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Atrial Fibrillation (AF) is the most common cardiac rhythm disorder seen in hospitals and

in general practice, accounting for up to a third of arrhythmia related hospitalizations.

Unfortunately, AF treatment is in practice complicated by the lack of understanding of the

fundamental mechanisms underlying the arrhythmia, which makes detection of effective

ablation targets particularly difficult. Various approaches to AF mapping have been

explored in the hopes of better pinpointing these effective targets, such as Dominant

Frequency (DF) analysis, complex fractionated electrograms (CFAE) and unipolar

reconstruction (FIRM), but many of these methods have produced conflicting results

or require further investigation. Exploration of AF using information theoretic-based

approaches may have the potential to provide new insights into the complex system

dynamics of AF, whilst also providing the benefit of being less reliant on empirically

derived definitions in comparison to alternate mapping approaches. This work provides

an overview of information theory and reviews its applications in AF analysis, with

particular focus on AF mapping. The works discussed in this review demonstrate how

understanding AF from a signal property perspective can provide new insights into the

arrhythmic phenomena, which may have valuable clinical implications for AF mapping

and ablation in the future.
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INTRODUCTION

Catheter ablation is a potentially curative treatment for atrial fibrillation (AF) that has
been gaining interest within the last few decades. It uses percutaneously induced catheters
to apply focal burns to specific areas of heart muscle in order to cease or modify the
AF (Baumert et al., 2016). This method was first popularized following the breakthrough
investigation published by Haissaguerre et al. (1998), which reported successful termination
of up to 90% of paroxysmal AF (PAF) cases using catheter ablation on ectopic triggers
located at the pulmonary veins. Although pulmonary vein isolation (PVI) is recognized as a
landmark development for the treatment of paroxysmal AF, the extending application of ablative
therapies for the highly varied persistent AF populace has seen relatively lower rates of success
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(Verma et al., 2015). Consequently, the optimal approach to
ablation in this population is currently the subject of ongoing
debate, as effective ablation targets remain unknown (Verma
et al., 2015).

To help determine potentially effective targets, AF mapping
is employed. The aim of AF mapping is to locate triggers and
substrates that lead to AF termination, which in turn can be used
as targets in clinical ablation procedures (Baumert et al., 2016).
Unfortunately, the highly complex wave dynamics of AF have
thus far been responsible for the difficulties in understanding
what these effective targetsmay be, as themechanisms underlying
AF are arguably one of the most challenging problems in
cardiology. As a result, a number of mapping approaches have
been explored, including complex fractionated electrograms
(CFAE) (Nademanee et al., 2004; Nademanee and Oketani, 2009;
Hayward et al., 2011; Li et al., 2011), dominant frequency (DF)
by Fast Fourier transform (Skanes et al., 1998; Sanders et al.,
2006) and unipolar electrogram reconstruction (FIRM) (Narayan
et al., 2012). Unfortunately, these approaches have either lead
to conflicting outcomes (Nademanee et al., 2004; Narayan et al.,
2012) or are still undergoing investigation (Dawes et al., 1992).
In light of this, it is clear that exploration of new mapping
methods are both warranted and necessary to understanding
the mechanisms of AF and potentially improving the efficacy of
catheter ablation.

Information theoretic-based approaches may be an appealing
new avenue in AF mapping, as they have (i) a strong
theoretical foundation in mathematics and (ii) use quantitative
definitions rooted in intrinsic signal properties, instead of
arbitrary, empirically derived definitions. In addition, although
information theoretic approaches are seldom used in the field
of cardiology, such techniques are already prevalent and widely
accepted in other disciplines such as engineering, neurobiology,
computer science, physics, quantum computing, linguistics, and
cryptography (Verdu, 1998).

The objective of this review is to provide an overview of
information theory in atrial fibrillation (AF). We begin by
introducing the concept of information theory, and follow by
discussing the use of information theoretic-based measures
of entropy in three common areas of AF research: (i) AF
detection, (ii) AF prediction and characterization, and (iii) AF
mapping.Within the context of AF detection, studies successfully
implementing entropy measures to distinguish between normal
sinus patterns and AF are presented. Specifically, such studies
develop AF detection algorithms based on detecting variations
in the RR interval, or changes in the ECG morphology.
Following this, the application of entropy for AF prediction
and characterization is also described, outlining the use of
entropy-based measures to understand the dynamical properties
associated with the onset and termination of AF, as well as
paroxysmal and persistent AF. Finally, we detail the current
studies that employ information theoretic measures for AF
mapping with respect to rotor identification, quantifying AF
synchronization, and studying information flow within the atria.
To conclude, we discuss the potential gaps in AF research that
information theory may be able to address both now, and in the
future.

INFORMATION THEORY

What Is Information Theory?
Information theory is a branch of mathematics that incorporates
probability theory and statistics (Ephremides, 2009). Modern
information theory was established after the publication of
Claude E. Shannon’s seminal original paper (Shannon, 1948),
which earned him the title of pioneer and founding father of
information theory. Shannon’s work introduced, for the first
time, a number of key ideas that shaped the field of information
theory, including the concept of digitizing information into
binary digits known as “bits,” the formal architecture of
communication systems, and source coding, which deals with
the efficiency of data representation (Shannon, 1948). In short,
the scope of information theory focuses on the transmission,
processing, storage, and receiving of messages (Aftab et al.,
2001; Lombardi et al., 2016). Although information theory was
initially developed for use in communication systems, principally
concerning itself with the transmission of telecommunication
signals, it is now commonly used in a number of fields such
as computer science, engineering, neuroscience and linguistics
(Verdu, 1998; Xiong et al., 2017).

What Is Information and How Can It Be
Measured?
As Shannon argued, the semantic aspects of communication can
be thought of as irrelevant to the engineering problem (Shannon,
1948). Consequently, the term “information” in reference to
information theory does not refer to the meaning of a message as
onemight assume intuitively, but instead howmuch can be learnt
from that message (Lombardi et al., 2016). To conceptualize this
further, take for example the scenario in which someone is asked
to guess a number from 1 to 10, whilst obtaining help from a
friend through clues.With respect to information theory, the clue
itself does not matter, but the amount of information that can
be inferred from the clue does. As such, if they are told that the
number is >11, then this clue is deemed uninformative. On the
other hand, if they are told that the number is even, then this fact
is considered much more informative, though revealing that the
number is odd would also be equally as informative, as these both
reduce the possible selections to 5. In this respect, information
can be thought of as howmuch is learnt, rather thanwhat is learnt
(Shannon, 1948).

Relating to this concept is the information theoretic measure
known as “entropy.” As information can alternatively be thought
of as the amount of uncertainty that is eliminated or resolved,
measuring this uncertainty will intuitively quantify information.
Conceptually speaking, entropy utilizes this principle to measure
information content, with greater uncertainty in turn generating
higher entropy (Shannon, 1948; Cover and Thomas, 1991; Gray,
2011). As entropy increases with uncertainty, it will be maximal
for completely random systems (Shannon, 1948; Costa et al.,
2002b). Suchmetrics have potentially useful clinical implications,
particularly with respect to diagnostic tools using biological
signals and understanding the underlying dynamic properties of
physiological systems (Costa et al., 2005).
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Although there are several ways that information can be
measured outside of entropy, it is one of the most prevalently
used classical measures of information theory, particularly in the
context of AF. With this in mind, entropy-based approaches to
quantifying information will be the focus of this review, and an
overview of the various entropy algorithms commonly used to
analyze AF will be described in the following.

SHANNON ENTROPY

Named after Claude E. Shannon himself, Shannon entropy is
the classical measure of information theory and measures the
Shannon information content of a random variable (Shannon,
1948; Xiong et al., 2017). It was first introduced by Shannon
to describe the relationships between information, noise and
power in a digital communication stream (Aftab et al., 2001),
quantifying the amount of storage required to store a signal (in
bits) (Vajapeyam, 2014). Now, it is also commonly used as a
measure of information content across many fields (Aftab et al.,
2001). Shannon entropy (ShEn) can be defined as:

ShEn = −

M
∑

i= 1

p(i) log2 p(i) (1)

where M is the number of discrete values the variable can
take, and p(i) the probability density function of the variable x
assuming the ith value. Note that Shannon entropy is given in the
unit bits (Shannon, 1948).

