) are one of the most historically
notable motor systems for locomotory behavior reported in
agnathans, teleost fish, and many amphibians. These are
responsible for a rapid change in directionality and promote
escape behavior (Fetcho, 1991; Korn and Faber, 2005). Mauthner
neurons are characterized by a large neuronal cell, usually
possessing a giant banana-shaped cell body located on either
side of the midline in the brainstem with axon crossing to the
contralateral spinal cord where they synapse with somato-motor
neurons. The inputs to Mauthner neurons are primarily from
receptors of the vestibular, auditory, and lateral line systems. In
fish, for example, the neurons are not the same size in all species
and this is considered to be linked to differences in taxa and
possibly habitat (Zottoli, 1978).

We consider a similar neural system being present in
cephalopods: the giant fiber system of squid (e.g., Doryteuthis
or Loligo) and the magnocellular lobe of cuttlefish and octopus.
The activation of giant axons induces the rapid escape behavior
and vigorous jet propulsion (Otis and Gilly, 1990). Like
the Mauthner neurons, the giant fiber system of squid is
composed by a series of cells, some of them reaching over
250 µm in diameter (in Doryteuthis pealeii, see Young, 1939;
see also Young, 1976b). These giant cells are multipolar
with extensive dendritic arborization (Young, 1939, 1976b),
resembling vertebrate neurons.

In squid, mantle contraction and jet propulsion are controlled
by a giant fiber system consisting of two sets of three giant
neurons organized in tandem (Young, 1939). According to J.
Z. Young and later Authors, the “axons arising from the two
first-order giant cells pass backward into the neuropil of the
palliovisceral ganglion. Here they approach one another in the
middle line, and are joined by the inter-axonic bridge [. . .].
The interest of this remarkable structure is that in the adult
it consists not of a chiasma or crossing of two distinct fibers,
but of a true protoplasmic bridge” (Young, 1939, p. 477). Such
an organization allows synaptic inputs from either side of the
brain to be integrated and propagated down the giant fiber
system as a symmetrical event for synchronous contraction of
both sides of the mantle musculature (Pozzo-Miller et al., 1998).
After the chiasm, these giant axons branch and establish synapses
(chemical and electrotonic-gap synaptic junctions) with several
second-order giant axons in the neuropil of the palliovisceral
lobe (SUB). From these cells, axons project from the central
palliovisceral lobe (SUB) to the stellate ganglion in the mantle via

the pallial nerve forming the presynaptic elements at the giant
synapses (Young, 1939; Martin and Miledi, 1986). The axons of
the giant system of cephalopods are thus part of an intricate
network with other regions of the brain (Young, 1939; see also:
Young, 1977a; Nixon and Young, 2003).

In the brain of Sepia officinalis and O. vulgaris the
magnocellular lobe serve the same function (Young, 1971;
Chichery and Chanelet, 1976). Interestingly, differences in
cellular sizes among different species exists; however, their
preserved functions (i.e., neural control and initiation of fast
locomotion and escape responses) indicate another possible
analogy when comparing vertebrates (e.g., fish) and cephalopods
(Young, 1977a; Zottoli, 1978).

Further studies are required to provide data to support or
contradict this working hypothesis.

The Neurosecretory System: An Analog
to the Hypothalamus
Neurosecretion is pivotal for orchestrating essential body
functions and metabolism and is considered a common metazoan
phenomenon (Dorn, 1998; Hartenstein, 2006; Tessmar-Raible,
2007). Neurosecretory cells are characterized by large dense core
vesicles that are not produced locally (at the synapse), but in
the cell soma and have to travel along an axon (sometimes over
a considerable distance) to reach their release site. In addition,
neurosecretory centers are usually clustered in specific areas.

In vertebrates, the hypothalamus is located at the rostro-
ventral region of the forebrain and among cellular-types are
a set of neurosecretory cells (Butler and Hodos, 2005). The
evolutionary origins of neurosecretory cells can probably be
traced to a common bilaterian ancestor or pre-bilaterian animal
such as a cnidarian (Hartenstein, 2006; De Velasco et al., 2007;
Tessmar-Raible et al., 2007).

