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Patient specific models of ventricular mechanics require the optimization of their many

parameters under the uncertainties associated with imaging of cardiac function. We

present a strategy to reduce the complexity of parametric searches for 3-D FE models

of left ventricular contraction. The study employs automatic image segmentation and

analysis of an image database to gain geometric features for several classes of patients.

Statistical distributions of geometric parameters are then used to design parametric

studies investigating the effects of: (1) passive material properties during ventricular

filling, and (2) infarct geometry on ventricular contraction in patients after a heart attack.

Gaussian Process regression is used in both cases to build statistical models trained

on the results of biophysical FEM simulations. The first statistical model estimates

unloaded configurations based on either the intraventricular pressure or the end-diastolic

fiber strain. The technique provides an alternative to the standard fixed-point iteration

algorithm, which is more computationally expensive when used to unload more than 10

ventricles. The second statistical model captures the effects of varying infarct geometries

on cardiac output. For training, we designed high resolution models of non-transmural

infarcts including refinements of the border zone around the lesion. This study is a

first effort in developing a platform combining HPC models and machine learning to

investigate cardiac function in heart failure patients with the goal of assisting clinical

diagnostics.

Keywords: LV mechanics, FEM, infarct model, unloaded configuration, kriging, inverse optimization, statistical

learning

1. INTRODUCTION

Multi-scale models of cardiac mechanics, although are promising (e.g., Kerckhoffs et al., 2007;
Nordsletten et al., 2011; Gurev et al., 2015; Land et al., 2017), have found limited applications for
diagnosis and treatment. To reach the levels of accuracy needed to assist clinical decisions, models
need to overcome major complications related to accessing clinical data, constraining unknown
parameters, and coping with computational complexity. Some of the uncertainties associated to
patient-specific cardiac models can be partially addressed with increased public access to large
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clinical datasets (Fonseca et al., 2011) and to high performance
computing resources (Towns et al., 2014). Sophisticated finite
element (FE) biomechanical simulations can be combined with
machine learning techniques to translate parametric studies into
efficient statistical models of virtual patient populations. Once
an upfront computational cost is paid for training, the coupled
effects of varying model parameters can be explored almost in
real time, facilitating the solution of the optimization and inverse
estimation problems that are required to personalize models for
specific patients.

This paper discusses statistical models based on a machine
learning technique called Gaussian Process (GP) regression, also
known as kriging (Rasmussen andWilliams, 2006). After training
a “surrogate” of the more expensive FE models, GP regression
can be used to assist optimization algorithms, even in complex
cases where objective functionals cannot be easily differentiated
(Booker et al., 1999; Abramson et al., 2009). More recently,
GP regression has also been used in cardiovascular modeling,
where it has found application in both fluid and solid mechanics
(Marsden et al., 2008; Sankaran and Marsden, 2011; Pérez et al.,
2016).

Recent developments in medical imaging techniques have
opened new opportunities for cardiac modeling to augment
image-based biomarkers from CT, MRI, and ultrasound scans
(Lamata et al., 2014). As accuracy and availability of imaging
modalities continues to improve, there is a growing need for
novel strategies that exploit the capabilities of multi-scale models
to enhance diagnostic tools. We present a systematic analysis
of the Sunnybrook Cardiac MRI database, a public collection
of cine-MRIs (Radau et al., 2009). Statistics gathered from the
database were used to design two parametric studies investigating
the passive behavior of the myocardium upon inflation and the
effects of infarct on cardiac performance.

In the first parametric study, we developed a novel strategy
to estimate the unloaded configuration (needed to initialize
both passive and active FEM simulations) given either the
end-diastolic intraventricular pressure, or the end-diastolic fiber
strain. The new method relies on solving multiple forward
problems to train a regression model from which unloaded
configurations can be inferred for ventricles with arbitrary
shapes. Despite such a problem could be alternatively solved with
the fixed point iteration method (Sellier, 2011; Genet et al., 2015),
our approach has some advantages. Specifically, our method can
be easily applied in situations where the intraventricular pressure
is not directly known (but could be inferred, for example, from
the fiber strain), or where the unloaded geometry is one of the
unknown parameters of an optimization problem.

The second example integrates machine learning and multi-
scale modeling in a systematic parametric study investigating the
effects of infarct on simulated cardiac performance. Location,
size, and transmural depth of the infarct were chosen as
input variables of a GP regression model predicting changes in
simulated stroke volume due to the scar. This work exploited
the capabilities of our in-house solver and an automatized
workflow to run 40 simulations of infarct with varying shapes
and locations. After training on results of FE simulations, the GP
regression model provides a useful representation for the analysis

of complex effects. Non-transmural infarcts were simulated with
a high numerical accuracy.

2. METHODS

2.1. Cine-MRI Segmentations and
Parameterization via Idealized Models
Publicly available imaging datasets from the Sunnybrook Cardiac
MRI database (Radau et al., 2009) were systematically processed
to establish boundaries and proper feature distribution for
parametric exploration. The Sunnybrook database gathered 45
cine-MRI scans collected from healthy subjects (N, n = 9),
patients with ventricular hypertrophy (HYP, n = 12), and
patients affected by heart failure both in presence and absence
of myocardial infarction (HF-I, n = 12 and HF-NI, n = 12,
respectively). For each scan, we considered only the short axis
stack series, which provided ∼10–15 axial slices per left ventricle
(LV) and 20 frames per cardiac cycle. Average voxel sizes were
(1.36 ± 0.057 mm) × (1.36 ± 0.057 mm) × (8.8 ± 1.0 mm)
in the left-right, anterior-posterior, and apical-basal directions,
respectively.

An in-housemulti-atlas image processing technique (Xie et al.,
2015) was used to co-register the axial slices of each dataset
and then segment the LV boundaries. The first 2 columns
of Figure 1A show the procedure applied to a representative
3-D image from the database. Outputs were labeled voxels
marking the LV blood pool (shown in white semi-transparent
overlay) and the ventricular wall (shown in red). The low
resolution in the apical-basis direction typical of cine-MRI short
axis views introduced segmentation artifacts that prevented
direct use in FEM models. We therefore performed a further
parameterization step (see third column) to approximate LV
geometries as truncated prolate spheroids, as initially proposed
by Streeter and Hanna (1973) and more recently revisited by
Pravdin et al. (2014). According to such a scheme, the endocardial
and epicardial profiles of an idealized axisymmetric LV were
described by the following relations

ρepi = Rb
[

e cosψ + (1− e)(1− sinψ)
]

ζepi = Z (1− sinψ)
ρend = (Rb − L)

[

e cosψ + (1− e)(1− sinψ)
]

ζend = (Z −H)(1− sinψ)+H

(1)

linking the radial (ρ) and axial (ζ ) coordinates of the epicardial
and endocardial boundaries to the angle variable ψ ∈ [ψ0,π/2].
In the equations above, the idealized geometry is defined by
6 parameters: the outer radius at base, Rb; the length of the
longitudinal semi-axis of the outer spheroid, Z; the ventricular
wall thicknesses at base and apex, L and H, respectively; the
sphericity/conicity of the spheroid, e ∈ [0, 1]; and, finally, the
truncation angle,ψ0. Figure 1B shows a schematic of an idealized
LV annotated with geometric descriptions of the parameters.