An intuitive example of how information is quantified using
ShEn is the simple coin toss. A fair coin with a head and tail will
result in maximum entropy, as the outcome cannot be predicted.
As a result, the probability of choosing the correct outcome is
½, as there are two possible outcomes that may occur with equal
probability. Each coin toss will deliver one bit of information, as
(Shannon, 1948):

ShEn = −

2
∑

i= 1

(

1

2

)

log2

(

1

2

)

= 1 bit (2)

Conversely, a double-headed coin will result in an entropy of
zero, as the probability of the outcome is 1/1. Hence there is no
uncertainty, and no information is gained from the outcome of
the coin toss (Shannon, 1948):

ShEn = −

1
∑

i= 1

(1) log2 (1) = 0 bits (3)

In AF analysis, ShEn is often used to measure the information
content of an ECG or EGM. Typically, this is achieved by
constructing the amplitude distribution or histogram of the
signal (Shannon, 1948; Ganesan et al., 2012, 2014; Baumert
et al., 2016). Specifically, a voltage histogram can be acquired
by binning signal samples according to its amplitude. Following
this, the relative probability density function p(i) is obtained
by dividing the sum of counts in each amplitude bin by the
total number of counts. In effect, ECG or EGM with regular

morphologies (i.e., signals that only possess a few states) will
yield a narrow amplitude distribution (Ganesan et al., 2012).
Conversely, complex morphologies containing a number of
dissimilar deflections, such signals in AF, will lead to more
varying amplitudes and in turn a broader amplitude distribution
(Figure 1) (Ganesan et al., 2012). In effect, as ShEn is taken a sum
of the probabilities, broader amplitude distributions will result in
higher ShEn (Ganesan et al., 2012, 2014).

The ShEn equation defined in (1) can be classified as a “static”
measure, as it does not consider any temporal information when
describing the observed probability distribution. In other words,
it measures information content by quantifying the amount of
information contained only in the present value of the time series
(Xiong et al., 2017).

APPROXIMATE ENTROPY

In contrast to the “static” measure of ShEn described in
(1), “dynamic” measures of entropy are those that study the
information content of a process representing the activity of a
system that is changing over time. An example of such a dynamic
measure of entropy is conditional entropy (Xiong et al., 2017).

Conditional entropy, also referred to as the Kolmogorov-
Sinai entropy (Eckmann and Ruelle, 1985), is defined as
the average rate of creation of new information. Generally
speaking, the current state of an observed process is partly
determined by its past, but also conveys some amount
of new information that can’t be inferred from the past.
Conditional entropy measures this residual information to
quantify the rate of creation of new information (Xiong
et al., 2017). In mathematical notation, this can be given
by:

C (X) = H
(

Xn

∣

∣X−
n

)

= H
(

X−
n ,Xn

)

−H
(

X−
n

)

(4)

= −E [log p (xn|x1, . . . , xn−1)]

where p (xn|x1, . . . , xn−1) is the conditional probability that
X assumes the value xn at time n, given that previous
values are taken at x1, . . . , xn−1 (Xiong et al., 2017). In
effect, if the process is fully predictable, the system will not
create new information and hence the conditional entropy is
equal to zero. Contrastingly, a fully random process produces
information at the maximum rate and will yield maximum
conditional entropy. If the process is stationary, the system
will produce information at a constant rate, and therefore the
conditional entropy will not change over time (Xiong et al.,
2017).

A number of entropy estimates and measures have been
developed to quantify conditional entropy. One specific example,
which is commonly used to study physiological signals, is
Approximate Entropy (ApEn). ApEn is a regularity metric that
was originally developed for physiological signals such as heart
rate (Ganesan et al., 2014). As accurate entropy calculation
using regularity statistics is often found unfeasible in real-
life applications due to the influence of system noise and the
large amounts of data required, Pincus developed ApEn to
manage these limitations (Pincus et al., 1991; Ganesan et al.,
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FIGURE 1 | High ShEn correlates to the pivot of a spiral wave. An example of the relationship between ShEn and the amplitude distribution in a simple rotating wave.

An amplitude distribution (histogram) is generated by binning samples of the signal in amplitude bins. Bipoles positioned in location 1 and 2 (at the periphery of the

rotating wave) experience consistent activation direction, leading to more regular EGM morphology and a narrow amplitude histogram. Conversely, the bipole at

position 3 (at the rotor pivot) experiences sharp local deflection (green), but secondary activity as the wavefront changes direction, including intermediate activity

(yellow) and an inverted potential (red). Consequently, signal values are binned over a broader range of amplitudes, leading to higher ShEn. Reprinted from Ganesan

et al. (2012) with permission.

2014). It can be noted that the approximate entropy family of
statistics has been widely implemented in clinical cardiovascular
studies (Pincus et al., 1991, 1993; Dawes et al., 1992; Fleisher
et al., 1993, 1997; Goldberger et al., 1994; Ryan et al., 1994;
Mäkikallio et al., 1996, 1998; Tulppo et al., 1996; Ho et al.,
1997; Lipsitz et al., 1997; Hogue et al., 1998; Nelson et al.,
1998; Palazzolo et al., 1998; Schuckers, 1998; Korpelainen et al.,
1999).

Specifically, ApEn quantifies the amount of regularity
in a signal by measuring the logarithmic likelihood that
runs of patterns similar to one another will remain similar
when incrementally compared (Richman and Moorman, 2000;
Baumert et al., 2016). The prevalence of repetitive patterns in a
signal is identified by forming a sequence of vectors using the
time series data, and measuring the difference between them
(Baumert et al., 2016). If the relative difference between any
pair of corresponding measurements is less than the length
of the pattern, the pattern is deemed similar (Pincus, 1991).
In mathematical notation, this can be expressed using the
equation:

ApEn(SN,m, r) = ln
Cm(r)

Cm+ 1(r)
(5)

where m is the pattern length, r is the similarity criterion or
threshold, and Cm(r) the prevalence of patterns of length m in
the sequence SN (Pincus, 1991). ApEn is quantified in bits.

Conceptualizing ApEn further, take for example two time
series, t1 and t2:

t1 = (1, 2, 1, 2, 1, 2, 1, 2, 1, 2 . . .)

t1 = (1, 2, 1, 1, 1, 2, 1, 2, 2, 1 . . .)

As t1 follows a very regular pattern alternating between 1 and 2 s,
knowing that a term is valued at 1 will consequently allow the
next value to be predicted, which in this case is always 2. Thus,
t1 possesses high predictability and low conditional entropy.
Conversely, t2 demonstrates a much more random pattern and
hence will possess greater conditional entropy. Translating this
to the cardiac space, a signal in normal sinus rhythm will
exhibit periodicity and relatively uniform complexes, thus ApEn
will detect the presence of similar patterns and identify this
regularity (Figure 2). On the other hand, signals with complex
morphologies will exhibit less regular patterns, hence yield higher
ApEn (Pincus, 1991).