The neurosecretory centers of molluscan nervous systems
tend to be distributed in the cerebral ganglia (gastropods).
Alternatively the cells tend to be organized into distinct clusters
in the preoral regions associated with the esophagus, or the
stomatogastric nervous systems (e.g., Simpson et al., 1966; Kandel
and Kupfermann, 1970). In cephalopods, neurosecretory cells are
mainly found in the buccal (SEM), sub-pedunculate (SEM), and
in part of dorsal basal lobes again in the supra-esophageal mass
(Young, 1970). Surrounding the ‘brain’ there are several other
‘potential’ neurosecretory regions such as those present in the
sub-buccal and sub-pedunculate areas and in the optic gland, and
the neurovenous tissue of the vena cava (Bogoraze and Cazal,
1946; Young, 1970).

The optic glands and the sub-pedunculate lobe are considered
to function as neurosecretory centers related to reproduction
and are the candidates for pituitary-hypothalamus analogs in the
cephalopod brain (Wells and Wells, 1969). We would expect to
see an analogically equivalent area in the vertebrate brain, and
indeed, studies have detected in the above-mentioned cephalopod
brain centers a subset of neurons containing hypothalamus
abundant molecules such as GnRH (Di Cosmo and Di Cristo,
1998; Iwakoshi-Ukena et al., 2004; Kanda et al., 2006; Shigeno
and Ragsdale, 2015) and duplicated vasopressin orthologs,
octopressin and cephalotocin (Kanda et al., 2003a,b, 2005;
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Minakata, 2010; Shigeno and Ragsdale, 2015). Unfortunately, it is
largely unknown how each neurosecretory tissue is derived from
those of molluscan ancestors and what its relationship is to other
higher brain centers.

In any case neurosecretion is a common control mechanism
and cephalopods and vertebrates both show discrete groups of
neurons in their ‘brain’ that secrete peptides with an action at a
distant site via the blood. Note that we are not proposing that
specialized neurosecretory areas are unique to cephalopods and
vertebrates, as they are present in most animal species studied
to date (Hartenstein, 2006; Tessmar-Raible, 2007; Williams et al.,
2017).

Higher Sensory Centers: An Analog to
the Thalamus
To the best of our knowledge, a cephalopod equivalent of the
vertebrate thalamus has not been proposed. The thalamus is often
referred to as a sensory relay center though which almost all
sensory inputs run on their way to the cerebral cortex or pallium
(Riss et al., 1972; Swanson, 2007). It is a gatekeeper to the cortex
and is considered to have a role in ‘pain’ and ‘consciousness’
(Alkire et al., 2008; Schiff, 2008; Baliki and Apkarian, 2015;
Rajneesh and Bolash, 2018). It is composed of a number of nuclei
that usually have distinct sensory fields.

Using the above features as a basis for comparison we suggest
that in the cephalopods dorsal basal- and sub-vertical lobes
could be considered as candidates for analogs to the vertebrate
thalamus.

The dorsal basal and sub-vertical lobes receive many input
fibers from the entire body via direct and indirect pathways from
the sub-esophageal mass (Young, 1971), suggesting that it is a
relay center for the ‘cortically located’ frontal and vertical lobes
in cephalopod brain. We counted between 11 and 15 main tracts
originating and/or departing from (afferent and efferent) the two
structures, i.e., dorsal basal- and sub-vertical lobes, based on the
description available for O. vulgaris (Young, 1971); an estimation
of the number of neural fibers composing these tracts is not
available, or only possible for part of the dorsal basal following
Plän (1987). The dorsal basal lobe also provides many outputs to
the lower motor centers, suggesting it can also be categorized as a
higher or intermediate motor centers (Boycott, 1961; Zullo et al.,
2009). It is without doubt that the connectivity of these centers
is very extensive, thus supporting our view of that they are relay
centers analogous with the thalamus in vertebrates.

The inferior frontal lobe also appears to be another candidate.
It is a major chemo-tactile sensory-motor center processing
information originating from the suckers and arms, just as occurs
in the olfactory cortex. It is involved in learning and memory
recall being part of the so-called chemo-tactile memory system
(Wells, 1959; Young, 1995). Also in this case, Young (1971)
describes four afferent and seven efferent connections to/from
the inferior frontal lobe, and considers it as the main part of the
matrices involved in the chemo-tactile sensory-motor learning
system (Young, 1991, 1995).

The above account is mainly based on O. vulgaris. In
our view, a comparative analysis including information on

main connections of homologous structures in the brain of
other cephalopod species may provide further insight (for
cephalopods – Decapodiformes, see: Young, 1974, 1976b, 1977b,
1979; Messenger, 1979; for a vertebrate based comparative
overview see Butler, 2008).

