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In cardiac electrophysiology, there exist many sources of inter- and intra-personal

variability. These include variability in conditions and environment, and genotypic and

molecular diversity, including differences in expression and behavior of ion channels and

transporters, which lead to phenotypic diversity (e.g., variable integrated responses at

the cell, tissue, and organ levels). These variabilities play an important role in progression

of heart disease and arrhythmia syndromes and outcomes of therapeutic interventions.

Yet, the traditional in silico framework for investigating cardiac arrhythmias is built

upon a parameter/property-averaging approach that typically overlooks the physiological

diversity. Inspired by work done in genetics and neuroscience, newmodeling frameworks

of cardiac electrophysiology have been recently developed that take advantage of

modern computational capabilities and approaches, and account for the variance in

the biological data they are intended to illuminate. In this review, we outline the recent

advances in statistical and computational techniques that take into account physiological

variability, and move beyond the traditional cardiac model-building scheme that involves

averaging over samples from many individuals in the construction of a highly tuned

composite model. We discuss how these advanced methods have harnessed the power

of big (simulated) data to study the mechanisms of cardiac arrhythmias, with a special

emphasis on atrial fibrillation, and improve the assessment of proarrhythmic risk and drug

response. The challenges of using in silico approaches with variability are also addressed

and future directions are proposed.

Keywords: cardiac electrophysiology, physiological variability, computational modeling, arrhythmia mechanisms,

big data

INTRODUCTION

Beginning with the seminal paper by Hodgkin and Huxley, 1952, mathematical models of
electrophysiology have proven to be valuable tools for better understanding many physiological
processes, especially in cardiac arrhythmia research (Noble et al., 2012; Dibb et al., 2015). Fifty-six
years after publication of the first cardiac model (Noble, 1962), there is currently a computational
model for almost every cell type of the heart, including nodal, atrial, ventricular, and Purkinje
cells (Beeler and Reuter, 1977; Difrancesco and Noble, 1985; Luo and Rudy, 1991; Inada et al.,
2009; Maltsev and Lakatta, 2009; Sampson et al., 2010; Grandi et al., 2011; O’Hara et al., 2011), for
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numerous species, and for various levels of complexity across
multiple spatial scales (e.g., inclusion of disease-associated
remodeling, drug action, contractile, energetics, and signaling
modules) (Fink et al., 2011). Most of these models use
average data from voltage-clamp experiments of individual
ionic membrane currents, and while they have led to many
important advances in studies of cardiac electrophysiology and
pathology, especially cardiac arrhythmias (Sepulveda et al., 1989;
Courtemanche and Winfree, 1991; Panfilov and Holden, 1991;
Gray et al., 1995; Krogh-Madsen and Christini, 2012; Roberts
et al., 2012; Bueno-Orovio et al., 2014), they typically represent
the average behavior of a particular cell type. Because these
models ignore evident inter- and intra-personal variability, they
can fail to capture the properties of any given individual cell
or cells in a given patient (Golowasch et al., 2002; Dokos
and Lovell, 2004; Sarkar and Sobie, 2010; Marder, 2011;
Zaniboni, 2011; Groenendaal et al., 2015; Pathmanathan et al.,
2015). This is in part because incorporating variance that
reflects biological data into cardiac models requires significant
computational capacity, particularly as compared to what was
available when mathematical modeling of electrophysiology
first emerged. Given ever-increasing computational capabilities,
new modeling approaches have been developed to reproduce
and analyze the immense physiological diversity observed in
electrophysiology.

In this review, we discuss the importance of accounting for
variability when building models of cardiac electrophysiology
in both physiological and diseased conditions, and describe
new tools being developed to address the limitations of
traditional modeling approaches. In particular, we focus
on two computational approaches that have emerged as
leading methodologies for studying variability in cardiac
electrophysiology, which we will refer to as (1) population-based
modeling and (2) sample-specific modeling. Both methodologies
have provided valuable insights in the fields of neuroscience,
cardiology, and pharmacology. Here we review how they
have advanced our understanding of the basic mechanisms of
cardiac arrhythmias, and particularly atrial fibrillation (AF).
As these in silico approaches have led to important insights
into arrhythmia risks, mechanisms of arrhythmogenesis, and
variable response to drugs, they should be considered when
determining the regulatory requirements for the proarrhythmia
assessment and drug efficacy and safety evaluation of candidate
compounds.

Abbreviations: AF, atrial fibrillation; AP, action potential; APD, AP duration; cAF,
chronic AF; CaT, Ca2+ transient; CiPA, Comprehensive in vitro Proarrhythmia
Assay; DAD, delayed afterdepolarization; diLQTS, drug-induced long QT
syndrome; EAD, early afterdepolarization; ECG, electrocardiogram; FRD, forward
rate dependence; GA, genetic algorithm; hERG, human ether-à-go-go-related
gene; hMSCs, human mesenchymal stem cells; ICaL, L-type Ca2+ current; Ito,
transient outward K+ current; IKur, ultra-rapid delayed-rectifier K+ current; IKr,
rapid delayed-rectifier K+ current; IKs, slow delayed-rectifier K+ current; IK1,
inward rectifier K+ current; INa, fast Na+ current; INaL, late Na+ current; iPSC-
CM, induced pluripotent stem-cell-derived cardiomyocyte; LHS, latin hypercube
sampling; LQT3, long QT syndrome type 3; NCX, Na+/Ca2+ exchanger; nSR,
normal sinus rhythm; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; TdP,
torsades de pointes.

IMPORTANCE OF TAKING INTO ACCOUNT
VARIABILITY IN CARDIAC
ELECTROPHYSIOLOGY

Sources of variability in cardiac electrophysiology encompass
multiple spatial and temporal scales, and include inter-species
(Sham et al., 1995; Su et al., 2003), inter-ethnic (Lau et al.,
2012; Fender et al., 2014), inter-subject (Taneja et al., 2001;
Batchvarov et al., 2002), regional (Feng et al., 1998; Yan
et al., 1998), and temporal (Jeyaraj et al., 2012) differences.
Variability in experimental electrophysiological data does not
only represent natural physiological diversity, but also reflects,
in part, differences in the experimental conditions in which
electrophysiological measurements are performed (Groenendaal
et al., 2015). These conditions can vary from laboratory to
laboratory (Niederer et al., 2009; Fink et al., 2011), experiment
to experiment, or during the same experiment, e.g., due to
deterioration of the experimental preparations over time (Fink
et al., 2011). There is also instrument noise (Mirams et al.,
2016), artifacts, and use of non-physiological temperatures and
solutions (Groenendaal et al., 2015), all of which impact the
structure and function of the cellular or tissue components being
studied. These sources of variation are difficult to control even for
experienced electrophysiologists and are equally as challenging to
account for by modelers.