Computationally speaking, as opposed to the binning method
used in ShEn algorithms, a kernel estimator is often used when
calculating ApEn. Specifically, the kernel estimator is a model
free approach of constructing a probability distribution of a
variable, which centers kernel functions at each outcome of
the variable and uses the estimated probabilities to compute
appropriate entropy estimates (Xiong et al., 2017). The distance
of each point in the time series to the reference point is

Frontiers in Physiology | www.frontiersin.org 4 July 2018 | Volume 9 | Article 957

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Dharmaprani et al. Information Theory and Atrial Fibrillation (AF): A Review

FIGURE 2 | Simple example of ApEn and SampEn calculation. ApEn and SampEn examine the presence of repetitive patterns by measuring the difference between

the template vector and the rest of the time series data. As ApEn will compare a vector to itself, the regularity of the overall signal is increased. In comparison, SampEn

excludes self matches, thus avoiding biased regularity.

weighted depending on the kernel function, and commonly, a
Heaviside kernel function is used. The Heaviside kernel sets
a threshold r as the weight for each point, which is equal
to the width of the Heaviside kernel function and determines
the precision of the density estimation (Xiong et al., 2017).
A small r obtains a more detailed estimate, but requites
more data points to ensure accuracy, whilst a larger r yields

coarse probability estimates as too many points neighboring
the reference will be included. With this in mind, r is typically
set to a fraction of the data variance in practical applications,
e.g., a function of the standard deviation of the dataset, to
remove the dependence of entropy on the amplitude of the
observed process (Xiong et al., 2017). Other estimators, such
as linear and nearest neighbor estimators, are also available but
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are not as widely utilized in ApEn computation (Xiong et al.,
2017).

Another important computational consideration is the length
of the compared runs or window length m. The window length
m allows the ApEn algorithm to search through the sequence
SN and measure the likelihood or prevalence, Cm (r) , that runs
of patterns similar for m observations remain close on the next
incremental observation (Yentes et al., 2013). Although there
is no established consensus for ApEn parameter selection, it
is typically suggested that an m = 2 be used for clinical
data. Though such a value is frequently used in literature and
allows comparison of study results to other published findings,
it is important to acknowledge that ApEn estimates depend
strongly on the combination choice of m, r and the epoch
length N. Hence, thoughtful consideration with respect to what
m represents in a biological sense is necessary for each individual
dataset (Yentes et al., 2013).

SAMPLE ENTROPY

Another estimate of conditional entropy is sample entropy
(SampEn). SampEn is amodified rendition of ApEn that works in
much the same fashion (Richman and Moorman, 2000; Richman
et al., 2004). Computationally, however, SampEn differs in two
primary ways: (i) it is not length dependent and (ii) it does not
include self-comparison of the template vector (Richman and
Moorman, 2000). In ApEn calculations, the template vector (the
vector being matched to) is compared to all others in the time
signal, including itself. As a consequence, the probability of the
vector Cm(r) will never equal zero (Richman and Moorman,
2000). As a result of this, the overall ApEn is lowered, since
a self-match will create the appearance of increased regularity
(Richman et al., 2004). By foregoing comparisons between a
vector and itself (Figure 2), Richman et al. were able to create
the SampEn family of statistics with an ability to avoid this
biased regularity (Richman and Moorman, 2000). SampEn is
derived from previous approaches established by Grassberger
and Procaccia (1983), Ben-Mizrachi et al. (1984), Grassberger
(1988) and Grassberger et al. (1991), and uses the natural
logarithm of the conditional probability that two vectors that
are similar at m points will remain similar at an incremental
point (Richman and Moorman, 2000). Specifically, SampEn can
be defined mathematically as:

SampEn = − log

∑

Ai
∑

Bi
= − log

A

B
(6)

where Ai is the number of matches of length m + 1 with the
ith template, Bi the number of matches of length m with the ith

template and SampEn the entropy measured in bits (Richman
et al., 2004).

Like ApEn, SampEn is also commonly computed using
kernel estimators. Computationally, estimation of SampEn using
kernel estimation is achieved using the conditional entropy
Equation (7), which is implemented with the Heaviside kernel
function and uses the maximum norm to compute distances

(Xiong et al., 2017):

C (X) = H
(

Xn

∣

∣Xm
n

)

= − ln

〈

p(xn, x
m
n )

〉

p(xmn )
(7)

Where p(xmn ) is used to estimate the joint probability
distributions p(xn−1, . . ., xn−m) and p(xn, x

m
n ) in the m-

dimensional and (m+1)-dimensional spaces spanned by Xm
n and

(Xn, X
m
n ). Note that 〈 . 〉 represents the averaging across patterns,

and K represents the Heaviside kernel function:

K = 2 (‖xn − xi‖) =

{

1, ‖xn − xi‖ ≤ r
0, ‖xn − xi‖ ≤ r

(8)

and p (xn) the kernel estimate of the probability distribution:

p (xn) =
1

N

N
∑

i=1

K(‖xn − xi‖) (9)

where ‖ . ‖ is the maximum norm. Consequently, this kernel
estimate of conditional entropy reduces the bias seen in ApEn
(Xiong et al., 2017).

In studies, SampEn demonstrated greater robustness over
a broad range of conditions, which potentially makes it a
more useful algorithm in studies analyzing physiological data
(Richman and Moorman, 2000). SampEn also showed greater
performance with short datasets, showing less dependency on
the data length in comparison to ApEn estimates (Yentes et al.,
2013). Like ApEn however, SampEn is also sensitive to parameter
choice, though showed greater relative consistency over a broad
range of possible combination values for r, m, and N (Costa
et al., 2005). Despite this, care should still be taken when choosing
SampEn parameters.

MULTISCALE ENTROPY

As discussed, ApEn and SampEn approaches evaluate the
appearance of repetitive patterns to compute the regularity of a
signal and calculate entropy. One potential limitation of these
methods, however, is that increased entropy may not always
translate to increased dynamical complexity (Costa et al., 2002b).
As Costa et al. argue, entropy-based measures such as the
Kolmogorov complexity and entropy rate, grow monotonically
with randomness (Costa et al., 2005). Consequently, such
measures will yield high entropies for uncorrelated random
signals such as white nose, which possess low predictability
but are not structurally “complex.” A randomized time
series will also yield higher entropy than the original signal,
despite the fact that the process of creating surrogate data
destroys correlations and degrades the information content
of the time series (Costa et al., 2002b). With this in mind,
Costa et al. aimed to develop a quantitative measure of
dynamical complexity with three basic hypotheses in mind:
(i) that the complexity of a biological system reflects its
ability to function and adapt in an evolving environment;
(ii) biological systems operate between multiple spatial and
temporal scales, thus possessing multiscaled complexity; and
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(iii) a number of disease states that reduce the adaptive
capacity of the individual seemingly degrades the information
carried by output variables (Costa et al., 2005). As such, Costa
et al. introduce a multiscaled entropy (MSE) approach that
quantifies entropy over a range of time scales (Humeau-Heurtier,
2015).

Using MSE, measurements have the ability to reflect that
both completely ordered and completely random signals are
not truly complex, and identifies that correlated random signals
are more complex than uncorrelated random signals (Costa
et al., 2002a, 2005; Costa and Healey, 2003). The inclusion of
measurements from a variety of temporal scales also includes two
major advantages: (i) the ability to assess complexity at longer and
shorter time scales and (ii) quantification of the overall system
complexity, which is equal to the sum of entropy values over all
temporal scales (Busa and van Emmerik, 2016).

Computationally, MSE implements the SampEn algorithm
to assess complexity. The primary motive for using SampEn
as opposed to ApEn is its greater consistency over a broad
range of r, m, and N values, as well as its reduced dependency
on the time series length (Costa et al., 2005). In comparison
to the multiscaled complexity approach introduced by Zhang
et al. for physical systems (Zhang, 1991), which is based
on ShEn, the use of SampEn also allows MSE to become
better suited to physiologic time series’. The use of Shannon’s
definition of entropy in Zhang’s method requires a large
amount of virtually noiseless data in order to accurately map
to a discrete symbolic sequence, which introduces limitations
when applied to free-running physiologic signals (Costa et al.,
2005).