Higher Motor Centers: Analogs to the
Basal Ganglia
In vertebrates, the higher motor centers receive sensory inputs
and modulate their output to the pattern generators, located in
“lower” parts of the central nervous system, to orchestrate the
actions of multiple appendages to regulate posture, orientation,
breathing, autonomic control of the viscera, and also habit
formation (Reiner et al., 1998; Yin and Knowlton, 2006). The
basal ganglia and the dorsal striato-pallial complex along with
the spinal cord, midbrain and cerebellum, are the major centers
regulating the outputs of cascading projection neurons.

In different bilaterians the putative higher motor centers
have been identified with different terminology (e.g., Young,
1971; Orrhage, 1995; Loesel et al., 2002; Strausfeld et al., 2006;
Homberg, 2008; Beckers et al., 2011; Pfeiffer and Homberg, 2014):
central complex (insects), arch-like bodies and midline neuropils
(non-insect arthropods, annelids), cerebral commissures (other
protostomes), basal lobe system (cephalopods). The homology of
these structures among phyla remains uncertain, and each motor
center has become independently specialized to the demands of
each animal lineage, resulting in different body plans, locomotory
systems, and life styles across these taxa.

Despite such specialization, it is possible that higher
motor centers share a common origin that can be traced
back to the cerebral or preoral commissural region of
a bilaterian ancestor, since almost all bilaterian nervous
systems, including primitive acoelomorphs, have several thick
commissural pathways connecting paired cerebral ganglia with
bilateral body parts (see description in Bullock, 1965a,b,c,d; see
also Reichert and Simeone, 2001).

Just as in many vertebrate species, the higher motor centers
of coleoid cephalopods are complex neural structures (Young,
1971, 1977b). The main motor output centers are the basal lobes
in the supra-esophageal mass (Boycott, 1961). Based on neural
connectivity and experiments testing function after lesion of
specific areas of the cuttlefish ‘brain,’ the cephalopod anterior
basal lobes have been proposed as being analogous to the
vertebrate basal ganglia (Chichery and Chichery, 1987; Gleadall,
1990).

The anterior basal lobe and the vertebrate basal ganglia are
both situated at the pre-oral and peri-esophageal regions at
the base of the anterior brain, respectively (Figure 4; see also
Figure 1B). Likewise, the major connectivity of the lobe and its
functional structure are similarly hierarchical, progressing from
motor pattern learning to central pattern controllers, initiators,
generators, and motor neuron pools, and finally to behavior as
is thought to occur in vertebrate brains (Stocco et al., 2010).
Unfortunately, the physiological function of the basal lobes in
cephalopods remains only vaguely known (Zullo et al., 2009) and
so this hypothesis requires further testing.
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It is noteworthy to mention that few studies maybe claimed in
support of the existence (or not) of Central Pattern Generators
(CPG) in cephalopods. We refer here to: (i) the excitable receptor
units in the mantle of octopus by Gray (1960) and the neural
control of breathing, that may provide indirect evidence for CPG;
(ii) the tentacle strike of cuttlefish and squid, but with almost no
data on neural control; (iii) the locomotor patterns involved in
octopus crawling, with evidence that is difficult to interpret as
CPGs sensu stricto (Levy et al., 2015; Levy and Hochner, 2017).

The Peduncle Lobe: Analog of the
Cerebellum
The cerebellum is involved in controlling balance,
proprioception, and ocular reflexes via fixation on a target
object, planning bodily movements and also motor learning. It
is highly interconnected with the optic tectum, thalamus, and
midbrain (Swanson, 2007).

The cephalopod peduncle lobe is a candidate analog for the
cerebellum (Messenger, 1967a,b; Hobbs and Young, 1973; Young,
1976a; Messenger, 1979; Camm et al., 1985). According to the
ultrastructural characterization of the peduncle lobe of O. vulgaris
made by Woodhams (1977), and based on evidence about the
effects on locomotor responses of the animal after lesions to
this lobe, Woodhams (1977) suggested a close functional and
morphological analogy to a folium of the vertebrate cerebellum.
The presence of a conspicuous and characteristic array of parallel
fibers, originating from the spine cells, in the neuropil of the lobe
and their “striking resemblance to those of vertebrate cerebellar
granule cells,” and “serial synaptic relays present along their
length” support this conclusion (Woodhams, 1977, p. 329).