In order to describe the segmentation results in terms of
the idealized models described above, we implemented an ad
hoc optimization procedure to find sets of parameters ξ =

{Rb,Z, L,H, e,90} that would best match the MRI segmentations
(IMR). Each iteration involved first generating a binary 3-D image
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FIGURE 1 | Automatic processing of cine-MRI images from the Sunnybrook Cardiac MRI database and fitting of idealized geometric model. (A) Complete processing

of a representative short axis view frame from patient I-01 in the database. This Cine-MRI modality showed sufficient in-plane resolution, but significantly lower detail in

the long axis view (e.g., compare first and second row of the first column). An atlas-based image processing algorithm was employed to extract LV boundaries for

each patient. Segmented pixels are shown marked in red in the second and third column. Finally, an idealized 6-parameter model of LV geometry was fitted to the

segmentation results, partially correcting for the artifacts introduced by the low resolution in the long axis (see model cross-section rendered in white in the third

column). (B) Geometric meaning of idealized LV model parameters. Radial and axial coordinates are indicatd by ρ and ζ , respectively. Rb = outer radius at base, L =

wall thickness at base, Z = distance from center of the ventricle to apex of outer wall, H = wall thickness at apex, 90 = truncation angle. Not shown is the e

parameter, which governs the curvature of the LV external and internal walls. More details on analytical expressions of the LV geometric profile are provided in the text.

(C) Top and lateral 3-D views of overlapped segmentation (rendered as a red surface) and best-fit idealized model (rendered as a gray transparent overlay) for a

representative case (I-01 at beginning of diastole).

Iξ marking the LV volume defined by ξ , and then evaluating an
objective function J defined as

J(Iξ , IMR) = 1−
1

2

(

Cξ ∩ CMR

Cξ ∪ CMR
+

Wξ ∩WMR

Wξ ∪WMR

)

, (2)

where Cξ and CMR indicate the ventricular cavity regions in
the idealized and MR segmentation images, respectively; and
Wξ and WMR similarly indicate corresponding ventricular wall
volumes. In other words, J ∈ [0, 1] provides a measure of
similarity between a “synthetic” segmentation Iξ generated for
any given ξ and the actual MRI processing results IMR. The
“Nelder-Mead” algorithm available in SciPy was used to carry
out the optimization up to convergence for every image dataset
included in the database.

The relations in (1) do not include any parameters accounting
for the rigid translation and rotations that LVs normally
experience during a cardiac cycle. To overcome such limitation
and to improve fitting results, each objective function evaluation
was preceded by a rigid transformation step aimed at aligning the
idealized model to the target segmented geometry. Specifically,
we first estimated the main longitudinal axis of the segmented
ventricle as the best-fit direction aligning the centers of gravity
of the LV segmented axial slices. We then rigidly transformed
the idealized models to let the longitudinal axes and the
centers of gravity of the two geometries coincide. Figure 1C
shows overlapped optimization results and corresponding MRI
segmentation for a representative cine-MRI frame after rigid
motion correction.

2.2. Passive Material Properties
To assess whether the inverse esimation method presented in this
work would generalize to describe other constitutive behaviors

(e.g., from future experiments on animal and human tissues,
or from novel modeling developments), we considered 3 sets
of material parameters (and related functional formulations)
from the literature that describe experimental findings on
canine, swine, and human ventricle biomechanics. Usyk et al.
(2000) fitted a Fung-type orthotropic strain energy function to
experiments on canine models

WU =
C

2

(

exp(Q)− 1
)

, Q = bffE
2
ff + bssE

2
ss + bnnE

2
nn

+bfs
(

E2fs + E2sf
)

+ bfn
(

E2fn + E2nf
)

+bns
(

E2ns + E2sn
)

, (3)

where Eij (i, j = f , s, n) are components of the Green-Lagrange
strain tensor expressed in a reference frame locally aligned along
the fiber direction (f ), the orthogonal direction spanning the
myocardial sheet (s), and the cross-fiber direction (n). Values for
the C and bij (i, j = f , s, n) coefficients are reported in Table 1.

The remaining 2 constitutive behaviors here considered
followed the constitutive law based on the invariants of the right
Cauchy-Green strain tensor C proposed by Holzapfel and Ogden
(2009),

WHO =
a

2b

{

exp
[

b(I1 − 3)
]}

+
∑

i = ff,ss

ai

2bi

{

exp
[

bi(I4i − 1)2
]

− 1
}

+
afs

2bfs

{

exp
[

bfsI
2
8fs

]

− 1
}

, (4)

where I1=tr C is the first invariant of C, here applied as the
argument of an exponential term; I4i = vi · (C · vi), i =

ff, ss is the fourth invariant of C, which corresponds to the
squared stretch of a line element oriented along the fiber (vff)
or sheet (vss) directions; finally, I8fs = f0 · (C · s0) is the eighth
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TABLE 1 | Sets of material properties considered in the study.

Reference C, a b aff bff ass bss afs bfs bn[n,f,s]

(species) (kPa) (kPa) (kPa) (kPa)

WU Usyk et al. (2000)

(canine)

0.88 8.00 6.00 12.00 3.00

WW
HO

Wang et al. (2013)

(swine)

0.24 10.81 20.04 14.2 3.72 5.16 0.41 11.30

WG
HO

Gültekin et al.

(2016)

(human)

0.4 6.55 3.05 29.05 1.25 36.65 0.15 6.28

WU is expressed in terms of components of the Green-Lagrange strain tensor E, while W
{W,G}
HO

depends on invariants of the right Cauchy-Green tensor C.

invariant of C, which captures the effects of strain coupling.
Equation (4) has been shown to describe well experiments on pig
ventricles (Dokos et al., 2002), and more recently the biaxial and
triaxial tests conducted on human myocardial tissue by Sommer
et al. (2015). Among best-fit values reported in literature, we
selected materials parameters for (4) from Wang et al. (2013)
(WW

HO, fitted to experiments on swine models) and Gültekin
et al. (2016) (WG

HO, fitted to experiments on human tissue). The
coefficients for all considered material properties are reported in
Table 1.

2.3. FEM Models of LV Passive
Biomechanics
High-resolution FEM simulations of LV biomechanics are at
the core of the parameter exploration and inverse estimation
strategies presented in this work. To cope with the complexities
of the mechanical behavior of the myocardium, we employed
a recently validated numerical solver suitable for dealing
with incompressible hyperelastic material laws such as those
in (3) and (4) (Gurev et al., 2015), and extended to use
stabilized P1/P1 finite elements. The capabilities are necessary
for infarct simulations, where capturing sufficient detail at
the border zone region around the lesion is pivotal (see
section 2.6). The solution algorithm also allows multi-scale
effects, and we used the TriSeg ODE-based model with
parameters for human to drive myofilament active contraction
(Lumens et al., 2009; Gurev et al., 2015). Coupling between
cellular and tissue mechanics occurred at the Gauss point
level.

To handle the relatively large number of simulations needed
to train statistical models, we developed an automatic workflow
to construct high-resolution computational domains from any
given sets of geometric parameters ξ describing LV anatomy.
In this pipeline, analytical models built according to (1)
were first converted to 3-dimensional triangulated surfaces,
and then to solid meshes of several hundred thousands of
tetrahedral elements. Nodes at the base of the ventricle were
prevented to move axially, while epicardial nodes in the vicinity
of the base (i.e., closer than 3 mm) were fully locked to
prevent rigid motions. Boundary traction effects from the
pericardial membrane and the right ventricle were neglected,
and intraventricular pressure was uniformly applied at the

endocardial surface in quasi-static steps. The vector vff of
alignment of myocardial fibers varies heterogeneously along
the radial direction of the myocardium (McCulloch, 1999;
Humphrey, 2002). Without specific measurements for the
patients in the database, we relied on a rule-based approach
to assign fiber directions linearly varying their angle with
respect to the circumferential direction from 90◦ at the
endocardial surface (i.e., longitudinally aligned) to -60◦ at the
epicardium.