In recognizing these considerations, Costa bases MSE on a
modification of Zhang’s and Pincus’ approaches. Specifically,
MSE comprises of two steps: (i) “coarse-graining” of the time
series, which derives the representations of a system’s dynamics
at varying temporal scales (a form of resampling) and (ii)
application of SampEn on each of the coarse-grained time series
(Costa et al., 2005). Specifically, construction of a coarse-grained
time series involves averaging a successively increasing number
of data points using non-overlapping windows. Mathematically,
each element of the coarse-grained signal is computed using:

y
(τ )
j = 1/τ

jτ
∑

i=(j−1)τ+1

xi (10)

where τ represents the scale factor and 1 ≤ j ≤ N/τ (Costa et al.,
2002a). In effect, the length of each coarse grained data will equal
the length of the original time series divided by the scaling factor
τ (Wu et al., 2013).

Following this, SampEn is used to calculate an entropy
estimate for each coarse-grained time series plotted as a function
of the scaling factor τ . This step is referred to as the multiscale
entropy analysis. In traditional uses of SampEn, data from certain
pathologic time series that may be chaotic/unpredictable but
arise from less physiologically complex systems andmechanisms,
such as data from episodes of atrial fibrillation, will result in
higher SampEn. This is because such SampEn estimates are

based on a single scale and hence will not account for features
related to structure and organization on other scales (Costa
et al., 2005). The MSE results published by Costa et al. support
this, showing that at a single scale, the entropy assigned to
the time series of atrial fibrillation and congestive heart failure
patients is higher than those of healthy patients. Contrastingly,
when analyzed at multiple scales, the time series of healthy
subjects are assigned with highest entropy, reflecting that healthy
cardiac dynamics are the most physiologically complex (Costa
et al., 2005). Whilst these results contradict those obtained using
traditional ShEn, SampEn, and ApEn algorithms, they more
accurately reflect the physiological complexity of the underlying
system.

It is important to note that although Costa’s MSE algorithm
is widely used in multiple fields, this approach still suffers
from limitations. First, spurious MSE oscillations are introduced
due to the inefficient process of eliminating fast temporal
scales, and the original coarse graining procedure also artificially
reduces MSE (Valencia et al., 2009). To rectify these issues,
Valencia et al. develop a refined multiscale entropy approach
(RMSE) (Valencia et al., 2009). The RSME approach utilizes
a low-pass Butterworth filter instead of an FIR filter to
eliminate fast temporal scales, which ensures a more accurate
elimination of components above the specified cut-off frequency.
In addition, RMSE uses a refined coarse graining procedure that
implements a continuously updating r, defined as a percentage
of the standard deviation of the filtered series. In effect, this
compensates for the decrease in variance related to the filtering
procedure for removal of the fast temporal scales (Valencia et al.,
2009).

Though RSME overcomes spurious MSE oscillations and
biased reduction of MSE estimates, it is difficult to reliably
compute over short time series. In response, Faes et al.
introduce the linear MSE (LMSE) method (Faes et al.,
2017), which utilizes linear state-space models to provide
a multiscale parametric representation of an autoregressive
process observed at multiple time scales. LMSE exploits the
state-space parameters to quantify the complexity of the
process. Results show that in comparison to both RSME
and MSE, application of LMSE to short cardiovascular data
provides a better description of the physiological mechanisms
producing biological oscillations at different temporal scales
(Faes et al., 2017).

Another limitation of MSE is that the statistical reliability of
SampEn for a coarse-grained time series is reduced as the time
scale factor τ increases. This is because for anN point time series,
the length of the coarse-gained series at scale factor τ is N/τ .
Consequently, the larger the scaling factor, the shorter the coarse-
gained series and hence, the variance of the estimated entropy will
increase as the scaling factor increases. To overcome this, Wu
et al. developed the concept of a composite multiscale entropy
(CSME) to reduce the variance of estimated entropy values at
large scales (Wu et al., 2013). Specifically, CSME achieves this
by calculating the sample entropy of all coarse-gained time series
and finding themean of the τ entropy values, rather than only the
first coarse-grained time series as proposed by Costa (Wu et al.,
2013).
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WAVELET ENTROPY

While the aforementioned algorithms all compute entropy in
the time domain, entropy estimates can also be calculated
in the frequency space. Broadly speaking, computing entropy
in the frequency domain consists of transforming the time
series using methods such as the Fourier transform or wavelet
decomposition (Rosso et al., 2001). Although signals used within
the medical field are predominantly presented in the time
domain, representation in the frequency domain may provide
advantages in certain applications. For example, studies have
postulated that the frequency band with the highest strength
correlates to the cycle length derived from time domain analysis
(Ng et al., 2006), which is annotated as the dominant frequency
(DF) (Sanders et al., 2005, 2006). This becomes potentially useful
in signals with deflection, varying amplitudes, and more complex
temporal patterns, wherein time domain measurements of the
cycle length are likely to be inaccurate (Traykov et al., 2012).
As this is often the case during AF, frequency-based analyses
may provide a better measurement of the atrial rate (Traykov
et al., 2012). It should be noted, however, that the frequency
spectrummay also be determined by other factors outside of cycle
length, such as morphology and amplitude (Ng et al., 2006; Elvan
et al., 2009). As such, wavelet entropymethods that combine both
entropy and frequency analysis may provide additional insights
andmore robust analyses in comparison to DF analysis alone (Ng
et al., 2006; Elvan et al., 2009).

Specifically, wavelet entropy (WE) combines entropy and
wavelet decomposition to provide an estimate of the degree of
disorder present within a signal (Rosso et al., 2001). The wavelet
entropy of a signal can be given by:

WE = −

N
∑

j= 1

Ej log (Ej) (11)

Where Ej is the relative energy associated with the wavelet
coefficient at scale j and N the number of wavelet decomposition
levels. Calculating entropy in this way provides a measurement
of the amount of order or disorder in a signal, wherein WE
will assume a value that is very low and close to zero for an
extremely organized signal such as a periodic mono-frequency
event, and high WE for random signals such as white noise
(Ródenas et al., 2015). Consequently, EGM or ECG signals with
greater complexity and irregularity will result in high WE.

TRANSFER ENTROPY

Transfer entropy (TE) is an information theoretic measure that
can be used to understand the information transfer between
joint processes (Barnett et al., 2009). In systems consisting
of more than one component or variable, understanding
information transfer between these variables can be extremely
useful in determining its structure and mechanism. Many
studies have attempted to study such relationships using
an alternate information-theoretic measure known as mutual
information (MI), which provides a model-free approach to

quantifying information overlap between two variables (Vicente
et al., 2011). Specifically, this is achieved by measuring the
amount of information that can be learnt from one random
variable by observing another. Unfortunately, MI measures do
not capture dynamical and directional information exchange,
and hence poorly describe causal relationships (Schreiber,
2000). For example, MI is symmetric under the exchange of
signals and cannot differentiate between response and driver
systems. Secondly, MI captures only the amount of information
that is shared by two signals, rather than the information
being exchanged (which better relates to causal dependence)
(Schreiber, 2000). To provide an asymmetric measure, delayed
MI, which measures MI between a signal and another lagged
signal, has been proposed. Though delayed MI reflects certain
dynamical structures as a result of the time lag, it is still flawed
and can cause issues when shared information from a common
input or history is present (Schreiber, 2000). To address these
problems, Schreiber et al. develop transfer entropy (TE) to
provide an alternative information theoretic measure that shares
some of the desired properties of mutual information, but also
considers the dynamics and directionality of information transfer
(Schreiber, 2000).

To measure TE between two variables X and Y , one needs to
measure the amount of uncertainty (entropy) that is reduced in
future values of Y by knowing past values of X, given the past
values of Y . In mathematical notation, the TE between X and Y
can be given by:

TE ( X → Y) =
∑

yt+1,y
n
t , x

m
t

p(yt+1,y
n
t , x

m
t ) log

p(yt+1|y
n
t , x

m
t )

p(yt+1|y
n
t )

(12)
where xmt = (xt , . . ., xt−m+1), y

n
t = (yt , . . ., yt−n+1), and m

and n the orders of the Markov processes X and Y respectively
(Vicente et al., 2011). Typically, TE estimations use the Shannon
entropy algorithm during computation to provide a measure of
the uncertainty between X and Y (Schreiber, 2000).