Like vertebrates, cephalopods have a hierarchical series of
motor control centers that coordinates signals from the vestibular
organs, eyes, and body (Young, 1976a). The fibers from the
optic lobe run into the peduncle lobe along with those from the
anterior basal and the magnocellular lobes, and then their outputs
connect to the oculomotor center, i.e., the lateral pedal lobe in the
SUB (Budelmann and Young, 1985) as is the case in vertebrates
represented by the medulla-cerebellum-midbrain axis regulating
vestibulo-ocular reflexes.

The Associative (or Auxiliary) Centers:
Analogs of the Pallium/Cerebral Cortex
A number of studies have used an evolutionary perspective to
postulate the ancestral form of the pallium/cerebral cortex in both
vertebrates and invertebrates (e.g., annelid and insect ‘brains’; see
for example, Tomer et al., 2010; Strausfeld, 2012).

In some cephalopods, such as S. officinalis and O. vulgaris,
experimental evidence for sleeping, decision-making,
discrimination learning and lateralization of the brain suggests
that cephalopods possess a higher level of cognitive ability
(Mather, 1995, 2008; Edelman and Seth, 2009; Edelman, 2011;
Marini et al., 2017) thus leading to the hypothesis that these
cognitive features require in cephalopods the equivalent of a
cerebral cortex as in mammals (Edelman et al., 2005; Edelman
and Seth, 2009; Roth, 2013).

Through extensive experimentation using ablation of various
brain areas followed by behavioral assays the higher centers, i.e.,
the frontal- and vertical lobe systems, have been shown to be
involved in tactile and visual memory processing (Maldonado,
1963a,b, 1965; Young, 1971, 1991, 1995). These include (i)
numerous uniquely distributed small-size interneurons, called
amacrine cells (Young, 1971, 1979), (ii) the presence of parallel
running fibers, and (iii) reverberating circuitry across different
lobes (Young, 1991, 1995).

These areas are also characterized by synaptic long-term
potentiation, neurotransmitter function, and heterogeneity of
neurochemical identity (Hochner et al., 2003; Shomrat et al.,
2008, 2010, 2011; Shigeno and Ragsdale, 2015; for review see:
Shomrat et al., 2015; Turchetti-Maia et al., 2017). The reason
for the deep homology between the vertebrate pallium and
the cephalopod vertical lobe system – whether derived from
a common ancestral plan or convergently evolved – remains
uncertain, but the cephalopod vertical lobe is the best candidate
for vertebrate pallium analog within the molluscan lineage
(Young, 1991, 1995).

MODELS FOR ASSOCIATIVE NEURAL
NETWORKS

If functional equivalents of the cerebral cortex evolved
independently in both the cephalopod and vertebrate brains,
what is the common structural and/or functional principle that
drove this? Here, we summarize the most likely hypotheses.

The Paired Centers and Matrix Model
Young (1965b, 1991, 1995) studied the multi-level control of
attack or retreat behavior resulting from the association of taste,
touch, vision, and possible pain in response to the experience that
animals have when interacting with objects or prey. According
to Young, the ‘paired cortical centers,’ i.e., the inferior- and
superior frontal-vertical lobe systems, determine the probability
of a positive or negative response for pursuing a given ‘food
items’. The systems are composed of combined matrices of axons
with intersecting axes where memory is stored. The ‘classifying’
neurons of lower centers send signals to higher cortical lobes
or take a short-cut by directly dictating the proper response to
output motor neurons. In the ‘cortical’ centers (e.g., the median
frontal lobe) the response is modulated to increase the probability
of attack, unless this action is vetoed by the vertical lobe. This
constructs a hierarchical system of decision-making as suggested
by the selective theory of the vertebrate higher sensory centers
such as cerebral cortex or cerebellum (Eccles, 1977; Edelman,
1978).

Unfortunately, this model has not yielded a hypothesis as to
how the neural connectivity patterns and cell types are equivalent
to those of vertebrate cerebral cortex.