Mathematical cardiomyocyte models have remained useful
tools for unraveling physiological and pathophysiological
mechanisms, including mechanisms of arrhythmia, and
identifying antiarrhythmic strategies without accounting for
variability (Sepulveda et al., 1989; Courtemanche and Winfree,
1991; Clancy and Rudy, 1999, 2002; Clancy et al., 2002; Rivolta
et al., 2002; Gong et al., 2007; Noble et al., 2007; Tsujimae et al.,
2007; Zhang et al., 2007; Zhu and Clancy, 2007; Campbell et al.,
2008; Comtois et al., 2008; Kharche et al., 2008; Sale et al., 2008;
Ahrens-Nicklas et al., 2009; Butters et al., 2010; Adeniran et al.,
2012; Edwards et al., 2014; Grandi and Maleckar, 2016; Morotti
et al., 2016; Ni et al., 2017). Although average models have also
been successfully applied to the study of sources of variability,
such as sexual and hormonal factors (Yang et al., 2010, 2017;
Yang and Clancy, 2012), age (Behar and Yaniv, 2017), and
circadian regulation (Fotiadis and Forger, 2013), the rationale
for developing novel computational approaches that specifically
account for electrophysiological variability can be summarized
by two main reasons.

Average Data May Not Accurately
Represent Any Specific Individual or
Behavior Well
The traditional cardiac model-building scheme involves
averaging over samples from multiple experiments from many
individuals, both to parameterize themodel and validate it, which
may not represent any specific measured physiological behavior
very well. This “failure of averaging” has been demonstrated in
many fields, most recently in neuroscience (Golowasch et al.,
2002; Marder, 2011), and was particularly well-documented in
1952, the same year that the seminal Hodgkin and Huxley paper
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was published, when Lt. Gilbert S. Daniels of the U.S. Air Force
published a Technical Note that highlighted the fundamental
problem with fitting data to the mean (Daniels, 1952; Rose,
2017). Using data from 4,063 pilots, Lt. Daniels calculated the
average of 10 physical dimensions believed to be most relevant
for design of the cockpit on a plane, including a pilot’s height,
chest circumference, and sleeve length. Surprisingly, he found
that a total of zero individuals fit within the middle 30% of
the range of values for each dimension, and less than 3.5%
of pilots would be average sized on any three dimensions.
After this finding, the U.S. Air Force completely moved from
standardizing all dimensions to an “average pilot,” to making
all the dimensions adjustable to each individual pilot, which
immediately and drastically improved performance and was
soon adopted by all branches of the American military. Modeling
of electrophysiology is undergoing a similar evolution, which
will likely improve the translational significance of the models.

Variability Has Implications on Genesis and
Treatment of Arrhythmia
Variability plays an important role in arrhythmia generation and
treatment, as exemplified by AF. The atria are characterized by a
high degree of phenotypic variability in physiological properties,
with broad and diverging distributions of biomarkers in patients
in normal sinus rhythm (nSR) or chronic AF (cAF, Figure 1A)
(Ravens et al., 2015), likely due to innate variability of the
ionic currents (perhaps due to stochastic gating) that can affect
whole cell and/or tissue proarrhythmic behavior (Pueyo et al.,
2011; Heijman et al., 2013). This phenotypic variability can be
captured by adding variability in the conductance parameters of
a mathematical model of the action potential (AP, Figures 1B,C).
In some circumstances, physiological variability itself can be the
substrate for arrhythmia. For example, increased heterogeneity
of refractoriness is important for the maintenance of AF (Moe
et al., 1964; Boutjdir et al., 1986; Misier et al., 1992; Sato et al.,
1992; Wang et al., 1995, 1996; Gaspo et al., 1997; Liu and Nattel,
1997; Ramirez et al., 2000), and regional differences in atrial ionic
currents play a significant role in atrial arrhythmia initiation
(Feng et al., 1998; Gaborit et al., 2007; Colman et al., 2013).
Consequently, pharmacotherapy that increases dispersion of
refractoriness is an adverse side effect of drugs for the treatment
of AF (Ramanna et al., 2001; Soylu et al., 2003).

It is well-known that individuals may present largely different
responses to same pharmacological interventions. As an example,
it has been shown that drugs that block the hERG (human
ether-à-go-go-related gene) channel are generally responsible
for drug-induced long QT syndrome (diLQTS), but in a
population this adverse response is highly variable, from
minimum changes in the electrocardiogram (ECG) to induction
of lethal ventricular arrhythmias (Singh et al., 2000; Kannankeril
et al., 2011). Accounting for physiological variability may help
better understand why some individuals display adverse side
effects, while others do not. Given the different etiologies of many
cardiac arrhythmias, such as AF, computational approaches that
take into account variability may help us identify subpopulations
in which a particular antiarrhythmic therapy will be effective and

safe, or toxic. Furthermore, when assessing the efficacy and safety
of a drug administration for heart conditions, it is important to
take into account physiological and pathological variabilities to
make sure that results are quantified and valid at the population
level. Such approaches will potentially be more clinically useful in
simulating the effects of drugs and aiding the design of safer and
more effective therapies (Britton et al., 2013, 2017a; Passini et al.,
2016; Yang et al., 2016).

APPROACHES AND INSIGHT ON THE
IMPACT OF VARIABILITY ON CARDIAC
ELECTROPHYSIOLOGY

Although many methods have been developed, two families of
approaches have emerged as leading methodologies to account
for variability in cardiac electrophysiology: (1) population-based
and (2) sample-specific modeling (Figure 2). Both methods
generally start with the building or use of a baseline cardiac cell
model, which has been parameterized and validated to average
data. Population-based approaches generate model variants of
the baseline model that fit given experimental distributions
of electrophysiological outcomes or biomarkers, while sample-
specific modeling approaches re-parameterize the baseline
model based on cell- or patient-specific datasets (Figure 2).
Because their implementation requires computational power, the
advancements in computing capabilities and techniques (Pitt-
Francis et al., 2006; Abramson et al., 2010), especially in parallel
computing (Wang et al., 2011), have helped these methods gain
traction in the last decade.

Population-Based Modeling
Population-basedmodeling approaches have been developed and
employed to obtain results at the population level, which led to
many novel insights into physiological and pathophysiological
variabilities, and variable responses to drug administration.
We refer the readers to a recent review from the Rodriguez
group (Muszkiewicz et al., 2016), where this methodology
is described in detail. Here, we briefly describe the general
approach of population-based modeling, and summarize how it
has contributed to advancing the field as exemplified by some
important studies.

Creating Populations of AP Models
Populations of models are generally created by modifying sets
of parameters in a baseline model (Figure 2). This process
involves determination of the parameters to be varied, over what
range, and a sampling method to select the parameter values.
Frequently, maximal conductances or maximum transport rates
of ion channels, pumps and transporters in AP models are
selected to vary. The parameter space over which these model
parameters vary can be chosen either to reflect the experimental
range, when available, or theoretical upper and lower bounds.
Then, populations of parameter sets are created by sampling the
parameters within the predefined parameter spaces. Typically,
four types of sampling methods have been applied to obtain
the populations of parameter sets: uniform-interval sampling
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FIGURE 1 | Variability in cardiac electrophysiology.(A) Histograms of AP duration at 90% repolarization (APD90) for patients in nSR (black) and cAF (red) show

substantial variability. Reproduced from Ravens et al. (2015) with permission. (B) Example of APs and (C) histogram of APD90 produced using models incorporating

variability in conductances of ionic currents; some models (in blue) are rejected due to non-physiological behaviors.

FIGURE 2 | Flowchart connecting traditional cardiac modeling approach to the new methodologies that account for variability.

(Romero et al., 2009, 2011; Corrias et al., 2011), log-normal
sampling (Sobie, 2009; Sadrieh et al., 2013; Ellinwood et al.,
2017a; Morotti and Grandi, 2017), Latin hypercube sampling
(LHS) (Britton et al., 2013) and its variants such as orthogonal
sampling (Burrage et al., 2015; Donovan et al., 2018), and
sequential Monte Carlo sampling (Muszkiewicz et al., 2017).