It can be noted that the concept of transfer entropy shares
some overlap with the statistical notion of causal influence
termed Granger causality (GC) (Barnett et al., 2009), which
uses prediction via vector auto-regression to measure causality.
Specifically, given sets of inter-dependent variables X and Y ,
Granger causality will say X Granger-causes Y if Y assists in
predicting the future of X, beyond what X already predicts about
its own future (Barnett et al., 2009). In contrast, the information
theoretic notion of transfer entropy is framed in the context of
resolving uncertainty. For example, it can be said that the transfer
entropy from Y to X is the degree to which Y disambiguates
the future of X, beyond what X already disambiguates about its
own future (Barnett et al., 2009). This relationship was explicitly
explored and detailed by Barnett et al. (2009), who shows that
under Gaussian assumptions the concept of Granger Causality
and Transfer entropy are in fact equivalent.

Although TE is prevalently used in neuroscience to
understand the causal relationships between parts of the
brain and responses to stimuli (Vicente et al., 2011), it has thus
far received little attention in the cardiac space.
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Limitations of Entropy
Although entropy is widely used in many fields, reliable
estimation of information-theoretic quantities from empirical
data can prove difficult. Firstly, the sensitivity of entropy
estimates with respect to parameter selection can be problematic.
Discretization of a time series using bins as commonly done in
ShEn algorithms can pose potential problems, as inappropriately
selecting bin-widths can lead to greater bias and reduce the
accuracy of entropy estimates (Purwani et al., 2017).

Additionally, both ApEn and SampEn show significant 2-way
and 3-way interactions betweenm, r, andN, hence are influenced
heavily by the combination choice of these parameters (Yentes
et al., 2013). Appropriate parameter selection is particularly
critical when analyzing short data sets, as ensuring there is
a sufficient number of matches can be problematic (Lake
and Moorman, 2010). This can be seen in rapid diagnosis
of AF. In such cases, choosing an m that is too large or r
that is too small will result in too little template matches to
estimate the conditional probabilities accurately. Conversely,
if m is too small and r too large, all templates will match
each other and cardiac different rhythms cannot be discerned
(Lake and Moorman, 2010). Although SampEn is relatively
more stable across varying data lengths in comparison to ApEn,
inappropriate parameter selection, particularly in the choice
of r, can still lead to inaccurate entropy estimates (Lake and
Moorman, 2010).

In addition, although bipolar EGM entropy-based approaches
of AF mapping (such as ShEn mapping) have been proposed
for identification of rotational activity, problems may be
encountered in areas where wave propagation dynamics mimic
such rotational sources. For example, areas in which multiple
waves precess and cross propagate in varying directions
may instead appear to originate from a single rotational
source and hence, result in high entropy estimates similar
to those seen for rotors. This could potentially present
problems for a targeted entropy guided ablation strategy in the
future.

INFORMATION THEORY AND THE
INTRACARDIAC ELECTROGRAM

To further discuss how information theory can be used
in the context of AF mapping, we will first discuss the
intracardiac electrogram. An intracardiac electrogram (EGM)
is acquired by measuring the voltage difference between two
recording electrodes (Tedrow and Stevenson, 2011). In the
unipolar electrogram configuration, the anodal (positive) input
of the amplifier is by convention connected to the exploring
electrode, which is usually located at the tip of the catheter
and in physical contact with the cardiac tissue (Tedrow and
Stevenson, 2011; Baumert et al., 2016). Another intermediate
electrode, often referred to as the reference electrode, that is
distant from the heart is connected to the cathodal (negative)
input of the amplifier (Tedrow and Stevenson, 2011; Baumert
et al., 2016). As a product of this configuration, the resultant
unipolar signal possesses a characteristic morphology due

to the passing of planar wavefronts toward the recording
electrode (Figure 3) (Tedrow and Stevenson, 2011). A distinctive
biphasic complex is created as the wavefront reaches and
passes the electrode, causing the wavefront deflection to become
steeply negative (Baumert et al., 2016). This generates an
RS complex (Tedrow and Stevenson, 2011). One limitation
of the unipolar EGM is its vulnerability to far field activity
(electrical activity from other parts of the cardiac chamber),
electromagnetic interference (mains noise) and in the case
of AF mapping, interference from ventricular depolarization
(Tedrow and Stevenson, 2011; Baumert et al., 2016). Few
studies have utilized unipolar EGM for mapping, however, these
issues have largely hindered their use within research (Konings
et al., 1994, 1997; Allessie et al., 2010; Tedrow and Stevenson,
2011).

In contrast, bipolar electrograms are obtained via the
subtraction of two unipolar EGMs recorded proximally, which
is typically achieved by subtracting from adjacent poles of
the catheter (Baumert et al., 2016). Due to this configuration,
much of the ventricular contribution to the signal is largely
eliminated, and as such, bipolar EGM are generally preferred in
clinical settings (Tedrow and Stevenson, 2011; Baumert et al.,
2016). Unfortunately, however, the timing of local activations
is less defined in comparison to unipolar EGM, though
in homogeneous tissue the initial peak coincides with local
depolarization time (van der Does and de Groot, 2017). In AF,
bipolar EGM morphologies are generally irregular and complex
in comparison to their sinus rhythm counterpart, possessing
many deflections (Baumert et al., 2016). EGM morphologies can
be categorized into three types, as previously described by Wells
et al. (1978) (Table 1).

Relating to the EGM morphology is the previously
discussed concept of entropy. When applied to the intracardiac
electrogram, entropy approaches have the potential to provide
clinical insights into the underlying dynamics of AF. As
entropy is linked to the information content of a signal,
EGM with complex, non-uniform morphology will result
in greater uncertainty and higher entropy. Conversely, an
EGM with a regular, periodic morphology will result in lower
entropy (Ganesan et al., 2012). This characteristic makes
entropy particularly useful in AF applications in which the
ability to distinguish between AF and non-AF signals is
required (AF detection algorithms), and where changes in
the EGM morphology are thought to correlate to important
AF triggers or substrates (AF mapping). The identification
and localization of rotors provides a particularly interesting
application of entropy within the AF mapping space, as
it has been demonstrated that the pivot zone of a rotor
experiences greater spatial uncertainty of wavefront direction,
resulting in less stable bipolar EGM morphologies that can be
quantified by entropy (Ganesan et al., 2012, 2014; Arunachalam
et al., 2015). Other wave propagation dynamics are less well
explored in relation to entropy, though additional mechanisms
of interest (such as complex wavelet interaction regions)
may also yield useful entropy characteristics. If statistical
information theoretic approaches such as entropy can be
used to pinpoint such potentially important AF landmarks,
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FIGURE 3 | Basic generation of bipolar and unipolar recordings. A schematic to illustrate the basic generation of bipolar and unipolar electrograms. At the top of

(A,B), a horizontal bar is used to represent a sheet of myocardium with depolarization propagating from left to right. Example electrograms are shown in boxes.

(A) Unipolar recording: the wavefront propagates toward the electrode, creating a positive deflection, creating an R wave. As the wavefront propagates past the

recording electrode, an S wave is detected and hence creates the RS complex (middle schematic). Recording at the right side of the tissue (dead end) creates a

monophasic R wave. (B) Bipolar recording: electrodes 1 and 2 are connected to the positive and negative inputs of the amplifier respectively. Electrograms generated

via mathematical simulation are shown below the schematic. Compared to the signal from electrode 1 (Uni-1), the signal from electrode 2 (Uni-2) is slightly delayed

(due to the wavefront reaching it later) and is inverted due to its connection to the negative input of the amplifier. Addition of the two signals generates the bipolar

signal (Bi 1-2) that removes far field signal. Differentiating the signal (Unipolar- filtered) decreases far field component and produces a signal similar to the bipolar

electrogram but slightly time shifted. Differentiating the bipolar signal (Bipolar-filtered) produces additional deflections and further complicates the signal. Indifferent

electrode configurations are shown in (C). Reprinted from Tedrow and Stevenson (2011) with permission.

a targeted ablation strategy may become possible in the
future.