The mechanical equilibrium equations were solved in
parallel on the Cognitive Computing Cluster (CCC), a
hybrid high performance shared resource developed at IBM
Research deploying both Intel and Power8 nodes. Active infarct
simulations required ∼10 times more resources than passive
models, and were run on the Uran Supercomputer hosted by UB
RAS and Ural Federal University. Outputs of the simulations
were nodal displacement vector fields, and components of stress
and strain tensors defined at the element Gauss points. To
relate predictions also to strain dependent length activation of
the sarcomere, we also evaluated stretch in the fiber direction,
defined as

λff =
√

vff · C · vff, (5)

where vff is the vector aligned along the myofiber direction (as
described above), and C is the right Cauchy-Green strain tensor.
As a representative scalar of each loading state, we also averaged
λff at midwall, which we defined as a tissue slab located between
40 and 60% of the LV wall thickness and between 45 and 55% of
the apex-base distance.

2.4. Parameterization of FEM Results
A key aspect of the inverse unloading method presented in this
work is the re-parameterization of FEM simulation results in
terms of the same geometric parameters employed to process
the Sunnybrook database. A 2-step optimization procedure
was implemented to fit idealized models of LV anatomy to
the deformed configurations predicted by the FEM analyses
upon varying loading conditions. First, optimal values for
Rb, Z, e, and 90 were found to minimize average nodal
distance between the profile of an idealized epicardium and
the corresponding boundary obtained from a FE mesh warped
according to the simulations results. Second, a similarly defined
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nodal distance measure was used to quantify discrepancies
between endocardial profiles in order to adjust the remaining
L and H parameters. The 2 steps were re-iterated until
reaching convergence. An alternative monolithic approach
where the 6 parameters were optimized at the same time
was also evaluated, but proved to be less computationally
efficient.

2.5. Statistical Learning of LV Unloading
Bulk processing the Sunnybrook cine-MRI image datasets
provided information on expected anatomical variability among
patients. As part of our inverse unloading estimation strategy,
we leveraged database statistics to define a 6-D parameteric
space that enclosed all likely LV unloaded configurations. More
specifically, we reasoned that the parametric study should
conservatively admit and explore large variations in ventricle

geometries, since the unloaded state might differ significantly
from any of the imaged configurations. Limits of the parametric
space were therefore defined to encompass variations of more
than 3 standard deviations from the average beginning of diastole
(BoD) state, which we chose as most reasonable guess lacking
the measurements needed for better estimates (e.g., Xi et al.,
2013). More details on the subdivision of the cardiac cycle into
its phases are reported in the Supplemental Material. Figure 2A
shows pairs of limit parameter values and corresponding LV
cross-sections representing maximum allowed variations of each
of the 6 geometric features. In drawing the profiles, only one
of the 6 parameters was changed while keeping the remaining
5 at corresponding mid-range values. Unloaded configurations
admitted to our study were, therefore, intermediate states of
the low- and high-parameter geometries shown in Figure 2A in
gray and black tones, respectively. The statistical distribution of

FIGURE 2 | Design of training sets for the 2 statistical models: LV unloading (A–C) and infarct shape effects (D–F). (A) Pairs of LV cross-sections representing

extreme geometries limiting parameter space dimensions. Gray (black) cross-sections correspond to extreme negative (positive) variations of one of the geometric

parameters, with the remaining 5 parameters kept at mid-range values. (B) Projection of the 6-D parametric space onto a 3-D cube obtained by neglecting the last 3

dimensions (H, e, and 90). Spherical glyphs indicate locations of 600 sampling points chosen via latin hypercube sampling from a normal distribution centered on the

average LV geometry and with a doubled standard deviation compared to that of the complete Sunnybrook database. (C) Cross-section of the parameter space for

LV unloading showing combined variations of Rb and Z parameters. (D) Similar to (A), but showing pairs of FE meshes including infarct regions with extreme shapes.

The lightest tone of gray indicates the healthy region, the darkest tone indicates the infarct, and the intermediate one marks the refined border zone. (E) 3-D projection

of the 4-D parameter space defining infarct shape obtained neglecting the 1Long. dimension. Similarly to (B), spheres indicate locations of 40 sampling points

chosen uniformly in the allowed range parameters. (F) Mid-range slice of the 3-D projection showing representative FE meshes accounting for combined variations of

longitudinal location and transmural depth of the infarct.
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BoD states was also used to design an efficient probing scheme
for the parametric space defined above. As is common now
(Marsden, 2014), we used latin hypercube sampling to select 600
points (i.e., 100 times the number of parameters) from a normal
distribution centered on the average BoD state and with doubled
standard deviation compared to that of the Sunnybrook database.
Samples falling beyond the limits defined in Figure 2A were
projected onto the closest admissible point. A cloud of chosen
probing locations is shown within a unitary 3-D projection of
the parameter space in Figure 2B. For this representation, the
H, e, and 90 dimensions were neglected. Figure 2C further
shows a mid-slice of the parametric cube exploring geometries
corresponding to coupled variations of the Rb and Z parameters.

For each of the 600 sampled ventricle geometries we ran
passive inflation simulations for inner LV pressures ranging
between 0 and 5 kPa. Results were processed as described
in section 2.4 to find optimal geometric parameters for 100
intermediate loading configurations (i.e., differing by 0.05
kPa). These best-fit parameters constituted the training set
for GP regression models mapping loaded configurations to
their corresponding unloaded state. Overall, we optimized 100
statistical models (one for each considered inner pressure), and
fitted 2 additional GP regressions for unloading the inflated
configurations for which the midwall fiber stretch reached the
values of 10 and 15%.

2.6. Statistical Learning of Infarct Shape
and Size on LV Performance
With our solver capable of handling high-resolution tetrahedral
meshes, we explored the effects of different infarct shapes and
locations on simulated LV cardiac cycles. The lesions were
parameterized according to 4 features: longitudinal position
(Long. ∈ [0, 1]), indicating whether an infarct was closer to
the base (Long.=0) or apex (Long.=1); circumferential extension
(1Circ. ∈ [0,π]), indicating the portion of circumference
(measured in radians) occupied by the infarct; longitudinal
extension (1Long. ∈ [0, 1]) indicating the fraction of
longitudinal cross section harboring a lesion; and wall depth
(Depth ∈ [0, 1]), indicating the transmural extension of the
infarct, with the maximum value of 1 indicating a fully
transmural lesion. Figure 2D shows computational domains
reconstructed from limit cases of the infarct parameterization.
Similar to that presented in section 2.5, latin hypercube sampling
was used to efficiently probe the parameter space. Our sample
size was of 40 points, (i.e., 10 times the number of parameters),
and we assumed a uniform distribution of parameters across
the admissible range. Also, to restrict our attention to the
effects of infarct without the added complications introduced by
changing LV geometry, all lesions were inserted into the same
baseline LV from patient I-02. Infarct effects were simulated
by deactivating active contraction in the lesion regions, while
maintaining the same passive material properties. Similar to
Figures 2B,C,E,F show projections of selected samples onto the
considered parameter space of infarct lesions. More details on the
general procedure followed to mesh infarcted regions of arbitrary
shapes are available in the Supplemental Material.

