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Metformin has been the first-line drug treatment for hyperglycemia and insulin
resistance for over 50 years. However, the molecular basis of its therapeutic role
remained incompletely understood. Recent advances demonstrate that metformin
could exert its glucose-lowering effect by multiple mechanisms, including activation
of 5′-AMP-activated protein kinase, decreasing production of cyclic AMP, suppressing
mitochondrial complex I of the electron transport chain, targeting glycerophosphate
dehydrogenase, and altering the gut microbiome. In addition, epidemiological and
clinical observation studies suggest that metformin reduced cancer risk in patients with
type 2 diabetes and improved survival outcome of human cancers. Experimental studies
have shown that this drug can inhibit cancer cell viability, growth, and proliferation
through inhibiting mTORC1 signaling and mitochondrial complex I, suggesting that it
may be a promising drug candidate for malignancy. Here, we summarize recent progress
in studies of metformin in type 2 diabetes and tumorigenesis, which provides novel
insight on the therapeutic development of human diseases.

Keywords: metformin, type 2 diabetes, gluconeogenesis, hepatic glucose production, cancer, cell proliferation,
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INTRODUCTION

Metformin, a derivative of guanidine, has been used in the treatment of hyperglycemia and type 2
diabetes mellitus (T2DM) for over 50 years (American Diabetes Association, 2014). Metformin,
phenformin, and buformin are derivatives of guanidine, which was extracted from the plant
isoamylene in the 1920s (Bailey and Day, 1989). Phenformin and buformin have been withdrawn
in the early 1970s because of their higher risk of cardiac mortality and lactic acidosis (Luft et al.,
1978), whereas the use of metformin has been expanded from T2DM to polycystic ovary disease,
diabetic nephropathy, gestational diabetes, T2DM-associated cardiovascular complications (Viollet
et al., 2012), due to its superior safety profile.

Metformin specifically suppresses hepatic gluconeogenesis without increasing the burden of
pancreatic β cells to enhance insulin secretion or promoting adipocyte differentiation to induce
weight gain (Inzucchi et al., 1998). However, the exact molecular mechanisms of its glucose-
lowering effects remain unclear. Besides, metformin has gained attention for its pleiotropic effects.
Importantly, accumulation of numerous epidemiological studies indicates the preventive and
therapeutic effects of metformin on many types of human cancers (Morales and Morris, 2015).
Herein, we summarized the action and molecular mechanisms through which metformin inhibits
hepatic gluconeogenesis and tumorigenesis, which may help to suggest directions for future
investigation.
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MOLECULAR MECHANISMS OF
ANTI-DIABETIC EFFECTS

In the past decade, several mechanisms have been identified for
the action of metformin in hepatic gluconeogenesis and glucose
production (Figure 1). An important breakthrough was that
metformin could activate adenosine 5′-monophosphate (AMP)-
activated protein kinase (AMPK) (Zhou et al., 2001), a master
regulator of various metabolic pathways (Hardie et al., 2012;
Lin and Hardie, 2018), by increasing its phosphorylation at
Thr-172. Through screening of a compound library containing
more than 10,000 molecules, compound C was discovered
as an AMPK inhibitor and attenuated metformin’s effect in
hepatocytes (Zhou et al., 2001), indicating that activation
of AMPK is essential for its inhibitory effects on glucose
production in hepatocytes. A subsequent study by Shaw et al.
(2005) reported that deletion of liver kinase B1 (LKB1), the
upstream kinase that phosphorylates and activates AMPK,
led to a nearly complete loss of AMPK activity in the liver
of adult mice. Loss of LKB1 blocked the therapeutic effects
of metformin, suggesting that metformin treatment of mice
increased AMPK activity in the liver and lowered blood glucose
levels in an LKB1-dependent manner (Shaw et al., 2005). Besides,
some studies demonstrated that metformin treatment increases
cellular levels of AMP through suppressing complex I of the
mitochondrial electron transport chain. This inhibition resulted
in a reduced cellular ATP concentrations and an elevated AMP
levels (Batandier et al., 2006). Moreover, low concentrations of
metformin was shown to promote the formation of the AMPK
αβγ complex through augmenting phosphorylation by LKB1
and antagonizing dephosphorylation by PP2C, leading to the
phosphorylation of the AMPK α catalytic subunit at Thr-172
(Meng et al., 2015). Moreover, one recent study revealed that
metformin activates AMPK through the lysosomal pathway,
consisting of AXIN/LKB1-v-ATPase-Ragulator pathway (Zhang
et al., 2016). Therefore, the mechanisms for metformin to
activate AMPK remain obscure and controversial. On the other
hand, the molecular mechanism underlying the AMPK-mediated
inhibition of gluconeogenesis remained elusive. A study from
Choi et al. showed that metformin suppresses hepatic glucose
production and expression of gluconeogenic genes (PEPCK
and G6Pase) through AMPK-dependent upregulation of small
heterodimer partner (SHP), a transcriptional co-repressor
(Kim et al., 2008). SHP could interact with and repress the
transcriptional activity of hepatocyte nuclear factor 4α (HNF4α),
forkhead box protein O1 (FoxO1), and forkhead box protein
A2 (FoxA2), which are critical in the transcriptional regulation
of gluconeogenic genes (Rines et al., 2016). Another study
demonstrated that metformin inhibits hepatic gluconeogenesis
through phosphorylation of CREB binding protein (CBP) at
serine 436 via AMPK-PKCι/λ, leading to the dissociation of the
CREB-CBP-CRTC2 transcription complex and down-regulation
of gluconeogenic genes (He et al., 2009). In addition, AMPK
could phosphorylate acetyl-CoA carboxylase 1 (ACC1) and
ACC2 to inhibit the conversion of acetyl-CoA to malonyl-CoA.
As a result, AMPK activation by metformin results in reduced
liver lipogenesis and hepatosteatosis, contributing to improved