In some ways, the concept of entropy shares some conceptual
overlap with the notion of fractionation. Broadly speaking, the
term fractionation is used to describe EGMs that possess multiple
deflections and are prolonged (van der Does and de Groot,
2017), although no precise consensus definition currently exists
(Baumert et al., 2016). As such, like entropy, CFAE essentially
aims to provide some definition to describe the complexity of an
electrogram. A number of sources are said to be responsible for
fractionation, with the local collision of multiple wavelets, local
re-entry and zones of slow conduction said to result in EGM
fractionation during AF (de Bakker and Wittkampf, 2010; Waks
and Josephson, 2014). Consequently, it is thought that there is
some relationship between CFAE and the maintenance of AF
(Waks and Josephson, 2014), thus CFAE mapping and CFAE
guided ablation have previously been explored (Nademanee et al.,
2004; Nademanee and Oketani, 2009; Berenfeld and Jalife, 2011;
Hayward et al., 2011; Li et al., 2011; Chen et al., 2014). Though
both CFAE and entropy aim to capture the qualitative property
of signal fractionation to some degree, entropy is differentiated

TABLE 1 | Characterization of Atrial Fibrillation (AF) in Man as defined by Wells

et al. (1978).

AF Type Description

Type 1 Discrete atrial complexes with varying morphological

appearance but with discrete isoelectric baseline

Type 2 Discrete beat-to-beat atrial complexes but no isoelectric

baseline

Type 3 Complex and highly irregular atrial EGMs with no discrete

complexes or isoelectric intervals

Characterization of AF into three AF types, which uses the bipolar EGMmorphology during

AF to provide classification.

from CFAE by having a quantitative definition rooted in signal
processing and mathematics, and does not use empirically
derived definitions.

Outside of fractionation, entropy-based analysis of the EGM
also has the potential to provide insights about the complex
wave propagation dynamics underlying AF (Kośna et al., 2015).
For example, transfer entropy may possess the ability to
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FIGURE 4 | AF detection using COSEn (Coefficient of sample entropy). CoSEn values for ECGs from the MIT-BIH atrial fibrillation database used by Lake and

Moorman (2010) to test automated AF detection using SampEn. Although CoSEn was able to differentiate between normal sinus rhythm (A) and atrial fibrillation (B),

sinus rhythm with ectopy (C), and atrial flutter (AFL) (D) resulted in misclassification. This was due to (i) irregular RR intervals for sinus with ectopy, which increased

SampEn and mimicked AF values for CoSEn and (ii) 2:1 AFL creating regular RR intervals, mimicking sinus values for CoSEn. Reprinted from Lake and Moorman

(2010) with permission.

FIGURE 5 | Atrial activity organization time course of ECG recordings measured using SampEn. Average atrial activity (AA) organization, quantified using SampEn, for

(A) the first 5min after AF onset and (B) the last 2min before AF termination as computed by Alcaraz and Rieta (2010). Findings show that SampEn, and in turn the

AA organization, decreases in the first few minutes of AF onset and increases within the last minute of spontaneous AF termination. Reprinted from Alcaraz and Rieta

(2010) with permission.

determine information flow during AF and in turn, uncover
causality and electrophysiological pathways between various
regions of the heart that may be involved during AF propagation.

Consequently, analysis of information flow may be useful for
identifying the atrial regions central to maintaining AF (Kośna
et al., 2015).
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FIGURE 6 | Optimal accuracy of multiscale frequency (MSF), Shannon entropy (SE), kurtosis (Kt), and multiscale entropy (MSE) for the identification of rotors shown

in. Optimal accuracies for MSF, SE, Kt, and MSE measures determined by Annoni et al. (2017). The optimal accuracies are shown for both rotors (Top), the top

meandering rotor (Middle) and bottom stationary rotor (Bottom). Reprinted from Annoni et al. (2017) with permissions.

CURRENT STUDIES USING INFORMATION
THEORETIC APPROACHES IN ATRIAL
FIBRILLATION

Though information theoretic and entropy-based approaches
remain relatively limited within atrial fibrillation research, a
handful of studies have explored their use. Broadly speaking,
the use of entropy in AF can be categorized into three
groups, namely: (i) entropy for AF detection, (ii) entropy
for AF characteristic determination, and lastly (iii) entropy
for AF mapping. Some of the approaches using entropy
in the current literature will be broadly discussed in the
following, with particular focus on the role of entropy in AF
mapping.

Entropy for AF Detection
Presently, with respect to the study of atrial fibrillation
(AF), entropy is most widely used for the detection of
AF in ECG recordings and Holter monitors. As AF

episodes occur paroxysmally in the majority of patients,
human-based diagnosis of AF can oftentimes be difficult
and time consuming, hence automated and computerized
methods of AF detection have become a lucrative diagnostic
application of entropy (Ródenas et al., 2015; Cui et al.,
2017).

Many algorithms have been developed to detect AF, which
can often be broadly categorized as being based on either
(i) P-wave detection or (ii) RR interval (RRI) variability (Lee
et al., 2011). Of these two methods, AF detection using the
temporal variability of the RR interval has become a much
more common approach in literature as analysis of the P-wave
morphology is often difficult, as ECGs can be noisy and
are prone to motion artifact. In addition, the determination
of a P-wave fiducial point is challenging due to its low
amplitude during AF which makes it more susceptible to
corruption through noise, in turn lowering the signal-to-noise
ratio (Dash et al., 2009; Lee et al., 2011; Ródenas et al.,
2015).
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FIGURE 7 | Comparison between different approaches for rotor mapping. 3D

maps showing comparisons between different rotor mapping tools as

computed by Ugarte et al. (2014). (A) Map using the action potential wavefront

delimited by contour lines over the 3D atrial model (human) extracted from an

interval between 1 and 2 s of simulation. Spinning wavefronts around one point

defines the stable rotors R1 and R2. (B) Dynamic ApEn map calculated using

standard parameters and the unipolar EGM. (C) Dynamic ApEn maps using

optimized parameters from Ugarte et al. and unipolar EGM. (D) ShEn map

using unipolar EGM. It can be noted that map (C) illustrates better sensitivity

for identifying rotor tip. (E) Dynamic ApEn map calculated from optimized

parameters and the bipolar EGM with vertical and horizontal orientation. The

region corresponds to the vicinity of the rotor R1. (F) ShEn map using the

bipolar EGM obtained from vicinity of R1. Reprinted from Ugarte et al. (2014)

with permission.

Various studies have used Shannon entropy (ShEn) in
conjunction with various other measures of complexity such
as the Turning Points Ratio (TPR) (Dash et al., 2009), Root
Mean Square (RMS) of successive RR differences (Dash et al.,
2009), symbolic dynamics (Zhou et al., 2014), and time-varying
coherence functions (TVCF) (Lee et al., 2011), among others,
to better capture the randomness in the signal and detect
variability of the RRI time series (Dash et al., 2009; Lee et al.,
2011; Zhou et al., 2014). As ShEn can be used to measure the
level of uncertainty and information size in the signal, it can
reflect whether the ECG morphology exhibits irregularities, and
hence variability in the RRI time series. Results using these
methods demonstrate high rates of sensitivity and specificity
upwards of 95% (Dash et al., 2009; Lee et al., 2011; Zhou et al.,
2014), indicating the feasibility of entropy for detecting RRI
variability.

Although the RRI time series approach is frequently used,
widely available and capable of providing adequate AF detection
in a number of cases, entropy-based approaches have also been
used independently to detect AF (Lake and Moorman, 2010;

Carrara et al., 2015a,b). Sample Entropy (SampEn) algorithms
have been used to detect the probability that runs of AF
will match with others within the time series (Richman and
Moorman, 2000; Lake andMoorman, 2010) (Figure 4). A benefit
of SampEn is its ability to use short runs or bursts of AF
as a template for matching, hence avoiding issues relating
to short AF episode durations that are common with RRI
variability-based methods. These studies showed that SampEn
provided a high degree of accuracy in distinguishing AF from
sinus rhythm (∼95%), but encountered errors when atrial or
ventricular ectopy were present, as this increased the entropy
of the signal (Lake and Moorman, 2010; Carrara et al.,
2015a,b).