After generating hundreds or thousands of model variants,
calibration can be performed to exclude models that display
non-physiological behaviors (Figure 2). This can be done, for
example, by removing models showing repolarization failure
(Sobie, 2009), or exhibiting AP duration (APD) more than
three standard deviations from the population mean (Devenyi
and Sobie, 2016). Population of models are also calibrated to
measured data from patient samples, whereby model variants are
selected based on simulated electrophysiological properties, such
as APD, upstroke velocity, resting membrane potential and/or
Ca2+ transient (CaT) (Britton et al., 2013, 2017a; Sanchez et al.,

2014; Passini et al., 2016; Rees et al., 2018). Other studies use
additional information such as ionic current data (Muszkiewicz
et al., 2017), or ECG data (Mann et al., 2016). This calibration step
is meant to ensure that (1) variants displaying non-physiological
properties are discarded before analysis, and (2) the simulated
electrophysiological properties of models in a given population
are in the same range as experimental data, or, more recently,
correspond to the same distribution of observed experimental
biomarkers (Lawson et al., 2018), thus possiblymaking inferences
from in silico experiments more physiologically relevant.

Analyzing Populations of AP Models
Once a population of cardiac AP models is generated,
and electrophysiological simulations have been performed
corresponding to the scientific question at hand, mechanistic
insights can be obtained using various analysis techniques.
These analyses have contributed to our understanding of the
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relative role of the underlying parameters in modulating the
physiological properties of interest (i.e., sensitivity analysis), or
revealing association of certain parameter ranges or properties
with specific physiological behaviors (e.g., repolarization
abnormalities, ectopic activity, drug response). Many relevant
examples have recently been reviewed (Muszkiewicz et al., 2016).
Here we highlight new recent developments and discuss details
of parameter sensitivity analysis.

Performing parameter sensitivity analysis
A common systematic analysis of populations of models is
sensitivity analysis. It assesses how model outputs, which
typically represent whole cell behavior (e.g., APD), are sensitive
to changes in model parameters, (e.g., conductances and
maximum transport rates). Because many parameters are often
varied to generate the populations of models, multivariable
linear regression (Hair et al., 2010; Draper and Smith, 2014)
has emerged as a frequently utilized tool to perform sensitivity
analysis in cardiac electrophysiology. Moreover, as the number
of independent parameters varied is used to predict a smaller set
of dependent variables, sensitivity analysis is typically performed
using partial least squares regression (Geladi and Kowalski, 1986;
Sobie, 2009), as compared to standard multivariable regression.
The result of linear regression is a set of coefficients (forming
a “regression model”) describing how perturbing a particular
parameter influences an output of interest. This method has been
successfully utilized in other fields such as molecular biology
(Janes et al., 2005) and neuroscience (Weaver andWearne, 2008),
and was first used in cardiac electrophysiology by Sobie (2009),
who applied it to study sensitivities of properties such as APD
and pacing rate threshold for inducing AP alternans. Since the
regression model represents a linear approximation of a highly
non-linear system, it is important to always check the goodness
of fit. Several papers by the Sobie’s group have indeed shown that
the linear approximation actually provides a very good fit of the
AP biomarkers, which was not trivially predictable (Sarkar et al.,
2012).

The approach of varying multiple ionic conductances at once
in a systematic fashion (as opposed to one at a time) and
employing sensitivity analysis using multivariable regression has
led to many important insights in cardiac electrophysiology
(Sarkar and Sobie, 2011; Mann et al., 2012; Heijman et al., 2013;
Walmsley et al., 2013), some of which have been confirmed
experimentally (Lee et al., 2013; Devenyi and Sobie, 2016;
Devenyi et al., 2017). For example, it has been used to study
how different diseased conditions affect the sensitivities of given
electrophysiological properties (Sadrieh et al., 2013; Ellinwood
et al., 2017a; Vagos et al., 2017; Koivumaki et al., 2018),
mechanisms of physiological phenomena (Lee et al., 2013),
and for constraining free parameters (Sarkar and Sobie, 2010).
Through sensitivity analysis, Cummins et al. identified multiple
potential ionic targets mediating forward rate dependence (FRD)
of AP, and demonstrated that modulation of the inward rectifier
K+ current (IK1) or the Na+/K+ pump current was more likely
to produce FRD (Cummins et al., 2014). Devenyi and Sobie
performed sensitivity analysis of rat ventricular myocyte models,
and quantitatively compared the modulatory role of transient

outward K+ current (Ito) and sarco/endoplasmic reticulum
Ca2+-ATPase (SERCA) in CaT amplitude. They found that in
rat epicardial cells Ito plays a more important role than SERCA
in regulating CaT amplitude, and this was analogous to human
atrial cells, where both Ito and ultra-rapid delayed-rectifier K+

current (IKur) had greater impacts on CaT amplitude than did
SERCA (Devenyi and Sobie, 2016). These studies highlight how
sensitivity analysis can be applied to compare and contrast roles
of different ionic processes and Ca2+ handling in regulating
physiological properties and behaviors between cell types and
species. Sensitivity analysis has also been used to compare the
dependence of AP biomarkers on ionic processes in healthy and
diseased conditions. For example, Lee et al. compared the impact
of ionic processes on APD in control and AF-remodeled cells
and found that the Na+/Ca2+ exchanger (NCX) current has little
influence on APD in control cells but more markedly impacts
AF cells; the analysis also revealed that IK1 upregulation plays
a dominant role in APD shortening in AF, and that the L-type
Ca2+ current (ICaL) significantly contributes to rate-dependent
APD changes in both control and AF myocytes (Lee Y. S.
et al., 2016). Most recently, Gong and Sobie described a novel
use of regression models, cross-cell regression, to predict adult
myocyte drug responses from induced pluripotent stem-cell-
derived cardiomyocytes (iPSC-CMs) behaviors (Gong and Sobie,
2018).

Multivariable linear regression is used if the physiological
output of interest is continuous, but, for the study of arrhythmia
mechanisms, another particularly useful and efficient regression
technique is logistic regression, which is used when the outcome
of interest is Boolean (i.e., yes/no, true/false). Applying logistic
regression in studies of physiology is well-described by Lee et al.
who examined Ca2+ spark triggering (an all-or-none event), and
demonstrated the accuracy of logistic regression using receiver
operator characteristic curves (Lee et al., 2013). This method has
since been used to study the probability that a certain arrhythmic
event such as early afterdepolarizations (EADs) will occur and
suggest underlying factors (Morotti and Grandi, 2017).

The main limitation of regression (both linear and logistic)
analysis is that it only highlights how inputs are correlated
to outputs, so the conclusions drawn from the analysis can
be misleading if only a few outputs are considered. For
example, it has been shown that completely different parameter
combinations could produce essentially identical AP shapes
but substantially different CaT amplitudes (Figure 3) (Sarkar
and Sobie, 2010). However, sensitivity analysis can still help
determine whether the relationships between inputs and outputs
in computational models match experimental findings and
assumptions, and whether there are particularly influential
parameters that can be exploited therapeutically or targeted
to better understand a given physiological phenomena (e.g.,
arrhythmia mechanism).