3. RESULTS

Once enhanced with rigid motion correction, the 6-parameter
description of LV geometry was able to capture anatomical and
kinematic features from the Sunnybrook MRI scans. Median
values of the similarity functional J(Iξ , IMR) averaged for each
category of patients were 0.29 for N, 0.30 for HYP, 0.23 for
HF-NI and 0.19 for HF-I, respectively. Figure 3 shows average
group traces of best-fit geometric parameters (see Equation
1) over the course of a normalized cardiac cycle. Certain
trends agreed well with known morphologic features of cardiac
disease. Patients affected by heart failure (i.e., from the HF-I
and HF-NI categories) presented on average the most dilated
ventricles, as indicated by the largest Rb values, and the
smallest cyclical variations in both e and 90, probably due to
myocardial dysfunction. Hypertrophic patients, on the other
hand, maintained highest L values throughout the cycle (L = 12
mm on average) and showed a large systolic thickening (L = 15
mm at peak systole for HYP patients). Only N subjects contracted
more visibly, with an average 54% increase in L from diastole
to systole. N and HYP subjects overall exhibited the largest
changes in truncation angles. Other parameterization findings
were less intuitive. For all LVs, contraction in the longitudinal
direction was captured mainly by varying 90 rather than Z,
which instead remained close to constant throughout the cycle.
Also, the dynamic pattern of e observed in HF patients was
peculiar. For example, 10 out of 12 HF-I subjects exhibited
increased e at systole compared to diastole, while the opposite
was typically observed in the N and HYP categories of patients.
Combined behavior of e and90 differed also among the 2 classes
of HF patients: in presence of an infarct, both e and 90 were
smaller in magnitude, indicating that HF-NI ventricles tended to
be more spherical than the HF-I ones. Table 2 reports best fit sets
of geometric parameters for all 45 patients at both beginning and
end of diastole (BoD and EoD, respectively).

The distribution of LV shapes at BoD (see Table 2) was pivotal
to design our admissible parameter space, both for establishing
range limits and for choosing the frequency of allowed variations.
Figure 4A shows 3 representative unloaded configurations out
of the 600 selected to probe the space. Each geometry was
first discretized into a computational domain (see meshes below
the idealized profiles) and then inflated with inner pressures
up to 5 kPa. Shown also are color coded distributions of the
first invariant of the Green-Lagrange strain tensor (I1E). Strain
fields were visibly larger in the LVs endowed with WU material
properties (i.e., those on the first row of each subgroup) than in
those endowed with WG

HO (i.e., those on the second row of each
subgroups). While the parameteric study extensively explored
combined effects of LV geometric features on deformation, the
subsequent processing step converted results back to the 6-
parameter description (see profiles in gray above and below strain
results). Out of the chosen 600 probing profiles, 67 exhibited
incompatible features that prevented completion of the FEM
simulations (e.g., a disproportionately large L and negative 90

in a ventricle with minimum Rb), and were therefore excluded
from the analysis. Figure 4B shows violin plots of geometric
parameter distributions for ventricles at the BoD configuration
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FIGURE 3 | Kinematics of LV motion during a normalized cardiac cycle described by changes over time to the 6 parameters of an idealized model of LV geometry.

Traces show averages (marked solid line) over the 4 patient groups (N, normal; HYP, hypertrophic; HF-NI, heart failure without infarct; HF-I, heart failure with infarct)

plus or minus standard deviations (shown as semi-transparent overlays). Each subplots shows results for one of the geometric parameters. Results were obtained by

custom procedure to fit idealized model to segmentation results. See text for more detail.

from the database, at the assumed unloaded configuration, and
at 10 deformed configurations for pressures ranging from 0.5
to 5.0 kPa. The BoD distributions (see plots in black tone,
leftmost sector) clearly reflected the categories of the database.
For example, the violin plot of the Rb parameter (first row)
indicated a bimodal distribution, as expected given the sharp
differences in ventricle radius between HF patients and the
others. By design, the sampled unloaded configurations followed
a normal distribution allowing large variations (see plots in
lightest gray tone, second sector from the left). Some hard limits
on admissible parameter values were enforced to reduce the
number of incompatible geometries selected (see section 2.5).
The effects of these hard limits were noticeable particularly within
the L, e, and 90 distributions (see last 3 rows), the tails of which
were thickened by assimilating parameters beyond allowed range.

Finally, the distributions of loaded configurations (see plots in
intermediate gray tones, three rightmost sectors) showed the
evolution of geometric parameters upon pressurization, which
followed the expected behavior for incompressible hyperelastic
materials. For example, the Rb parameter increased relatively
fast at low pressures, but then dilation progressively stopped
accounting for the exponential increase in stiffness. The thickness
parameters L andH decreased upon pressurization (also ensuring
incompressibility), while the90 parameter distributions were the
most sensitive to pressure. Finally, the material properties could
be ranked in order of increasing stiffness asWU ,W

G
HO, andW

W
HO,

as shown by changes in mean values from the distributions (see
white lines inside the violin plots).

The computational cost of optimizing a GP regression to a few
hundred training points (∼1 CPU min) is negligible compared
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TABLE 2 | Best-fit geometric parameters for all patients in correspondence of beginning and end of diastole configuration (BoD, and EoD, respectively).

Rb (mm) L (mm) Z (mm) H (mm) e 90 (◦)

EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD EoD BoD

N-02 33 29 8.1 11 49 49 8.4 7.9 0.71 0.64 −74 −77

N-03 33 30 7.5 13 46 45 5.4 5.6 0.75 0.78 −79 −56

N-05 30 26 8.1 12 43 44 6.9 6.3 0.7 0.71 −61 −48

N-06 32 29 7.3 11 44 44 5.6 5.2 0.87 0.8 −69 −58

N-07 34 30 9.3 12 54 55 11 12 0.7 0.6 −60 −44

N-09 38 32 8.2 12 47 51 9.1 13 0.72 0.54 −78 −66

N-10 33 30 10 17 56 63 5.4 11 0.73 0.69 −80 −56

N-11 34 31 8.7 14 48 49 6.6 7.2 0.8 0.68 −50 −52

N-40 29 26 8.1 11 49 50 9.7 10 0.87 0.81 −40 −34

HYP-01 32 27 7.1 12 39 40 5.3 6.4 0.64 0.46 −79 −70

HYP-03 34 33 9.5 18 42 47 6.1 8.0 0.6 0.55 −72 −43

HYP-06 34 29 9.3 12 38 37 6.4 5.6 0.75 0.68 −76 −76

HYP-07 39 35 12 18 53 57 7.9 7.3 0.96 0.89 −50 −47

HYP-08 44 41 14 20 65 64 11 9.6 0.82 0.93 −61 −42

HYP-09 35 32 7.9 13 54 45 7.5 9.6 0.82 0.7 −76 −68

HYP-10 40 36 9.0 13 46 45 5.3 5.1 0.69 0.56 −61 −56

HYP-11 31 29 9.7 14 37 33 6.6 5.1 0.83 0.98 −79 −79

HYP-12 28 24 7.1 12 49 52 8.3 11 0.7 0.43 −66 −49

HYP-37 36 32 11 17 51 54 13 12 0.67 0.55 −33 −28

HYP-38 34 30 13 17 68 64 19 16 0.66 0.52 −45 −53

HYP-40 32 30 13 16 50 50 10 10 0.8 0.85 −41 −39

HF-NI-03 46 44 11 13 52 54 6.3 6.5 0.88 0.96 −78 −60

HF-NI-04 42 40 8.4 13 49 49 5.9 5.2 0.71 0.69 −73 −58

HF-NI-07 39 37 8.8 11 64 62 12 10 0.69 0.75 −68 −73

HF-NI-11 44 42 9.7 10 59 56 5.7 5.2 0.69 0.67 −79 −77

HF-NI-12 47 44 8.7 11 62 61 7 6.7 0.79 0.87 −78 −74

HF-NI-13 41 40 9.7 12 62 64 8.4 9.5 0.9 0.88 −80 −79

HF-NI-14 40 37 11 12 53 55 7.6 10 0.79 0.82 −68 −62

HF-NI-15 36 32 9.3 9.7 56 57 12 12 0.81 0.92 −64 −58

HF-NI-31 40 35 9.4 11 49 49 5.8 5.2 0.84 0.98 −78 −79

HF-NI-33 37 34 9.2 12 57 55 6.7 6.2 0.7 0.64 −80 −77

HF-NI-34 40 39 9.4 13 58 63 5.1 10 0.71 0.72 −71 −49

HF-NI-36 43 41 8.5 9.3 45 44 5.2 5.4 0.79 0.77 −77 −79

HF-I-01 38 36 8.3 9.4 54 54 5.1 5.1 0.84 0.95 −64 −67

HF-I-02 44 40 9.5 10 52 53 5.7 5.9 0.65 0.65 −75 −75

HF-I-04 41 40 8.8 11 50 51 5.7 5.3 0.66 0.66 −63 −55

HF-I-05 41 38 9.4 11 48 54 8.9 11 0.68 0.83 −67 −48

HF-I-06 39 38 8.5 11 54 57 5.3 5.3 0.7 0.84 −77 −75

HF-I-07 38 37 10 14 42 43 6.8 8.1 0.57 0.46 −71 −70

HF-I-08 42 41 9.4 11 54 54 5.4 5.2 0.77 0.77 −59 −57

HF-I-09 51 50 10 11 65 64 5.4 5.2 0.74 0.73 −72 −69

HF-I-10 49 47 9.2 10 53 58 5.1 9.0 0.74 0.83 −73 −79

HF-I-11 40 39 7.2 9.4 55 54 5.9 5.0 0.68 0.81 −59 −61

HF-I-12 36 34 8.4 15 54 56 7.6 7.2 0.69 0.74 −67 −50

HF-I-40 33 31 8.2 12 54 51 13 10 0.76 0.88 −80 −78

Avg. N 33 ± 3 29 ± 2 8.4 ± 0.9 13 ± 2 48 ± 4 50 ± 6 7.6 ± 2.1 8.7 ± 2.9 0.76 ± 0.07 0.69 ± 0.09 −66 ± 14 −55 ± 12

Avg. HYP 35 ± 4 32 ± 5 10 ± 2 15 ± 3 49 ± 10 49 ± 10 8.9 ± 4.0 8.8 ± 3.2 0.74 ± 0.10 0.67 ± 0.19 −62 ± 16 −54 ± 16

Avg. HF-NI 41 ± 3 39 ± 4 9.4 ± 0.9 11 ± 1 56 ± 6 56 ± 6.2 7.3 ± 2.4 7.7 ± 2.5 0.77 ± 0.08 0.81 ± 0.12 −74 ± 6 −69 ± 11.0

Avg. HF-I 41 ± 5 39 ± 5 8.9 ± 0.8 11 ± 2 53 ± 5 54 ± 5 6.7 ± 2.3 6.9 ± 2.2 0.71 ± 0.07 0.76 ± 0.13 −69 ± 7 −65 ± 11
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FIGURE 4 | Generation of training dataset for the unloading problem. (A) Passive inflation and subsequent parameterization results for selected sample of 3 out of

600 left ventricle geometries considered to build the training datasets for the unloading problem. Idealized geometries, chosen via latin hypercube sampling to probe

the parameter space, were discretized and subjected to passive inflation using 3 different sets of material properties. Shown in the panel are results for 2 sets of

material properties (WU and WG
HO

) and 2 loading pressures (1 and 5 kPa). Shown also are color-coded distributions of strain expressed as the first invariant of the

Green-Lagrange tensor. (B) Violin plots depicting changes in geometric parameter distributions upon inflation for all the 533 LV geometries included in the training

datasets, and for the 3 sets of material properties. Black tone plots indicate distributions of geometric parameters at the BoD configuration. Lightest gray tone plots

correspond to distributions synthesized via latin hypercube sampling from a normal distribution constructed based on the BoD configuration, but allowing 2-times

larger variations. White segments close to the center of the distribution indicate mean values. See text for more details.
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FIGURE 5 | Unloading via kriging and comparison to the fixed point iteration

method. (A) Unloading procedure is shown applied to a representative case

(NI-14, unloading pressure P = 1 kPa, and WG
HO

material properties) for which

a statistical model trained on 75 arbitrary ventricles matched best unloading

results via fixed point iteration method. While the fixed point iteration method

required meshing of the ventricles in the loaded configuration and iterative

updates (middle row), the statistical method allowed to infer the unloaded

geometry directly from the 6 parameters describing the end-diastolic (loaded)

configuration (bottom row). Top row is similar to bottom row, but shows result

obtained after training a statistical model on results from the full parametric

study of 500+ LVs. The rightmost column shows overlapped cross-sections of

unloaded LVs obtained via the fixed point iteration method (dashed boundary)

and 2 statistical models (solid gray tones). (B) Similar to (A), but applied to

another representative case (I-07, unloading pressure P = 2 kPa, and WU

material properties) for which the statistical learning method (with ntrain = 75)

yielded the worst overlap to fixed point iteration results (Dice score of 0.90). In

this case, increasing the training set size led to improved results (Dice score of

0.96).

to that of running even only a single passive high resolution
simulation. To optimize the use of computational resources, we
sought, therefore, the minimum training set size that ensured

satisfactory accuracy in estimating the unloaded configurations
for all patients in the dataset. Figures 5A,B show cases where
predictions by GP regression compared best (see Figure 5A) and
least well (see Figure 5B) to the configurations predicted via fixed
point iteration for a relatively small training size (ntrain=75). As
starting (loaded) configurations, we chose geometries from the
database at EoD (see first column in both panels), and from these
we inferred corresponding unloaded configurations assuming
inner LV pressures of either 1 or 2 kPa. Comparison between
results from the 2 methods were evaluated in terms of Dice
score between unloaded profiles (see Supplemental Material for
details on Dice score computations). According to our analysis,
ntrain=75 was the minimum training set size ensuring Dice scores
larger or equal than 0.90 for all cases considered (i.e., including
all the LV geometries, both EoD inner pressures, and the 3 sets
of material properties). From the last column of Figure 5B one
can appreciate how even a Dice score of 0.90 corresponds to a
visibly good match between the GP regression prediction (see
LV in gray tone) and corresponding geometry obtained via fixed
point iteration (see overlapped dashed line). Small mismatches
could be observed even in cases with high Dice score in regions
close to the base of the LV (e.g., see last column of Figure 5A).
These artifacts could be attributed to the zero-displacement
boundary condition applied to epicardial elements within 3 mm
from the base in the fixed point optimizations. Note that the
fixed point iteration method required discretization of the EoD
domain and repeated mesh deformation steps (see middle row
in both panels). In contrast, after GP regression training the
unloaded configurations could be inferred almost in real time,
and as another advantage, the GP regression method eliminates
potential issues introduced by iteratively warping the mesh (e.g.,
element degeneration) in the fixed point iteration method. The
top row in both panels shows unloaded profiles inferred from GP
regressions trained on the full set of simulation results. In the best
match case shown in panel A results were essentially the same
for ntrain=75, while the Dice score increased by 0.06 when we
expanded the training dataset from ntrain=75 to 533 in the worst
match case (see Figure 5B).