The use of wavelet entropy (WE) for AF detection has also
been explored in single lead electrograms (Ródenas et al., 2015).
This method was used under the premise that using entropy and
wavelet decomposition in conjunction increases the robustness of
the detection algorithm to noise, artifacts and non-stationarities
(Ródenas et al., 2015). Ródenas et al. use this method to calculate
the WE on a TQ interval to identify the presence and absence of
the P-wave in each beat of the ECG, which in turn determines
the presence of AF. Results demonstrated a discriminant ability
of approximately 95%, which is comparable to results from other
studies (Lake and Moorman, 2010; Carrara et al., 2015a,b).

Entropy for AF Prediction and
Characteristic Determination
To effectively treat atrial fibrillation, an understanding of the
arrhythmia itself is also crucial. As such, another application
of entropy is its use in determining the various characteristics
of AF. One such area that has been studied are the changes in
the RR interval dynamics preceding the onset of postoperative
AF, as studying these characteristics may enable prediction of
postoperative AF episodes. It has been hypothesized that heart
rate variability (HRV), which can be used as an indicator of
cardiac sympathovagal balance, would alter before the onset
of postoperative AF and could be measured using entropy
algorithms (Hogue et al., 1998). Findings on this have been
conflicting, however, with Hogue et al. showing a decrease in
ApEn upon the onset of AF (Hogue et al., 1998), whilst other
studies show entropy and HRV analyses provide little predictive
value when studying the onset of postoperative AF (Amar et al.,
2003; Chamchad et al., 2011).

Adding to this, it is argued that the ability to predict the
spontaneous onset of AF for non-postoperative patients is also
important as it may allow prevention using electrical stabilization
and various pacing techniques (Tuzcu et al., 2006). A number
of studies have used ApEn and SampEn to predict the onset
of paroxysmal AF (PAF), as these measures have the ability
to measure the regularity of the time series signal, and hence
quantify the heart rate variability (HRV) (Vikman et al., 1999;
Amar et al., 2003; Shin et al., 2006; Tuzcu et al., 2006). Findings
showed that ApEn and SampEn could predict the onset of AF
as entropy of the HRV reduced significantly in ECG preceding
AF, in comparison to those distant from an AF episode (Vikman
et al., 1999; Shin et al., 2006; Tuzcu et al., 2006).
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FIGURE 8 | 3D voltage maps and action potential curves during virtual ablation using phase singularity (PS), dominant frequency (DF), Shannon entropy (SE), and

complex fractionated electrogram (CFAE) approaches. Results from simulated ablation using PS, DF, SE, and CFAE, as performed by Hwang et al. (2016). 3D heart

voltage maps are shown on the (Left), with the black star indicating the action potential recording site. Action potential curves are shown on the (Right). Only

simulated DF ablation resulted in changes of the action potential, converting AF into atrial tachycardia. Reprinted from Hwang et al. (2016) with permissions.

In the same breath, predicting the termination of PAF
may also have clinical implications, as it may in turn help
improve management of the arrhythmia and avoid unnecessary
treatments (Alcaraz and Rieta, 2009a). Specifically, SampEn has
been used to study the atrial activity (AA) organization from
surface electrocardiograms (ECG) and predict the spontaneous
termination of AF. It has been shown that SampEn of terminating
AF episodes are lower in comparison to non-terminating
episodes (Alcaraz and Rieta, 2009a,b, 2010) (Figure 5).

Lastly, analysis of the HRV complexity using SampEn have
also been used to evaluate the characteristics of both PAF and
persistent AF (Sungnoon et al., 2012). The study conducted by
Sungnoon et al. aimed to test the hypothesis that impairment of
cardiac autonomic control relates to increased irregularity in the
AF signal. It was found that increased atrial signal irregularity
as reflected by SampEn was consistent with an impairment of
cardiac autonomic function in both PAF and persistent patients
(Sungnoon et al., 2012).

Entropy for AF Mapping
AF mapping is pivotal to catheter ablation, as this helps locate
AF triggers and substrates to guide the selection of ablation
targets (Baumert et al., 2016). Unfortunately, although ectopic
impulses from the pulmonary veins have been shown to initiate
AF, catheter ablation of these ectopic foci have only shown limited
success in persistent AF cases (Verma et al., 2015). Adding to
this limited success is the fact that optimal ablation targets for
persistent AF are still debated, as the mechanisms underlying
this AF type are not yet well understood (Jalife et al., 2002). As a
consequence of this, many approaches to AF mapping have been
explored.

Masè et al. explore the use of entropy for quantifying
synchronization during atrial fibrillation (Masè et al., 2005).
In this study, a synchronization index (Sy) was developed
using Shannon entropy (ShEn) (Shannon, 1948) to quantify
the degree of synchronization during AF. Although AF is
often described as being desynchronized, a certain amount
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of synchronized electrical activity is in fact present, and
quantifying this was thought to facilitate the identification of
various propagation patterns that may be associated with AF,
and hence improve understanding on AF mechanisms and
treatment (Masè et al., 2005). Sy was defined by quantifying
the complexity of the distribution of the time delays between
sites using ShEn estimates. Findings from this study showed
that a progressive and significant decrease in Sy correlated with
increasing AF complexity (Masè et al., 2005), using definitions
for complexity classes as defined by Wells et al. (1978) (Table 1).
Sy was also calculated on the whole right atrial chamber,
showing the existence of spatial heterogeneities (Masè et al.,
2005).

Following this, a number of studies have also utilized entropy
for the identification of rotors during AF (Ganesan et al.,
2012, 2014; Orozco-Duque et al., 2013; Ugarte et al., 2014).
There exists various schools of thought about the mechanisms
driving an AF episode, with the rotor theory suggesting that
AF is maintained by sites of rotational activation referred
to as spiral waves or rotors (Jalife et al., 2002; Waks and
Josephson, 2014). There is clinical and experimental evidence
to support this theory, and as such, rotors are thought to
be potentially effective targets for ablation (Schuessler et al.,
1992; Skanes et al., 1998; Vaquero et al., 2008; Narayan et al.,
2012). Building on this, Ganesan et al. hypothesized that rotors
could be identified through regions of high Shannon entropy
(Shannon, 1948), as wavefronts encircling the rotor pivot should
result in broadening of the amplitude distribution of bipolar
electrograms (EGM) due to their direction-dependent nature
(Ganesan et al., 2012). Findings showed that maximum ShEn
co-located with the rotor pivot in computer simulated spiral
waves, rat and sheep models, and human AF (Ganesan et al.,
2012). Ganesan et al. also further explored the characteristics
of high ShEn regions at rotor pivot zones (Ganesan et al.,
2014) to test the hypothesis that pivot points possess higher
ShEn than electrograms recorded at the periphery (Ganesan
et al., 2014). It was found that the rotor pivot not only
coincided with higher ShEn than those found at the periphery
of the spiral wave, but also that pivot zones consistently
resulted in maximum ShEn, irrespective of bipolar electrode
spacing, signal filtering and rotor meander (Ganesan et al.,
2014).

In a following independent study, Arunachalam et al.
supported the ability for ShEn to identify rotors in isolated
rabbit hearts (Arunachalam et al., 2015). Specifically, ShEn-based
mapping techniques were used to identify pivotal rotor points in
optically mapped data acquired from the rabbit hearts, following
which the mapping approach was applied to clinical intracardiac
human data. Results demonstrated that ShEn could accurately
identify the rotor pivot in optically mapped data with known
pivot zones (Arunachalam et al., 2015), supporting findings
published by Ganesan et al. (2012, 2014). In a more recent study,
however, Annoni et al. report that the performance of ShEn is
greatly affected by the presence of artifacts, suggesting that other
techniques such as multiscale frequency (MSF), Kurtosis (Kt),
andMultiscale Entropy (MSE) provide more accurate and robust
detection of rotors (Annoni et al., 2017) (Figure 6).