Comparing subpopulations of models
Comparing subgroups in a population of models (often
using statistical difference tests of parameters of interest) can
help identify underlying determinants of different phenotypes,
behaviors, and pathological conditions (Sanchez et al., 2014;
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FIGURE 3 | Different subcellular parameter combinations can lead to same AP shape. Example of how different model parameter combinations (e.g., ion channel

conductances and maximum transport rates) can produce nearly identical atrial AP morphologies, but notably different CaTs.

Zhou et al., 2016; Britton et al., 2017b; Muszkiewicz et al.,
2017; Vagos et al., 2017; Lawson et al., 2018). For example,
through characterizing ionic parameters of models that are
prone to repolarization abnormalities, Britton et al. found
that the electrogenic Na+/K+ pump is a key determinant
of susceptibility to repolarization abnormalities in human
ventricular cardiomyocytes by applying arrhythmia-provoking
conditions to a population of experimentally-calibrated cardiac
cells (Britton et al., 2017b). A population-based approach has
also been used to tease out the ionic mechanisms underlying
variability in iPSC-CMs (Paci et al., 2017). By calibrating
generated subpopulations of human atrial myocyte models to
ranges of experimental data from a large number of patients
with nSR or cAF, Sanchez et al. characterized potential ionic
determinants of inter-subject variability in AP biomarkers, and
identified similar changes in IK1, IKur, and Ito in cAF vs.
nSR subpopulations that were consistent with experimentally
reported AF-induced remodeling effects (Sanchez et al., 2014).
In a more recent study, instead of calibrating population of
models to the range of experimental dataset, Lawson et al.
proposed a novel method to calibrate these models to the
distributions of multiple experimentally measured biomarkers
(Lawson et al., 2018), which led to an improved characterization
of ionic differences between nSR and cAF. These studies focused
on AP biomarkers at a fixed pacing rate. In a different study,
Vagos et al. expanded the use of population of models to compare
the steady state and dynamic restitution behaviors of AP in
nSR and cAF populations (Vagos et al., 2017). By combining
population-based modeling and experiments, Muszkiewicz et al.
characterized variability in AP and ionic densities and their
impact on CaT in atrial cells from right atrial appendage of
patients exhibiting nSR (Muszkiewicz et al., 2017). In addition to
calibrating model outputs to measured AP biomarkers, they also
extended the experimental calibration of population of human
atrial models to model parameter (inputs) by using experimental
data of major ionic currents.

Quantifying drug modulatory effects, understanding

variability in drug response, and identifying

phenotype-specific therapy
By using a population of models that incorporate variabilities,
drugmodulatory effects on electrophysiological properties can be
interpreted at a whole population level, which also contributes to
limiting potential model-dependent results. For example, Yang
et al. used a population-based approach to simulate effects of
late Na+ current (INaL) and hERG block and found that the
selective INaL blocker GS-458967 could suppress proarrhythmic
markers after hERG block in ventricular myocytes (Yang et al.,
2016). Population-based modeling has also allowed for more
rigorous quantitative comparison of modulatory effects between
multiple drugs. A recent study by Britton et al. calibrated
populations of ventricular models to specific individuals using
data from human trabeculae (Britton et al., 2017a). They then
assessed the effects of four different (selective and non-selective)
blockers of the rapid delayed-rectifier K+ current (IKr), dofetilide,
sotalol, quinidine, and verapamil, to quantitatively compare
changes in AP biomarkers, and demonstrated good agreement
with experiments for the selective IKr blockers (dofetilide and
sotalol) but not for the non-selective IKr inhibitors (quinidine
and verapamil). Paci et al. utilized populations of in silico
iPSC-CMs to evaluate antiarrhythmic effects of mexiletine and
ranolazine to treat iPSC-CM long QT syndrome type 3 (LQT3)
mutants and demonstrated that mexilitine stops spontaneous
APs in more LQT3 models than ranolazine due to its stronger
effects on the fast Na+ current (INa) (Paci et al., 2017). In
contrast to the traditional modeling approach using a single
model, the population-based modeling can gain insights into the
physiologically relevant variability of predictions made in silico,
as demonstrated in these studies.

By taking a step further, simulations using populations
of models incorporating variabilities can also help recognize
the contributing factors underlying the variability observed
in response to drugs. One relevant example is the variable
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outcomes of hERG inhibition, which is frequently linked with
diLQTS. Population-based modeling has offered insights into the
mechanisms underlying the fact that individuals will not exhibit
the same degree of QT interval prolongation after hERG block
(Singh et al., 2000; Kannankeril et al., 2011; Weeke et al., 2014).
Employing a population of models of ventricular myocytes, Sobie
and Sarkar attributed the variable outcomes to the different
ionic properties of the cells (Sarkar and Sobie, 2011). In another
interesting application, Passini et al. implemented an in silico
drug trial using experimentally-calibrated populations of AP
models to investigate the risk of drug-induced arrhythmias,
and to identify specific subpopulations at higher risk for
proarrhythmic cardiotoxicity (Passini et al., 2017). Their
methodology not only demonstrated higher accuracy than
animal models in predicting arrhythmia risk, but also provided
mechanistic insight into the underlying ionic contributors to
repolarization/depolarization abnormalities.

Understanding the bases of variability in electrophysiological
behavior and arrhythmia proclivity may also allow developing
specific antiarrhythmic therapies for different disease
phenotypes. For example, Liberos et al. compared AF models
that had self-sustained vs. self-terminating reentries (Liberos
et al., 2016). They found that AF maintenance was correlated
with high ICaL and INa, and that ICaL block could be an effective
treatment depending on the basal availability of Na+ and
Ca2+ ion channel conductivities (INa depression increased
efficacy). Mayourian et al. employed a comprehensive integrated
approach to study the mechanisms of cardiac contractility
and arrhythmogenicity using experimentally-calibrated human
mesenchymal stem cells (hMSCs) (Mayourian et al., 2017).
In simulations testing proarrhythmic effects, they found that
hMSCs paracrine signaling protected such adverse effects of
heterocellular coupling at various levels of engraftment. This
work highlights that antiarrhythmic strategies can move beyond
simply considering repolarization abnormalities.

Sample-Specific Modeling
Instead of taking a baseline cardiac model and introducing
variability by randomly varying the ionic conductances,
optimization and statistical techniques can also be used to
tailor the baseline model to describe a specific experimental
sample. Depending on the characteristics of the dataset at
hand, sample-specific models can be representative of either
individual myocytes or a particular group of cells. The former
approach, cell-specific modeling, can be helpful when integrating
mathematical modeling into an experimental setup. For example,
Ravagli et al. characterized the role of the “funny” current If
in sinoatrial myocytes using the dynamic clamp technique
by adapting the extent of injected If in a cell-specific fashion,
i.e., based on the basal firing rate measured in each individual
cell (Ravagli et al., 2016). Despite the use of average data,
sample-specific models built from a group of cells (e.g., a cell
line developed in a certain laboratory, myocytes isolated from
disease models, iPSC-CMs derived from a single patient) can
allow for specific characterization of conditions that are far
from the average, or even of personalized physiology (Barichello
et al., 2018). For example, monophasic AP data recorded in

AF patients undergoing ablation procedures have been used
to construct atrial cell models that capture patient-specific
electrophysiological properties (Lombardo et al., 2016). This
approach has the promise of making patient-specific predictions
given interventions such as arrhythmia-provoking protocols
or drug application. Here we summarize methodologies for
building and improving sample-specific cell models. For more
detail, we refer the readers to a previous review on the topic
(Krogh-Madsen et al., 2016).