Figure 6 plots average Dice scores comparing GP regressions
to fixed point iteration. The 3 rows in Figure 6A show results
for different sets of material properties at an unloading pressure
of 1 kPa (first column) or 2 kPa (second column). As expected,
increasing training sizes generally yielded better Dice scores,
although little improvement was observed beyond ntrain=75. Also
reported are average Dice scores quantifying the overlap between
fixed point iteration and the BoD or EoD configurations, as well
as the average overlap with the OptD configuration, which was
chosen as the imaged diastolic configuration that matched best
the unloaded geometry. White dashed lines overlapped to the
bars indicate the lower 10th-percentile Dice score observed for
predictions from GP regressions.

Additional GP regression models were trained to handle
situations where intraventricular pressure is unknown, but
can be estimated by indirect measurements such as the fiber
strain at midwall (see section 2.3). Table 3 reports unloaded
geometries for all patients in the Sunnybrook database under
the assumptions of WU material properties and end-diastolic
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FIGURE 6 | Accuracy of unloading via GP regression compared to unloading via fixed point iteration method. (A) Barplots of average Dice scores comparing

beginning of diastole (BoD), end of diastole (EoD), the best-matching diastolic configuration (OptD), and unloaded configurations obtained via kriging with different

ntrain to unloaded configurations predicted via the fixed point iteration method. Subplots show results for combinations of considered material properties (WU , WG
HO

,

orWW
HO

) and unloading pressures (P = 1 kPa or 2 kPa). (B) Similar to (A), but unloaded configurations are estimated prescribing average midwall strain at end diastole

(λ
ff10%

on the left, λ
ff15%

in the right column). In both panels the dashed white lines drawn on kriging-related bars indicate lower 10th-percentile Dice score for each

subcategory.

fiber strains of either 1.10 (λ10%
ff

) or 1.15 (λ15%
ff

). Outputs
of the procedure included end-diastolic LV pressure values
corresponding to the target fiber strains in the loaded
configurations. Figure 6B reports accuracy of GP regression
predictions measured in terms of Dice score with predictions via
fixed-point iteration method.

Other than being used for inverse problems, GP regressions
are ideal as tools for rapidly exploring multi-dimensional
parameter spaces. As a proof of concept for the usage, we
show preliminary results for a parametric study of the effect
of infarct location and shape on cardiac performance as
assessed by stroke volume (SV). Figure 7A shows color maps
of simulated SV over 2-D slices of the 4-D parameteric space.
Also shown, are projections onto each slice of the probing
locations composing the full training set (see black dots). Each
plot isolates the combined effects of 2 out of the 4 parameters
used to define infarct shape and location. As expected, increases

in lesion sizes yielded significant drops in SV. Maximum
combined effect was reached by increasing both circumferential
and transmural extension. Starting from a baseline failing LV
with SV = 49 ml, GP regression predicted a drop down
to SV = 21 mL at maximum depth and circumferential
extension. Figure 7B shows 5-fold cross-validation for evaluating
progressive convergence of GP regression for increasing training
sizes. Average relative discrepancies between SV values from
simulations and corresponding predictions from GP regression
progressively decreased to 6% for a maximum training size of 40
simulations.

Figure 8A compares in detail 2 simulations from the training
set characterized by different infarct morphologies. While INF16
(on the left) harbored a non-transmural basal infarct, the lesion
in INF30 was larger, more apical, and fully transmural. The high
level of mesh refinement within and surrounding the infarct
(see regions in darkest and intermediate gray tones, respectively)
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TABLE 3 | Unloaded geometries inferred via GP regression assuming EoD fiber stretches at midwall of either 1.10 (λ10%
ff

) or 1.15 (λ10%
ff

) and WU set of material

properties.

Rb (mm) L (mm) Z (mm) H (mm) e 90 (◦)