In a similar vein, Orozco-Duque et al. utilize approximate
entropy (ApEn) (Richman and Moorman, 2000) for localizing
rotors, under the hypothesis that CFAE are generated by
the pivot point of a rotor (Orozco-Duque et al., 2013).
Findings suggest that regions of high ApEn also co-located
with the rotor pivot (Orozco-Duque et al., 2013). Ugarte
et al. also study the relationships between CFAE and the
rotor pivot using ApEn (Ugarte et al., 2014) (Figure 7), under
the argument that a non-linear dynamic measure will better
capture the property of fractionation in comparison to the
empirical definitions proposed in the original CFAE study
(Nademanee et al., 2004). After simulating AF in a 3D human
atrial model, results showed a positive correlation between
ApEn and levels of fractionation, suggesting the ability of
high ApEn regions to co-locate areas of high fractionation,
and in turn the rotor pivot (Ugarte et al., 2014). Sample
entropy (SampEn) based approaches have also been explored
for this purpose, with Cirugeda-Roldán et al. using SampEn to
characterize the degree of fractionation in atrial electrograms
(Cirugeda–Roldán et al., 2015). A specificity of 86% and a
sensitivity of 77% was reported when discerning between CFAE
and non-CFAE electrogram signals (Cirugeda–Roldán et al.,
2015).

Investigating the mapping of rotors further, Hwang et al.
examined ablation approaches based on Shannon entropy (ShEn)
in both 2D and 3D models (Hwang et al., 2016) (Figure 8).
The study compared ShEn to other rotor mapping approaches
commonly used in literature, namely: phase singularities (PS),
dominant frequency (DF), and CFAE cycle length (CFAE-CL)
(Hwang et al., 2016). Results from virtual ablation showed that
ShEn, PS and CFAE-CL guided approaches did not result in
AF termination or modify the AF into slow atrial tachychardia,
whilst virtual DF ablation successfully achieved these end-points
(Hwang et al., 2016). Additionally, in 2D and 3D in-silicomodels,
ShEn was shown to overlap with 33.2 and 27.5% of the rotor tip
trajectory respectively, which was outperformed by DF wherein
a 71 and 39.7% overlap was seen in the 2D and 3D models
respectively (Hwang et al., 2016).

Outside of rotor mapping, entropy can also be used to study
causality and information flow. Transfer entropy (TE), which
determines the directed exchange of information between two
systems (Schreiber, 2000), can be used to investigate the direction
and degree of information flow between electrograms. In a study
conducted by Kosna et al., TE was used to study information
flow between electrograms recorded in the high right atrium
(HRA), coronary sinus (CS), and left atrial appendage (LAA)
(Kośna et al., 2015). Findings demonstrated that information flow
in the heart is symmetric, and that the direction and amount of
information flowing between neighboring sites in the atria could
be quantified using TE (Kośna et al., 2015). This suggests that
studying information flow between different areas of the atria
may provide useful insights into the complex wave propagation
dynamics during AF.

Recalling the connections between transfer entropy and
Granger causality (GC) as discussed previously, work published
by Alcaine et al. (2017) uses Granger causality based definitions
to develop a multi-variate predictability framework to study
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information flow and causal relationships between different
cardiac sites during AF. Using GC, causal interactions were
analyzed between different atrial sites during different rhythms,
by considering EGM as stochastic processes that interacts with
neighboring atrial sites through information exchange that is
driven by atrial activity (Alcaine et al., 2017). Predictability
measures were also obtained from the residual variances of
linear predictions performed with multivariate autoregressive
(MVAR)modeling of involved EGM signals (Alcaine et al., 2017).
As such, Alcaine’s framework provides a measure of regularity
for individual EGMs, in addition to the connectivity between
neighboring sites. Using computational simulations and clinical
basket catheter data acquired from patients in paroxysmal AF,
the study showed that the framework not only allowed different
rhythms to be identified (using the regularity measures), but also
that the underlying cardiac activity, acquired from simultaneous
multi-electrode basket recordings, could be tracked and mapped
using GC-based definitions (Alcaine et al., 2017). Although GC
is a statistical concept rather than an information theoretic
approach, this study demonstrates its connection to transfer
entropy and its ability to also study causal relationships.

RESEARCH GAPS AND POTENTIAL
FUTURE DEVELOPMENTS

Within the past decade, a number of EGM-based quantitative
approaches have been developed for AF analysis. These
approaches have brought several developments to the study of
AF, however, clinical application of these techniques have yet to
be achieved due to lack of reproducibility of promising results
(Baumert et al., 2016). Underlying this may be the qualitative
nature of these approaches, or their need for empirically-based
definitions, as well as the lack of understanding of the complex
AF mechanism. With this in mind, information theoretic
measures may have the potential to provide new insights from
study of the statistical properties of signals in AF using a purely
quantitative approach.

Thus far, few information theoretic approaches have been
explored in the context of atrial fibrillation, particularly
in AF mapping applications. Further studies are required
to explore the various characteristics of measures such as
entropy during AF, and understand their relation to the AF
physiology. For example, there is room for future studies to
observe the spatial and temporal stability of EGM entropy,
as this is an area that has not been investigated thus far.
Understanding the spatiotemporal characteristics of AF may
determine the presence or absence of spatial and temporal
stability, which is important for developing novel adjunctive or
primary ablation strategies based on high entropy regions as
targets.

In addition to this, the relationships between information
theoretic approaches to themicro and anatomical structure of the
atrium is also yet to be explored. Anatomical co-registration may
further reveal regions with a predisposition to forming rotors
or other mechanisms that perpetuate AF, as well as electrical

pathways that may be important to AF propagation. Using
information theoretic and statistical approaches such as transfer
entropy (TE) or Granger causality (GC) to observe information
flow between regions of the atria may also help shed light on this,
as analysis of connectivity between atrial regions may help infer
the wave propagation dynamics of AF, which are highly complex
and presently limit the determination of effective ablation targets.
Understanding these wave dynamics may again provide potential
clinical insight that may lead to more effective ablation strategies.

CONCLUSION

Unfortunately, although AF has been a long-standing topic
of research, there remains continuing debate regarding the
mechanisms underlying the dynamics of the heart rhythm
disorder (Schotten et al., 2011). Currently, there is some
consensus that AF is the result of an interplay between
substrate and triggering mechanism, though it is agreed that this
interaction is not yet completely understood, nor is the triggering
mechanism responsible.

Due to the complexity in understanding the AF phenomenon,
establishing effective mapping approaches have proven hugely
difficult, especially for real-time methods that can be used
for guided ablation. While direct wavefront mapping during
clinical AF procedures would be extremely valuable, current
challenges make this approach practically impossible. With
this in mind, a logical substitute is to take advantage of
the intracardiac electrogram (EGM), which is the primary
recordingmodality currently employed in electrophysiology (EP)
clinics. Quantitative analysis of the EGM signal properties using
information theoretic approaches has the potential to provide not
only a clinically interpretable direct translation to what is seen in
practice, but also insights into the system dynamics underlying
AF. Aiming to understand the AF dynamics indirectly through
analysis of the signal properties is not a left-field approach,
as other well studied methods such as CFAE and DF use
similar principles. Unlike these techniques however, information
theoretic approaches have the benefit of being less reliant on
empirically derived definitions.

In summary, while information theory has proved a useful
tool for analysis of physiological signals in other fields, it remains
underutilized and under-explored in AF studies. As the AF
phenomena is far from being understood, understanding the
arrhythmia from a signal property perspective and using new
approaches may be key to determining effective ablation targets
and strategies for the ever increasing AF population.
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