Fitting Sample-Specific Models
Sample-specific models can be constructed by fitting the
parameters of a baseline model so that the model outputs match
the corresponding physiological behaviors seen in a single patient
or myocyte (Figure 2). Cardiac electrophysiology models can be
optimized using many different fitness functions (Druckmann
et al., 2007; Tomaiuolo et al., 2012), such as global search
heuristics (Vanier and Bower, 1999; Dokos and Lovell, 2004;
Bueno-Orovio et al., 2008; Guo et al., 2010). Recently, many
sample-specific models are generated using the genetic algorithm
(GA), which traces its beginnings to evolutionary biology (Fraser
and Burnell, 1970; Crosby, 1982), but is still being applied
in new ways today (Chen and Guan, 2004; Hussein and El-
Ghazaly, 2004; Leung et al., 2004; Vieira et al., 2004). Its use
for optimization of ionic models is relatively new in both
neuroscience (Achard and De Schutter, 2006; Gurkiewicz and
Korngreen, 2007; Hobbs and Hooper, 2008; Ben-Shalom et al.,
2012) and cardiac electrophysiology (Syed et al., 2005; Bot et al.,
2012; Kaur et al., 2014; Groenendaal et al., 2015). Syed et al.
demonstrated its feasibility for atrial cell models when they
proved they could fit two different cell models (Courtemanche
et al., 1998; Nygren et al., 1998) to any given atrial AP (Syed
et al., 2005). Essentially, the GA optimization procedure is
initialized in the same way as for the population-based approach
(varying maximal conductance and/or transport rates), and then
it iteratively evolves toward better solutions in generations,
while the underlying parameters can be varied, swapped, or
discarded. Sensitivity analysis can be used in conjunction with
generating sample-specific models as it can inform the design of
the error function (i.e., weights) by revealing the conductances
that more significantly impact the electrophysiological outputs
used for fitting. For example, Krogh-Madsen et al. recently
combined sensitivity analysis and global optimization (using
a GA) of a ventricular myocyte model to clinical long QT
data and intracellular Ca2+ and Na+ concentrations, to better
constrain the model parameters (Krogh-Madsen et al., 2017).
They found that this improved prediction of drug-induced
torsades de pointes (TdP), especially in eliminating false-positive
outcomes generated by the baseline model parameters.

Improving Fidelity of Sample-Specific Models
The final solution of an optimization procedure using some
fitness function may not match experimental data well if only
fitting to a single electrophysiological output such as a single
AP, because multiple parameter combinations can potentially
produce the same AP (Figure 3) (Syed et al., 2005; Druckmann
et al., 2007; Sarkar and Sobie, 2010; Guo et al., 2013; Kaur
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et al., 2014; Groenendaal et al., 2015). In this case, although
fitness function itself can be improved, for example, by increasing
the population size or diversity for GAs can improve the fit
of a sample-specific model, it may not necessarily guarantee
that the final solution relates to the global minimum. To
address this issue, many methods have been developed using
(1) additional electrophysiological properties for fitting and/or
(2) more complex electrophysiological protocols to improve
model fidelity. It has been shown that model faithfulness can
be improved by adding membrane resistance as an objective
(Kaur et al., 2014), by optimizing to Ca2+ handling (Dokos and
Lovell, 2004; Sarkar and Sobie, 2010; Rees et al., 2018), or by
accounting for experimental data generated frommultiple pacing
frequencies (Syed et al., 2005; Lombardo et al., 2016) or irregular
pacing protocols (Guo et al., 2013; Groenendaal et al., 2015).

In addition to using multiple electrophysiological properties
to improve the fit of sample-specific models, more intricate
voltage-clamp protocols that capture complex and rich
electrophysiological dynamics have been employed, as first
demonstrated to improve the fit of Markov models of ionic
currents with many parameters (Dokos and Lovell, 2004; Zhou
et al., 2009; Beattie et al., 2018). These can be implemented
over a short time frame and may be used to emphasize certain
currents over others. In the absence of pharmacological isolation,
Groenendaal et al. used only a 6-s protocol that effectively
isolated IK1, ICaL, and slow delayed-rectifier K+ current (IKs)
given their disproportionately large contribution at voltage steps
of −120, +20, +40, and −30mV, respectively (Groenendaal
et al., 2015). They found that using this protocol alone cannot
isolate all ionic currents, and when used in combination with a
stochastic pacing protocol there was a considerable improvement
in parameter estimation. Developing short but information-rich
protocols is useful especially when trying to improve the results
of an optimization procedure for cell-specific modeling, because
longer protocols take longer to implement experimentally
and thus are difficult to perform in a single cell. In a recent
study, Beattie et al. proposed an innovative experimental and
mathematical modeling method that allows to concisely measure
the dominant processes involved in hERG channel gating by
applying a short (8-s long) “sum of sinusoids” voltage-clamp
protocol (Beattie et al., 2018). The sinusoidal waves were able
to provoke a wider range of non-equilibrium behavior than
traditional square voltage steps, thus allowing rich and complete
characterization of hERG channel kinetics in the same cell and
efficient model fitting (Figure 4A).

The final step in improving fidelity of sample-specific models
is to directly experimentally test the predictions of the model
given new protocols (Groenendaal et al., 2015; Devenyi et al.,
2017; Beattie et al., 2018). Figure 4B reports an example of such
validation experiments, where predictions obtained with cell-
specific IKr models (identified applying the sinusoidal protocol
in Figure 4A in 9 cells) are compared to the IKr-voltage
relationships experimentally determined in each cell (Beattie
et al., 2018). The order of the panels in Figure 4B is based on an
index of recording stability (lowest to highest difference in leak
resistance between the vehicle and dofetilide recordings) that is
associated to “data quality”. Cell-specific predictions are excellent

for cells 1–5 (higher data quality), but less accurate for cells 6–
9 (lower data quality). The analysis also shows that cell-specific
models provide better predictions than the average model for
the cells with the highest data quality (cells 1–5). Experimental
validation is an important last step in improving cell-specific
models, as generating cell-specific models is potentially more
susceptible to observational error. Devenyi et al. used a GA
to re-parameterize the Livshitz-Rudy model of the guinea
pig ventricular cardiomyocyte (Livshitz and Rudy, 2009), and
predicted an increase in IKr and a drastic decrease in IKs given
a dynamic clamp protocol as compared to the original model,
and this was validated experimentally (Devenyi et al., 2017).
Their adjusted model predicted that IKs can stabilize the AP and
EADs better as compared to IKr—which improved the ability to
assess arrhythmia risk, given the baseline model did not produce
physiological behaviors that were quantitatively similar to their
experiments.

Models of Patient-Specific Anatomy
While a detailed discussion of patient-specific anatomical
models is beyond the scope of our review, recent studies
have begun investigating how inter-patient differences in
myocardial structure affects atrial arrhythmia, as reviewed by
Barichello et al. (2018). For example, Zhao et al. developed
a 3D human heart-specific atrial computer model integrating
3D high resolution structural and functional mapping data
to test the impact of wall thickness, fibrosis, and myofiber
orientation on AF induction, maintenance, and ablation
strategies (Zhao et al., 2017). Deng et al. demonstrated that
reentrant driver localization dynamics are influenced by inter-
patient variability in the spatial distribution of atrial fibrosis,
APD, and conduction velocity (Deng et al., 2017). This suggests
that incorporating patient-specific electrophysiological models
in patient-specific geometries might enhance their predictive
value. We discuss the computational challenges associated
to this task in the section entitled “Arrhythmia Research
Requires Understanding Variability at Larger Spatial Scales”.
Furthermore, obtaining patient-specific electrophysiological data
might constitute another logistical roadblock.