Pat. λ
10%
ff

λ
15%
ff

λ
10%
ff

λ
15%
ff

λ
10%
ff

λ
15%
ff

λ
10%
ff

λ
15%
ff

λ
10%
ff

λ
15%
ff

λ
10%
ff

λ
15%
ff

N-02 30 30 9.3 10 50 51 9.1 9.8 0.65 0.65 −68 −60

N-03 30 29 8.4 9.4 47 47 6 6.5 0.70 0.71 −74 −66

N-05 28 28 9.3 10 45 46 7.6 8.1 0.65 0.65 −53 −45

N-06 29 29 8.4 9.3 45 45 6 6.6 0.86 0.89 −60 −53

N-07 32 32 11 12 56 58 12 13 0.63 0.63 −53 −45

N-09 35 34 9.6 11 54 55 12 13 0.70 0.70 −53 −45

N-10 30 30 11 12 58 58 5.6 6.1 0.69 0.71 −75 −68

N-11 32 32 10 11 49 50 7.4 7.9 0.76 0.78 −43 −35

N-40 28 28 9.5 10 51 52 10 11 0.83 0.84 −33 −27

HYP-01 30 30 7.9 8.9 39 39 6.2 6.8 0.57 0.56 −73 −64

HYP-03 32 32 11 12 43 43 6.9 7.6 0.54 0.54 −64 −55

HYP-06 32 32 11 12 38 39 7.4 8.1 0.73 0.75 −64 −57

HYP-07 37 36 14 15 56 57 8.8 9.3 1.00 1.00 −37 −31

HYP-08 41 41 16 17 68 70 11 12 0.82 0.84 −51 −44

HYP-09 33 32 9 9.7 55 55 8 8.7 0.80 0.81 −70 −63

HYP-10 36 35 9.5 10 46 46 6.2 6.9 0.58 0.57 −75 −66

HYP-11 29 29 12 13 38 39 7.3 7.9 0.83 0.86 −67 −60

HYP-12 26 26 8.1 9.1 51 51 8.7 9.4 0.65 0.65 −60 −53

HYP-37 31 32 11 12 53 54 13 14 0.55 0.55 −48 −40

HYP-38 32 33 14 15 71 72 17 17 0.61 0.60 −38 −32

HYP-40 31 31 15 16 53 54 11 12 0.78 0.80 −31 −24

HF-NI-03 43 42 12 13 52 53 7.2 8 0.89 0.91 −60 −53

HF-NI-04 39 38 9.3 10 49 49 6.9 7.7 0.66 0.66 −73 −64

HF-NI-07 36 35 9.4 10 66 67 14 14 0.59 0.58 −61 −54

HF-NI-11 40 39 11 12 60 60 6.4 7 0.63 0.63 −76 −68

HF-NI-12 43 41 9.6 10 63 63 8.4 9.2 0.77 0.77 −73 −67

HF-NI-13 38 37 11 11 63 63 9 9.6 0.89 0.90 −74 −68

HF-NI-14 37 36 12 14 54 55 8.3 9.1 0.77 0.79 −58 −50

HF-NI-15 34 34 11 12 60 61 13 14 0.85 0.86 −48 −41

HF-NI-31 37 36 11 12 50 50 6.6 7.2 0.84 0.86 −69 −62

HF-NI-33 34 33 10 11 58 58 7.3 8 0.64 0.64 −76 −69

HF-NI-34 37 36 10 11 59 60 5.6 6.3 0.65 0.65 −67 −59

HF-NI-36 40 39 9.4 10 45 46 5.9 6.6 0.82 0.83 −65 −58

HF-I-01 35 34 9.4 10 55 56 5.5 6 0.82 0.84 −57 −50

HF-I-02 41 39 11 12 53 53 6.6 7.3 0.59 0.58 −70 −61

HF-I-04 38 38 9.8 11 50 51 6.6 7.3 0.59 0.58 −57 −49

HF-I-05 39 38 11 12 49 50 10 11 0.61 0.60 −59 −50

HF-I-06 36 35 9.4 10 55 55 5.9 6.5 0.64 0.64 −74 −66

HF-I-07 36 36 12 14 42 43 7.8 8.6 0.50 0.50 −62 −53

HF-I-08 39 38 10 12 55 55 5.6 6.3 0.74 0.75 −58 −50

HF-I-09 47 45 10 12 74 74 13 14 0.73 0.73 −68 −62

HF-I-10 46 44 10 11 52 53 5.9 6.7 0.70 0.70 −66 −58

HF-I-11 36 35 7.1 7.8 54 54 5.7 6.4 0.60 0.59 −67 −59

HF-I-12 33 33 9.4 10 55 56 8.3 9 0.63 0.63 −62 −54

HF-I-40 31 30 9.6 10 55 56 13 14 0.71 0.70 −73 −65

N-avg 30 30 9.6 11 51 51 8.4 9.1 0.72 0.73 −57 −49

(±σ ) (2) (2) (1.0) (1) (5) (5) (2.5) (2.7) (0.08) (0.09) (14) (14)

HYP-avg 32 32 12 12 51 52 9.3 10 0.71 0.71 −56 −49

(±σ ) (4) (4) (3) (3) (11) (11) (3.2) (3) (0.14) (0.15) (15) (14)

HF-NI-avg 38 37 10 11 57 57 8.2 8.9 0.80 0.76 −67 −59

(±σ ) (3) (3) (1) (1) (7) (7) (2.7) (2.6) (0.1) (0.12) (9) (9)

HF-I-avg 38 37 9.9 11 54 55 7.8 8.6 0.66 0.65 −64 −56

(±σ ) (5) (4) (1.2) (2) (7) (7) (2.8) (2.9) (0.09) (0.09) (6) (6)

See text for more details
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FIGURE 7 | Statistical model of infarct shape and location effects on simulated

SV. (A) Color-coded distribution of SV as predicted by kriging on 6 slices of the

4-D parametric hyperspace. Each plot shows combined effects of variations of

2 parameters on simulated SV, as shown by scale bar (values outside the

range are truncated). Darker (lighter) color tones indicate stronger (weaker)

impairment due to infarct. Dots represent projections of the probing points

onto the slice plane. (B) 5-fold cross-validation to assess performance of the

statistical model for varying training sizes ntrain. Relative error on simulated SV

predictions approached 6% for the maximum training set size (ntrain = 40).

required the capability of our solver of handling high resolution
tetrahedral meshes. Figure 8B compares simulated PV loops
for the 2 models described above. As expected, INF30 (see
dashed line), which harbored a larger lesion, exhibited a stronger
impairment in simulated cardiac performance. The PV loops

FIGURE 8 | Comparison between 2 select simulations (out of the 40

considered). (A) On the left, the INF16 model has a smaller basal infarct

(volume of 8.8 ml, Long. = 0.43, 1Circ. = 1.22, 1Long. = 0.40, Depth =

0.40). On the right, INF30 presents a larger transmural lesion (volume of 16 ml,

Long. = 0.79, 1Circ. = 1.57, 1Long. = 0.46, Depth = 1.0). (B) Simulated PV

loops showing smaller SV for the largest lesion INF30 (dashed line), as

expected.

show the weaker contraction generated by INF30 despite an
increase in end-diastolic volume (i.e., SV = 40 ml and SV = 32
ml for INF16 and INF30, respectively).

4. DISCUSSION

Numerous computational models of LV mechanics have been
developed over the years to understand better LV function in
normal and diseased hearts with the ultimate goal of assisting
personalized diagnostics and treatment. Available models differ
both in terms of enclosed biophysical detail and of anatomical
representation. In the simplest form, left ventricular function can
be captured by a time-varying elastance model, where a single
time-varying ODE couples the evolution of intraventricular
pressure and volume over the course of a cycle (Suga and Sagawa,
1972; Stergiopulos et al., 1996). At the other end of the complexity
scale, models of LV mechanics incorporate phenomenological
or biophysical descriptions of muscle contraction at the
microscopic level, while at the same time capturing in detail
the cardiac anatomy on high-resolution computational domains
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(e.g., Guccione et al., 1995; Kerckhoffs et al., 2007; Göktepe
and Kuhl, 2010; Baillargeon et al., 2014; Sundnes et al., 2014;
Gurev et al., 2015; Augustin et al., 2016). Although these highly
refined 3D models provide valuable information, they entail
high computational costs. To improve computational efficiency,
models with intermediate levels of complexity have been based on
simplifying assumptions on ventricular geometry and structure
(Arts et al., 1979; Beyar and Sideman, 1984; Lumens et al.,
2009). For prolate spheroid geometries and passive mechanics
simulations, distributions of stress in other low order models
can match well FEM results despite running faster than in
real-time (Moulton and Secomb, 2013, 2014; Moulton et al.,
2017).

Significant reductions in computational costs can be similarly
achieved by training machine learning models on the results
of opportunely sampled biophysical simulations. As a proof of
concept, in this paper we applied GP regression, a popular
supervised learning technique, to 2 problems of interest in
cardiac mechanics modeling. First, 600 LV geometries described
by a 6-parameter (Rb, L, Z, H, 90, e) prolate spheroid were
extracted randomly from a conservatively defined parameter
space. For each geometry, a forward simulation was run to
trace ventricle geometries upon inflation at progressively larger
intraventricular pressures. GP regression models then allowed
to infer unloaded configurations given sets of 6 parameters
defining the loaded geometries and either their corresponding
intraventricular pressure or their fiber strain at midwall.
For the second statistical model, we built a GP regression
between parameters characterizing the location and shape of
an infarct and corresponding stroke volumes predicted by
high-resolution simulations accounting for the presence of the
lesion.

4.1. Ventricular Shape Analysis
The Sunnybrook Cardiac MRI database was the primary source
of imaging data for this study. Conventional analyses of the
segmentations from such a database have employed methods to
either extract features directly from images (e.g., Chumarnaya
et al., 2016), or have used finite element models to analyze
ventricular shapes and build statistical classifiers of patient
disease (e.g., Piras et al., 2017). A geometric description with
fewer parameters is better suited for parameterizing the geometry
of ventricles in regressions trained on biophysical simulation
results. Therefore, instead of finite element models, we adopted
a 6-parameter description (Streeter and Hanna, 1973; Pravdin
et al., 2014) to approximate ventricular geometry. In spite
of its simplicity, this approach was able to capture some of
the shape features and biomarkers that have been previously
extracted using the conventional finite element models (e.g.,
Zhang et al., 2014). In particular, ventricular sphericity (e)
separated ventricles with and without myocardial infarction
in patients with heart failure (see HF-I and HF-NI traces
in Figure 3). The 6-parameter model analysis also captured
higher average wall thickness in hypertrophic hearts and highest
relative dynamic thickening in normal patients. To partially
compensate for the limits of considering a fully axisymmetric
parameterization, we accounted for eventual rigid rotations

and translations to better align parameterized and segmented
ventricles throughout the cardiac cycle. This ensured us overall
good fitting results, especially for the failing hearts, which
proved to be more symmetric. Nonetheless, the methods here
presented could be promptly extended also to non-axisymmetric
parameterizations such as those based on non-uniform rational
B-splines at the expense of extending the parameter space to
additional dimensions.