insulin resistance and hyperglycemia (Fullerton et al., 2013; Ford
et al., 2015; Boudaba et al., 2018). Together, all these studies
highlight the importance of AMPK signaling in the anti-diabetic
action of metformin (Rena et al., 2017).

The controversy arised in 2010 when Foretz et al. (2010)
showed that metformin could inhibit hepatic gluconeogenesis
in mice lack of either AMPKα1α2 catalytic isoforms or LKB1.
They found that the hypoglycemic effect of metformin was
unaltered in liver AMPK deficient mice, compared with wild-
type mice (Foretz et al., 2010). Consistently, reduced expression
of gluconeogenic genes by metformin was also comparable in the
wild-type, AMPKα1α2 deficient, and LKB1 deficient hepatocytes,
further confirming that neither AMPK nor LKB1 are required
for metformin-mediated suppression of hepatic gluconeogenesis
(Foretz et al., 2010). However, a recent study questioned the
high or supra-pharmacological concentrations of metformin in
Foretz’s study and found that low concentrations of metformin
(60–80 µM in the portal vein of animals) suppress glucose
production via an AMPK dependent mechanism (Cao et al.,
2014). In agreement, Howell et al. (2017) showed that low
doses of metformin inhibit the mammalian target of rapamycin
complex I (mTORC1) through AMPK and higher doses act
through alternative mechanisms. Therefore, it is speculated that
the mechanisms of metformin might be associated with its
concentrations (doses) (He and Wondisford, 2015).

On the other hand, Cokorinos et al. (2017) demonstrated
that direct pharmacological activation of AMPK by small-
molecule AMPK activators in liver is not sufficient for acute
glucose lowering in obese mice. Thus, an important question
raised by these work is that how metformin could lower blood
glucose or hepatic glucose production in the absence of AMPK.
Foretz et al. (2010) proposed that the action of metformin is
attribute to decreased cellular ATP concentrations and increased
AMP/ATP ratio. Besides, Miller et al. (2013) reported that
metformin could antagonize the role of glucagon, to reduce
blood glucose levels. They found that treatment of metformin
could increase levels of AMP and related nucleotides to suppress
adenylate cyclase and protein kinase A activity, abolish CREB
phosphorylation, and block glucagon-stimulated glucose output
in hepatocytes (Miller et al., 2013). Madiraju et al. (2014)
demonstrated that metformin could suppress the mitochondrial
glycerophosphate dehydrogenase (mGPD), leading to reduced
conversion of lactate and glycerol to glucose. Furthermore, recent
studies implicates that the gastrointestinal tract may be involved
in the antidiabetic effect of metformin (Bailey et al., 2008). It
has been shown that preabsorptive metformin could activate
duodenal mucosal AMPK to inhibit hepatic gluconeogenesis and
improve hyperglycemia in high-fat-diet-induced obese rodents
(Duca et al., 2015; Jensen et al., 2016). Duodenal infection
of an adenovirus containing the dominant negative AMPK
largely attenuated the glucose lowering effect of intraduodenal
metformin (Duca et al., 2015). Moreover, metformin upregulates
the expression levels of sodium glucose cotransporter-1 (SGLT1)
in upper small intestine, partly by increasing the abundance
of Lactobacillus (Bauer et al., 2018). In addition, two studies
using T2DM patients further implicates the gut microbiota as
an important site of metformin action (Forslund et al., 2015;
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FIGURE 1 | Proposed actions of metformin in the hepatic gluconeogenesis.

Wu et al., 2017). Importantly, a randomized, placebo-controlled,
double-blind study in newly diagnosed T2DM subjects showed
that metformin had rapid effects on the composition and
function of the gut microbiota (Wu et al., 2017). Animal
experiments further confirmed that transfer of the metformin-
altered microbiota to germ-free mice could improve glucose
metabolism (Wu et al., 2017), suggesting that altered gut
microbiota contributes to the therapeutic effects of the drug.