Overall, methods that incorporate variability are particularly
useful for (1) analyzing variability in cardiac electrophysiology,
(2) assessing proarrhythmic risk, (3) determining the underlying
factors contributing to variable drug response, and (4) identifying
phenotype-specific (and in the future patient-specific)
antiarrhythmic targets. Table 1 summarizes applications of
these approaches and new insights provided by the studies
(shaded areas indicate atrial studies).

CHALLENGES AND FUTURE DIRECTIONS

We reviewed the most common methods used to account
for variability in cardiac electrophysiology, which largely fall
into the two categories of (1) population-based modeling and
(2) sample-specific modeling. These methods complement each
other well, as population-based methods can help characterize
behavior in a particular patient group (healthy, diseased, stressed,
etc.), and sample-specific modeling shows significant promise to
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FIGURE 4 | Improving fit of sample-specific models. (A) Experimental and simulated IKr time courses (bottom) evoked in response to an efficient, information-rich

sum-of-sinusoid voltage protocol (top) that allows rapid characterization of IKr behavior. (B) Steady-state peak IKr-voltage curves comparing cell-specific model

predictions (bold, colored) to cell-specific experimental recordings (dashed, colored). The black lines in each plot are from the model calibrated to averaged sinusoidal

data from all the cells (light gray). Reproduced from Beattie et al. (2018) with permission.

develop personalized medical approaches for individual patients.
Both methods have led to many important insights into the
mechanisms of arrhythmogenesis and antiarrhythmic strategies.
However, there are several important limitations to consider,
which suggest potential future developments in modeling of
cardiac electrophysiology.

Analysis of Electrophysiology From
Populations of Models May Require
Different Statistical Methods
As opposed to the traditional approach of producing a single
value from a single baseline model, models that incorporate
variability have allowed statistical methods to be applied that
can either ask new scientific questions or quantify the impact
of variability on electrophysiological outputs, as performed in
experimental studies. While the statistical analysis methods
used in experimental studies can be directly applied in the
in silico population-based studies, differences in the nature of
experimental and simulation studies may need to be considered.
For example, some population-based techniques generate model
population sizes (often sample sizes in the 1000s) that are much
greater than could be achieved by experiments (often sample

sizes of 3–12) or the traditional cardiac modeling approach
alone. Therefore, given similar effects, results produced in
the population-based simulations have greater statistical power
to detect differences. Furthermore, because even very small
effects can reach statistical significance with large samples,
physiological significance should be assessed (White et al., 2014).
Additionally, when evaluating drug effects on electrophysiology,
in simulations of the same virtual cell (a single model out of
the population-models) can be used to perform both control
and with-drug studies, allowing for paired comparisons, which
is often not practical in experimental studies. The methodologies
for analyzing and interpreting the “big data” produced by
the population of models should be carefully considered and
standards should be established going forward.

Variability Does Not Fully Account for
Uncertainty
Physiologic variability should be thought of in the context of
the broader umbrella of uncertainty, which is the confidence (or
precision) with which a quantity, such as an electrophysiological
output, can be given a value (Mirams et al., 2016). While
here we reviewed how cardiac electrophysiology models have
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TABLE 1 | Applications and main findings of computational methods incorporating cardiac electrophysiological variability (**shaded areas indicate atrial studies).

Author, Year Baseline Model Model Generation Approach Insight

ANALYZING VARIABILITY

Sobie, 2009 MVMMs: Luo and Rudy, 1991; Fox

et al., 2002; Kurata et al., 2005

Sampled from LND MLR New method to rapidly identify ionic

mechanisms shaping AP properties,

CaT, and alternans

Sanchez et al., 2014 HAMMs: Courtemanche et al., 1998;

Maleckar et al., 2009; Grandi et al.,

2011

Sampled over a ±100%

variation range around their

baseline values as

described by Marino et al.

(2008); calibrated to AP

recordings in atrial trabecula

Statistical

difference tests

Ionic determinants of variability in

human AP in nSR vs. cAF

Lee Y. S. et al., 2016 HAMM: Courtemanche et al., 1998 Sampled from LND MLR Comparison of parameter sensitivity

between nSR and AF condition. Ionic

contributions to rate-dependence and

spiral wave dynamics in AF

Devenyi and Sobie, 2016 HAMM: Grandi et al., 2011; HVMM:

Grandi et al., 2010; RVMM: Pandit

et al., 2001

Sampled from LND MLR In human atrial myocytes, both Ito
and IKur had greater impacts on CaT

amplitude than did SERCA. This was

similar in rat left ventricular epicardial

cells, where Ito played a more

important role than SERCA

Vagos et al., 2017 HAMM: Skibsbye et al., 2016 Sampled from Gaussian

distribution

MLR Ionic determinants of unstable

behaviors in nSR vs. cAF

Ellinwood et al., 2017b HAMM: Grandi et al., 2011 Sampled from LND MLR IKur impacts APD and effective

refractory period more in cAF (even

though it is downregulated) vs. nSR

Muszkiewicz et al., 2017 HAMMs: Courtemanche et al., 1998;

Maleckar et al., 2009; Grandi et al.,

2011

Sampled using LHS and

sequential MC; calibrated to

experimental recordings

PCCs, statistical

difference tests

Ionic determinants of

electrophysiological and CaT

properties

Lawson et al., 2018 HAMM: Courtemanche et al., 1998 Sampled over a ±100%

variation range around their

baseline values; sequential

MC; model calibrated based

on distributions of

biomarkers estimated from

multivariate kernel density

estimation

Statistical

difference tests

Accurate identification of inherent

variability within the experimental

population and improved

characterization of ionic differences

between nSR and cAF

ASSESSING ARRHYTHMIA RISK

Walmsley et al., 2013 HVMM: O’Hara et al., 2011 MC sampling from a uniform

distribution (±30%);

calibrated to mRNA

expression data in failing

and non-failing hearts

MLR Combination of low SERCA activity

and high ICaL conductance impacted

the formation of alternans the most in

the non-failing heart population, but

low hERG conductance was the main

contributor to alternans in the failing

heart population

Zhou et al., 2016 HVMM: O’Hara et al., 2011 Sampled using LHS;

calibrated to in vivo

recordings

PCCs, statistical

difference tests

ICaL and NCX current determine the

cell-to-cell differences in repolarization

alternans through intracellular and

sarcoplasmic Ca2+ regulation

Britton et al., 2017b HVMM: O’Hara et al., 2011 Sampled using LHS;

calibrated to data in human

ventricular trabeculae

Logistic

regression, PCCs,

statistical

difference tests

Na+/K+ pump is a key determinant

of repolarization abnormality

susceptibility

Morotti and Grandi, 2017 HAMM: Grandi et al., 2011 Sampled from LND Logistic regression EADs are particularly sensitive to

conductances of INa,

acetylcholine-sensitive and ultra-rapid

K+ channels, and NCX transport rate

Devenyi et al., 2017 Guinea pig left ventricular myocyte

model Livshitz and Rudy, 2009

Fit using GA; sampled from

LND

Dynamic clamp

data for fitting,

MLR

IKs is more capable to stabilize AP

and EADs as compared to IKr

(Continued)
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TABLE 1 | Continued