Out of the several field views provided in the Sunnybrook
database, we restricted our analyses to short-axis stack series,
which have the disadvantage of providing relatively low
resolution in the coronal planes. As a result, some artifacts
were particularly evident close to the apex of the ventricle,
where the segmentation and subsequent parameterization
were sometimes not able to resolve correctly the apical
thickness, especially in the thinner failing LVs. Not surprisingly
then, the H parameter showed the largest relative standard
deviations within the same cardiac cycle for all patients,
indicating that apex parameterization accuracy could be
likely corrected by registering and merging multiple MRI
views.

4.2. Ventricular Unloading
Standard FE simulations need to be initialized from an unloaded
state, which cannot be directly extracted from images because
ventricles are pressurized in all of the configurations imaged
by cine-MRI or CT scans. Given material properties and
inner LV pressure, iterative approaches such as the fixed point
iteration method allow to estimate the unloaded configuration
by progressively correcting a loaded state (Sellier, 2011; Genet
et al., 2015). Nonetheless, due to their large computational
cost and added complexity, these techniques are not typically
incorporated into sophisticated optimization schemes proposed
to estimate model parameters from images (Asner et al.,
2016, 2017; Nasopoulou et al., 2017). To ensure feasibility,
many modeling studies tend instead to use representative
loaded configurations (i.e., at beginning or end of diastole) as
approximations for the unknown unloaded state. As shown by
our analyses, this could significantly bias results, since BoD
and EoD configurations tend to match poorly to the profiles
of unloaded geometries (see Figure 6). GP regression models
of unloading can help circumvent some of the limitations
associated with iterative methods and enable larger parameter
search studies. Somewhat surprisingly, even a training set of
ntrain=75 forward simulations was sufficient to ensure good
inverse estimation results. LV profiles inferred from the statistical
model matched those obtained via fixed point iteration with
Dice scores always larger than 0.90 under 2 loading pressures
and for 3 different sets of material properties. Considering
that in our experience 7–10 iterations are needed to reach
convergence via fixed point iteration, the preparation of an
accurate statistical model might then require a computational
cost comparable to unloading 7–10 ventricles with the standard
method. Unlike fixed point iteration our strategy requires
also an additional step of re-parameterizing simulation results
in a format that can be handled by the machine learning
model. The computational cost of reparameterizing is often
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negligible (on the order of few CPU mins), and after
training the statistical model can be further interrogated to
unload additional geometries at essentially no computational
cost.

In addition to morphology, estimating the unloaded
configuration relies on the knowledge of loading conditions
and of the material properties of the myocardium. To fully
characterize the material behavior of cardiac tissue, sophisticated
experiments are required to reproduce in vitro the principal
strain modes experienced by the heart during the cycle. The
most extensive dataset on the passive behavior of the human
myocardium is provided by Sommer et al. (2015). This work
confirms how the micro-architecture of myocardial sheets
leads to complex nolinear anisotropic behavior combined to a
persisting viscoelastic response. Although viscoelastic effects
were neglected in this work, we considered material properties
based on the triaxial experiments of Sommer et al. (2015) as well
as 2 other sets of constitutive behaviors based on experiments
on animal models (Usyk et al., 2000; Wang et al., 2013; Gültekin
et al., 2016). Our unloading procedure proved to work well for
all of these sets of material properties.

In the form presented herein, our method for ventricular
unloading required building a new training dataset and
subsequently a new GP regression model for each set of material
properties considered. Nonetheless, for future applications,
the input parametric space could be extended to additional
dimensions to account also for variations in material properties.
While more training simulations would likely be needed to reach
the desired convergence, the presented approach could still prove
to be convenient for material property identification based on
strain energy functions with reduced number of parameters (e.g.,
Nasopoulou et al., 2017), and especially in cases where large
high performance machines are available to tackle the required
computational cost in a distributed fashion.

The diastolic fiber strain at midwall, the constitutive law,
and the shape of the ventricles at end-diastole are sufficient to
uniquely unload geometries either via fixed-point iteration or GP
regression. In this paper, we proposed to constrain end-diastolic
fiber stretch to account for scenarios where diastolic pressure in
the ventricles is not known. Animal model experiments suggest
that end-diastolic fiber strain varies within a relatively small range
in several circumstances (e.g., see Ross et al., 1971). Inspired
by studies on inverse stress identification (Miller et al., 2010;
Miller and Lu, 2013), we therefore tried to find the unloaded
ventricular shape without solving for ventricular pressure. This
was also motivated by the fact that unloading by strain would
yield the same unloaded configuration independently from a
homogeneous scaling of the constitutive law (i.e., predicted end-
diastolic pressures would scale accordingly). To illustrate the
potential of such approach, we additionally computedDice scores
between unloaded ventricles with 10% diastolic fiber strain using
different constitutive laws. Our results (Dice scores of 0.90±0.05
forWU vs.WG

HO, 0.85± 0.03 forWU vs.WW
HO and 0.96± 0.03 for

WG
HO vs. WW

HO, respectively) suggested strong similarity between
unloaded ventricles endowed with umlaut Gultekin and Wang
material behaviors, which followed the same Holzapfel-Ogden
functional formulation.

4.3. Modeling of Infarct Mechanics
Two main factors increase the complexity of ischemia and
myocardial infarction models. The first one is the need to
account for the progressive changes in passive and active material
properties that are triggered by the lesion and driven by tissue
damage recovery and remodeling (Holmes et al., 2005). The
second one is the more complex numerical framework required
to handle the large finite element meshes needed to accurately
capture realistic infarct shapes. In the past, only few studies have
simulated non-transmural infarcts (Leong et al., 2015; Duchateau
et al., 2016; Leong et al., 2017), while most models have either
simulated infarct with simplified morphologies, or have allowed
infarct/ischemic regions crossing the finite element boundaries
(e.g., Mazhari et al., 2000; Jie et al., 2010; Wenk et al., 2011;
Mojsejenko et al., 2015). Here, we present a model of non-
transmural infarct that has refined elements in the border region
of infarct. To handle large finite element meshes that result
from such a refinement, we use an iterative solver for the large
system of linearized equations with an efficient preconditioner
(Gurev et al., 2015). To quickly summarize our results, the 2
main parameters affecting simulated SV were the transmural
and circumferential extensions of the lesion, while location of
the infarct played a minor role. Our models of infarct and the
corresponding statistical model are still at a preliminary stage of
development, and were here presentedmainly to demonstrate the
concept of integration between statistical and physical models.

4.4. Summary
This work shows 2 applications of GP regression in modeling
ventricular heart mechanics. First, we present a strategy to
estimate the ventricular unloaded configuration given material
properties and intraventricular pressure (or alternatively fiber
strain at midwall). Once an upfront computational cost
(amounting to ∼10 applications of a conventional iterative
method) is paid for training, GP regression models allow the
estimation of unlimited unloaded geometries at no additional
cost. The method is therefore suitable to be used in analyses
involving large number of patients such as those collected in
publicly available databases. Second, we use GP regression as
a convenient tool to explore results of a parametric study
investigating coupled effects of infarct shape and location.
While just a proof of concept study, these preliminary results
demonstrate the power of the approach. That is, we were able
to characterize a large variation in infarct location and size,
including non-transmural infarcts with highly complex meshes
that are computationally demanding to solve.
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