The Associative Learning Model
As reviewed by Marini et al. (2017), Young and coworkers
were able to provide an associative learning model of the
octopus brain (Boycott and Young, 1955; Maldonado, 1963c;
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Young, 1964, 1965b, 1991; Maldonado, 1965) based on the
existence of a series of matrices (see also above) that allow
computation and that were considered analogous to the limbic
lobe of higher vertebrates (Young, 1991, 1995; review in:
Borrelli and Fiorito, 2008; Marini et al., 2017). In the octopus
‘learning system,’ the small interstitial neurons (amacrines)
and their synapses play an important role in learning by
means of their sensitizing effects on reward and punishment
signals coming from outside. This model explains the short
fluctuations in memory recall and long-term cumulative changes
via Hebb’s synaptic law, that frequent stimulation of certain
synapses strengthen their signals and connectivity (Hebb,
1949). The associative learning of O. vulgaris has been also
a ‘model’ in cybernetics (Clymer, 1973; Myers, 1992), and
appears surprisingly similar to a more recent one, suggested
for the learning system of insects (i.e., the mushroom bodies),
particularly of the honeybee (Heisenberg, 2003). In the insects,
the model posits on the assumption that sensory odor signals
are spatio-temporally represented by synaptic sets of small
intrinsic interneurons (Kenyon cells) in the neuropil of the
mushroom body. The reward- or punishment-conditioned
stimulus of these Kenyon cells strengthens synapses with their
outputs.

Thus, octopus amacrine cells (Figure 5) and honeybee
Keynon cells, as well as the octopus sub-vertical lobe and
insect premotor centers, are candidates for being functionally
equivalent analogs (Hochner, 2010). A partial cellular test of
the system of functioning of the circuit underlying this ‘model’
has been achieved with the octopus (and cuttlefish) brain slice

preparation (Hochner et al., 2003; Shomrat et al., 2008, 2011,
2015; Turchetti-Maia et al., 2017).

The Reverberating Circuitry Model
(Young, 1991, 1995)
The similarity in connectivity between the cephalopod superior
frontal-vertical lobe system and the vertebrate hippocampal
formation, based on matrices and reverberating feedback
network structure (Maldonado, 1963a, 1965; Young, 1991), is the
basis of this model.

Cephalopod learning capacity is not localized in certain
layers or ‘grandmother cells’ but is distributed within a highly
redundant series of matrices with recurrent circuits. Young
emphasized the similarity with the hippocampal complex but
avoided any clear statement about its relationship to the cerebral
cortex (Young, 1991, 1995). Indeed, the existence of long term
potentiation in the cephalopod vertical lobe (Hochner et al., 2003;
Shomrat et al., 2008, 2011) maybe the basis of long term memory
as it is considered in the hippocampus of vertebrates with minor
molecular differences (Hochner et al., 2003; Turchetti-Maia et al.,
2017). However, the higher matrix system of cephalopods is also
comparable to that of the mammalian cerebral cortex which also
forms distinct cellular and matrix units (Young, 1995).

The Self-Organized Embodiment Model
Without Somatotopy
The octopus higher motor centers are comparable to the motor
cortex/pallium of vertebrates as a central control system, but

FIGURE 5 | The evolution of cortical territories represented by a zonation in cephalopod brain evolution. (A) Phylogram of the evolution of brain complexity and
emergence (still controversial) and organization of the amacrine cells into clusters. Based on the information included in Lindgren et al. (2012), and data assembled
from Young (1965a, 1977a), Nixon and Young (2003). The centers are primitively zonal or band-like (Nautilus) and they are enlarged, or centralized or reduced in
more ‘evolved’ species such as cuttlefish and octopus. (B) Homology of cell types and appearance of amacrine cells or their equivalent cell types (purple) in different
cephalopod species. Homology of cell types in Nautilus is also controversial when compared with other taxa, but the gross similarity of topographical distribution is
apparent. Large cells (green) are commonly localized in the buccal lobe area, which are often serotonergic (Wollesen et al., 2012). Toward the posterior end of the
dorsal basal lobe clusters of GABAergic cells (blue) have been identified in octopus (Cornwell et al., 1993; Ponte, 2012). Outline of supra-esophageal mass and optic
lobes are exemplified as a view from top; the overall shape of the brains is simplified as that of later embryonic stage. dbL, dorsal basal lobe; ifL, inferior frontal lobe;
lcL, lateral cerebral lobe; lz, laminated zone of cerebral cord; opL, optic lobe; sbL, superior buccal lobe; sfL, superior frontal lobe; spL, sub-pedunculate lobe; vtL,
vertical lobe.
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TABLE 1 | A list of the higher sensory, motor, and neurosecretory centers in the
‘brains’ of cephalopods and vertebrates.