Author, Year Baseline Model Model Generation Approach Insight

IDENTIFYING ANTIARRHYTHMIC TARGETS

Cummins et al., 2014 MVMMs: Luo and Rudy, 1991; Fox

et al., 2002; Hund and Rudy, 2004;

Ten Tusscher et al., 2004; Ten

Tusscher and Panfilov, 2006; Livshitz

and Rudy, 2009; O’Hara et al., 2011

Sampled from LND MLR IK1 and Na+/K+ pump currents favor

forward rate dependence

Liberos et al., 2016 HAMM: Skibsbye et al., 2016 Sampled using LHS;

calibrated to AP

recordings in atrial

trabeculae in patients

with AF

PCCs, statistical

difference tests

AF maintenance was correlated to

high ICaL and INa, and ICaL block

could be an effective treatment

depending on the basal availability of

Na+ and Ca2+ channel conductivities

Passini et al., 2016 HVMM: O’Hara et al., 2011 Sampled using LHS;

calibrated to

non-diseased and

HCM myocytes AP

recordings

Analysis of

repolarization

properties

ICaL re-activation is the key

mechanism for repolarization

abnormalities in HCM myocytes, and

combined NCX, INaL and ICaL block

is effective to partially reverse the

HCM phenotype

Yang et al., 2016 Rabbit ventricular myocyte model

Soltis and Saucerman, 2010

Randomly selected

within ±10% of

nominal value (uniform

distribution)

Analysis of TRIaD

pro-arrhythmic

markers

GS-458967 suppressed

proarrhythmic markers following

hERG block

ASSESSING THE VARIABLE RESPONSE TO DRUGS

Sarkar and Sobie, 2011 MVMMs: Fox et al., 2002; Hund and

Rudy, 2004; Ten Tusscher et al.,

2004; Kurata et al., 2005; Grandi

et al., 2010

Sampled from LND MLR Individuals do not exhibit the same

degree of QT interval prolongation

due to different ionic ensembles

Britton et al., 2013 Adapted rabbit Purkinje cell model

Corrias et al., 2011

Sampled using LHS;

calibrated to

experimental data

PCCs Quantitatively predicted the

arrhythmia risk of four concentrations

of the K+ channel blocker dofetilide;

baseline IKr conductance is the

primary determinant of APD

prolongation caused by dofetilide

Lancaster and Sobie,

2016

HVMMs: Ten Tusscher et al., 2004;

Grandi et al., 2010; O’Hara et al.,

2011

Sampled from LND;

calibrated to

experimental data

PCA, ROC curves,

TdP risk scores

TdP risk assessment could be

improved by quantifying the impact of

multiple cardiac ion channels (even

those not typically considered to

affect risk)

Britton et al., 2017a HVMM: Adapted O’Hara et al., 2011 Sampled using LHS,

calibrated to

heart-specific ex vivo

measurements

Coefficients of

variation

Good agreement with experiments for

selective IKr blockers, but notable

differences for the non-selective IKr
inhibitors

Passini et al., 2017 HVMM: O’Hara et al., 2011 Sampled using LHS;

calibrated to

experimental data

TdP scoring

system

In silico drug trial demonstrated

higher accuracy than animal models

in predicting arrhythmia risk (89%);

underlying ionic contributions to

repolarization/depolarization

abnormalities

Krogh-Madsen et al.,

2017

HVMM: O’Hara et al., 2011 Fit using GA; optimized

to clinical data

TdP risk prediction TdP risk assessment could be

improved by using global optimization

methods and multi-variable objectives

Gong and Sobie, 2018 HVMM O’Hara et al., 2011 and

human iPSC-CM models Paci et al.,

2017

Sampled from LND Cross-cell MLR Cross-cell regression predicted adult

ventricular myocyte drug responses

from the behaviors of an iPSC-CM in

silico population

HAMM, human atrial myocyte model; HCM, hypertrophic cardiomyopathy; HVMM, human ventricular myocyte model; LHS, Latin hypercube sampling; LND, log-normal distribution;

MLR, multivariable linear regression; MVMM, mammalian ventricular myocyte model; RVMM, rat ventricular myocyte model; PCA, principal component analysis; PCC, partial correlation

coefficient; ROC, receiver operator characteristic; MC, Monte Carlo; TRIaD, Triangulation, Reverse use dependence, beat-to-beat Instability of action potential duration, and temporal

and spatial action potential duration Dispersion.
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begun to account for physiological and experimental variability,
uncertainty analysis should determine whether the baseline
model itself is a valid representation of its physical system.
The extent and rigor of validation during model development
affects uncertainty, whereby the broader the set of constraints,
e.g., the model recapitulates both voltage and Ca2+ responses,
their pacing rate-dependence, short- and long-term behavior, the
lesser the uncertainty in the obtained parameters. Uncertainty
analysis should also verify that the experiments used to construct
the model are appropriate. For example, in experiments, voltage-
clamp protocols used to characterize ionic currents are often
done using non-selective pharmacological block which may
have unidentified effects, over a range narrower than the
entire physiological range, or on larger cells that are easier
to patch-clamp with intrinsically greater than normal maximal
conductances (Courtemanche et al., 1998). All of these would
lead to uncertainties in the initial parameters and conditions
due to experimental error and lack of knowledge. Likewise,
the choice of the computational methods or resources used
to perform the model parameterization and simulations can
produce uncertainty in model results. This is because cardiac
models may use different mathematical equations to describe the
same physiological process, perhaps based on different analyses
or assumptions on the physical-world process. Using more than
one (e.g., cell) model to confirm predictions or validate the
mechanistic understanding of a process is therefore a useful
strategy (see for example Sarkar and Sobie, 2011; Sanchez et al.,
2014; Lancaster and Sobie, 2016; Muszkiewicz et al., 2017).
Additionally, even the choice of the numerical solver used by the
software can lead to variability in model outputs, i.e., simulator
uncertainty (Pathmanathan et al., 2012). Moreover, uncertainty
in model outputs may arise if the code has not been verified to
truly represent the mathematical equations in the computational
model (Niederer et al., 2011a). Finally, optimization procedures
can also introduce uncertainty, whereby the choice of whether to
optimize simplified models with few parameters (Bueno-Orovio
et al., 2008; Al Abed et al., 2013; Guo et al., 2013) or detailed
models but only a few properties (e.g., focusing on specific
currents) (Zhou et al., 2009; Fink et al., 2011) can lead to multiple
distinct models given the same experimental data.

Used in conjunction with the approaches discussed in this
review that take into account electrophysiological variability, new
methods have been developed that try to quantify uncertainty
more generally (Marino et al., 2008). Uncertainty quantification
methods aim to quantify uncertainties in model inputs and
propagation through the model to see how they affect model
predictions (Pathmanathan et al., 2015; Mirams et al., 2016).
This is typically done by assigning probability distribution
functions, rather than fixed values to model parameters, as done
for example by Pathmanathan et al. and applied to the study
of INa steady-state inactivation (Pathmanathan et al., 2015).
However, this process can be slow and tedious (requiring lots of
simulations), especially if using a Monte Carlo sampling method
that chooses input values from a statistical distribution. Also,
in some cases, this statistical distribution of input parameters
can be difficult to obtain or justify experimentally. To solve this
issue, uncertainty quantification analysis has developed surrogate

models or emulators (e.g., polynomial chaos expansions, and
Gaussian process emulators; Chang et al., 2015), which are fast-
running statistical approximations of the computational models
and are quite powerful when fit to carefully constructed training
data. Formal studies using uncertainty quantification in cardiac
models are still limited, given the huge number of parameters
in cardiac models, and may require the development of new
methods or computational techniques (Johnstone et al., 2016).

Potential Covariance in Ionic
Conductances Challenges the Current
Method of Incorporating Variability
Currently, populations of cardiac models and sample-specific
models typically calibrate or fit to maximal conductance values or
transport rates of channels or receptors, based on the observation
that changes in expression levels of ion channels and transport
proteins are the primary contributors to (inter-species) variability
(Rosati et al., 2008). However, this approach does not take
into account that the expression of ion channels will vary
over relatively short time scales given changes in transcription,
translation, degradation, or even circadian rhythm. Moreover,
with a few exceptions (Sarkar and Sobie, 2011; Cummins et al.,
2014) these methods do not typically account for variability in
ion channel kinetics, which is known to change especially in
response to drugs (Clancy et al., 2007). The methods discussed
in this review can attempt to account for these properties using
additional parameters.

Although the correlation between parameters (i.e., maximal
conductances) is assessed sometimes (Britton et al., 2013), neither
population-based nor the sample-specific approaches account
for possible covariance in ion channel conductances, despite the
fact it has been observed in neurons (Schulz et al., 2006, 2007;
Tobin et al., 2009) and cardiac tissue (Schram et al., 2002; Rosati
and Mckinnon, 2004; Deschenes et al., 2008; Xiao et al., 2008;
Banyasz et al., 2011; Milstein et al., 2012). The exact mechanisms
responsible for these covariances are still being explored. Xiao
et al. found that sustained reductions in IKr may lead to
compensatory upregulation of IKs through post-transcriptional
upregulation of underlying subunits (Xiao et al., 2008), which
potentially underlie the observed phenomenon of repolarization
reserve (Roden, 2008). Macromolecular complexes or post-
transcriptional modifications could also facilitate coregulation of
ionic conductances, as demonstrated by the observed structural
or functional complex between Ito and INa (Deschenes et al.,
2008). Rees et al. recently argued that sensing of aggregate CaT
may be sufficient in itself to regulate ionic conductances (of
K+ and inward Ca2+) to maintain normal Ca2+ handling (Rees
et al., 2018). Moreover, knockout and knockdown studies are
consistent with the idea that cardiac cells have compensatory
mechanisms to maintain AP or CaTs (perhaps to prevent
arrhythmias) (Guo et al., 1999; Zhou et al., 2003). The covariance
of ionic conductance can have significant implications for both
calibrating populations of models or fitting sample-specific
models, because it could propose additional constraints for how
the underlying parameters of the computational model can be
varied. Thus, new methods have begun to be developed that
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measure all ionic conductances at once, and can not only tease
out how ionic conductances are correlated, but the extent to
which they vary between cells (Banyasz et al., 2011; Groenendaal
et al., 2015).

Arrhythmia Research Requires
Understanding Variability at Larger Spatial
Scales
Accounting for variability at tissue and organ-level scales is a
logical, but not trivial (Elshrif and Cherry, 2014), next step. A
thorough investigation of variability would first require including
differences among the cells in the same tissue, and evaluating
the impact of diverse geometrical distributions. One should
also account for patient-specific structural differences, based
on measures of tissue conductivity and anatomic properties,
including heterogeneity in signaling due to non-uniform
innervation. This last step can be particularly problematic
when investigating diseased conditions affected by pronounced
structural remodeling, such as fibrosis, organ dilation, and
alterations in gap junction coupling. Where there has been
meaningful progress in accounting for variability is in developing
personalized atrial model structures based on medical images
(Dossel et al., 2012; Trayanova, 2014). Thesemethods have shown
some promise in developing personalized ablation strategies
(Mcdowell et al., 2015). For example, recently, Soor et al.
implemented a modeling approach to optimize ablation times
based on patient-specific atrial geometries to create lesions for
a given atrial wall thickness (Soor et al., 2016). Combining
these methods that utilize medical images with the methods
described here, could significantly improve the clinical value of
both methods alone (Hansen et al., 2017; Zhao et al., 2017).
For example, Arevalo et al. developed personalized heart models
based on cardiac imaging and published patch-clamp data to
better predict arrhythmic events and possibly avoid unnecessary
implantable cardioverter defibrillators (Arevalo et al., 2016).
Developing multi-scale frameworks that account for variability
is the next frontier in cardiac modeling that will greatly
benefit from further advancements in computing capabilities.
Beyond the availability of large experimental and clinical
datasets, the development of novel techniques to speed model
derivations and to integrate automation will be crucial to capture
variability for different cell types and conditions at various
scales.

Safety Pharmacology Requires
Complementary Electrophysiological
Experimental Methods
The in silico approaches described here are being combined with
other state-of-the-art tools to improve the evaluation of drug
safety. Of significance, these approaches can help further the
mission of the CiPA (Comprehensive in vitro Proarrhythmia
Assay) initiative, which aspires to develop better methods to
predict TdP. Beyond exclusively using steady-state hERG block
as the main predictor of arrhythmia and not at all using
QT interval prolongation, the CiPA initiative attempts to gain

a more comprehensive understanding of proarrhythmic risk
by combining (1) mechanistically-based in vitro assays, (2)
in silico reconstructions of cardiac electrophysiology, and (3)
confirmation using human iPSC-CMs (Colatsky et al., 2016).
The methods described in this review are being utilized to
help meet the mission of the CiPA initiative (Cummins et al.,
2014; Lancaster and Sobie, 2016; Britton et al., 2017a; Passini
et al., 2017). Most of the methods described here that assess
the effects of drugs on populations of cardiac myocytes use
simple pore block schemes. However, it is also clear that the sole
use of steady-state hERG block assays is insufficient to predict
arrhythmia risk, and thus studies are beginning to simulate the
effects drug-binding kinetics and state-specific binding, which
have been shown to affect electrophysiological outcomes (Lee W.
et al., 2016; Dutta et al., 2017; Ellinwood et al., 2017b; Li et al.,
2017). Incorporating more detailed drug-binding effects may
allow studying the effects of populations of drugs characteristics
(e.g., state-dependent block and kinetics) on populations of
cardiomyocytes.

CONCLUSION

Computational approaches that have been developed
over the past decade to account for variability in cardiac
electrophysiology have led to important insights into
mechanisms of arrhythmogenesis, etiology of disease, and
variable response to drugs. The approaches outlined in this
review are used in basic research studies, i.e., quite separately
from actual clinical workflows, where decisions are made
sometimes for a particular patient within minutes. Advanced
computing facilities now allow near real-time simulations of
anatomically realistic, biophysically detailed models of human
cardiac electrophysiology (Niederer et al., 2011b; Okada et al.,
2015, 2017). Suchmassively parallel processes could be optimized
to run personalized cardiac simulations pre-determined to have
clinical value. However, implementing these approaches
more comprehensively into clinical workflows still presents
challenges and simulation of variability may not find immediate
application.
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