Cephalopods Vertebrates

Cerebral cord Fore- and midbrain

Frontal-vertical lobe Cerebral cortex (pallium)

Hippocampus

Amygdaloid complex

Dorsal basal lobe Thalamus

Anterior basal lobe Basal ganglia

Buc1 and Spd2 lobes Hypothalamus

Optic lobe Tectum

Magnocellular lobe Tegmentum

Peduncle lobe Cerebellum

Pedal cord Hindbrain and spinal cord

Palliovisceral cord Hindbrain and spinal cord

1Buc, buccal lobes, 2Spd, subpedunculate lobe. Data assembled from Bullock
(1965b), Butler and Hodos (2005), Hartenstein (2006). See text for details and
exceptions (e.g., oculomotor centers).

they do not seem to be organized somatotopically (Zullo et al.,
2009; Hochner, 2012, 2013). The lack of somatotopy in the
higher motor centers of octopus may be explained by the non-
biological concept of “self-organized embodiment” in robotics
(Pfeifer et al., 2007; Cianchetti et al., 2012; Hochner, 2012;
Laschi et al., 2012). The self-organized embodiment concept uses
the dynamic interplay between the sensorimotor and a central
controller to generate autonomous adaptive responses, and can
explain very complex movements, such as the highly flexible
motions of octopus arms.

Indeed, recent advances in artificial intelligence, including
deep learning methods such as convolution networks (e.g.,
Mnih et al., 2015), show that neural-networks can be trained
by and learn from numerically defined ‘weights’ provided to a
whole network rather than from inputs due to local sensory
representation. In support of this non-somatotopic idea, Grasso
(2014) hypothesized that ‘higher’ neural centers of octopus
have a role in time-series processing rather than acting as a
spatial decoder. Reciprocal sensory information flow between
the arms and ‘higher’ neural centers establishes a distributed
memory trace in the Bayesian statistical sense. The reverberant
circuits or recurrent matrices unique to the octopus frontal
and vertical lobes produce signals lasting minutes to hours
through Hebbian type learning. As a result, a brain-to-body
spatial map or “Octo-munculus” (like the human “Homunculus”)
would be depicted as information processing systems distributed
throughout each arm and a brachial center in the brain (Grasso,
2014).

CLOSING REMARKS

Cephalopods are not the only invertebrates that exhibit
sophisticated behavioral repertoire, higher-order learning and
cognitive abilities (e.g., Avarguès-Weber and Giurfa, 2013;
Giurfa, 2013; Perry et al., 2013; Marini et al., 2017; Mather and
Dickel, 2017; van Duijn, 2017).

Here we attempted to overview available knowledge to
propose a brain-wide comparative ‘model’ between cephalopod
neural-systems and the neural structures characterizing
vertebrates. Such a comparison identifies the cephalopod cerebral
cord as analogous to the vertebrate forebrain and midbrain, and
the pedal and palliovisceral cords in the cephalopod brain as
being comparable to their putative equivalent in vertebrates: the
spinal cord and the hindbrain (Table 1).

The studies overviewed in this work have enabled us to draw
functional analogies between cephalopod and vertebrate brains.
Despite having fundamentally different anatomical organizations
of adult brains, the embryologic patterns of longitudinal and
transverse areas (orientation) along the A–P and D–V axes share
similar topography in vertebrates and cephalopods. Surprisingly,
the revised positional identities of the sub-esophageal centers
(including brachial-, oculomotor-, funnel-, pallial- and visceral
lobes) could account for much of the phylogenetic stability
as well as novelties between the two taxa. Gene expression
profiles controlling development support some of these proposed
patterns, conserving the A–P and D–V axes of the brain and body
regions as a whole (e.g., Albertin et al., 2015; Shigeno et al., 2015;
Buresi et al., 2016; Navet et al., 2017).

Based on this developmental model, we have suggested that,
unlike the vertebrate spinal cord, the octopus sub-esophageal
system is arranged along the dorso-ventral body axis: the sensory-
motor fibers run from the brachial, head, funnel, visceral mass,
and the mantle. The basal lobes are placed, as in the basal
ganglia, more anteriorly than the lower sensorimotor centers, and
the associative centers (the frontal-vertical lobes) are at a more
anterior-dorsal position as in the pallium or cerebral cortex of
vertebrates. Our view establishes a topographical basis for a large-
scale framework that encourages further discussion regarding
analogs between the cerebral cortex, basal ganglia, and other
vertebrate-like nervous systems in cephalopods.
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