MOLECULAR MECHANISMS OF
ANTINEOPLASTIC EFFECTS

Dilman et al. (1978) found that daily oral administration
of phenformin suppressed dimethylbenzathracene-induced
mammary tumor development in rats. They further reported that
breast cancer patients taking phenformin had an improvement
in metabolic parameters and immunologic status (Dilman et al.,
1982). In recent years, lots of epidemiological studies looked
into the preventive and therapeutic actions of metformin on
many types of human cancers. The first report was a case–
control study showing a decreased risk of developing cancer in
T2DM patients taking metformin (Evans et al., 2005), which
was further confirmed by subsequent meta-analysis using 18
observational studies in liver, colon, and pancreatic cancers
(Franciosi et al., 2013). In addition to its preventive action,
the beneficial effect of metformin on improvement of overall
survival outcomes or reduction in mortality was also observed in
liver, pancreatic, colorectal, and breast cancer (Zhang et al., 2013;

Morales and Morris, 2015), suggesting that it can also serve
as a potential anti-tumor agent (Jiralerspong et al., 2009). For
instance, a study involving 1,013 breast cancer patients showed
that the HER-2 positive rate was lower in the metformin-treated
group than in the nonmetformin-treated group (Hou et al.,
2013). Besides, metformin-treated group was associated with
better clinical outcomes and lower mortality risk (Hou et al.,
2013).

Although the use of metformin is still limited to T2DM,
insulin resistance and hyperglycemia, its effect in non-diabetic
cancer patients was also observed. It was reported that metformin
inhibited colonic epithelial proliferation and reduced rectal
aberrant crypt foci in non-diabetic patients with colorectal
cancer (Hosono et al., 2010). Besides, Hadad et al. (2011, 2015)
performed a pre-operative trial, which provides support for anti-
proliferative effects of metformin in non-diabetic breast cancer
humans. In addition, recent in vitro and in vivo studies indicate
that metformin can enhance the effects of other anti-cancer drug,
such as cisplatin, vincristine, 5-fluorouracil, and doxorubicin
(Iliopoulos et al., 2011; Miranda et al., 2014; Yi et al., 2017;
Candido et al., 2018), suggesting metformin can act as part of
combinatorial therapy to decrease the chemotherapy dose in
cancer patients.

Hyperinsulinemia represents a risk factor for several types
of human malignancy and induces adverse prognosis (Pollak,
2012; Garg et al., 2014). Therefore, systemic effects related
to reduced blood glucose levels, improved insulin resistance
and decreased pro-inflammatory cytokines, are involved in
the complexity of the roles of metformin on tumorigenesis
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(Pernicova and Korbonits, 2014). Besides, a direct action of
metformin in cancer cells needs more attention. Likewise, the
anti-diabetic actions, initial studies showed that LKB1-dependent
and AMPK-dependent growth inhibitor was responsible for
the antineoplastic effect of metformin (Figure 2) (Zakikhani
et al., 2006; Dowling et al., 2007). Knockdown of AMPK α1
subunit by small interfering RNA rescued breast and ovarian
cancer cells from the inhibitory effect of metformin (Zakikhani
et al., 2006). AMPK activation induces phosphorylation of
p53 on Ser15, and this phosphorylation is required to initiate
AMPK-dependent cell-cycle arrest (Jones et al., 2005). Activation
of AMPK by metformin also promotes phosphorylation of
human MDMX on Ser342, which inhibits p53 ubiquitylation
and stabilizes p53 (He et al., 2014). However, a subsequent
study found that the antiproliferative role of metformin
is not mediated by AMPK in prostate cancer cells and
proposed that inhibition of mTOR represents an alternative
pathway for metformin action (Ben Sahra et al., 2011).
mTOR is a catalytic subunit of two multiprotein complexes,
mTORC1 and mTORC2, which integrate both intracellular
and extracellular stimuli and act as a key regulator of cell
growth (Laplante and Sabatini, 2012; Saxton and Sabatini, 2017).
mTOR inhibition could disturb protein synthesis, and thereby
suppress tumor cell proliferation. Metformin was shown to
suppress the activation of mTOR through AMPK-dependent
and -independent mechanisms. AMPK-dependent suppression
of mTORC1 activity is attributed to activation of tuberous
sclerosis complex 1 (TSC1) and TSC2, which form an mTOR-
inhibiting complex (Inoki et al., 2003). Moreover, AMPK

could directly phosphorylate Raptor, the mTOR binding partner
protein, which is required for the inhibition of mTORC1
induced by energy stress (Gwinn et al., 2008). In addition,
Kalender et al. (2010) reported that metformin can inhibit
mTORC1 signaling through Ras-related GTPase, independent
of AMPK and TSC1/2. In addition to AMPK and mTOR,
metformin has been shown to affect other oncogenic signaling
pathways. Li and colleagues reported that metformin suppresses
the proliferation and growth of osteosarcoma and renal cell
carcinoma cells by suppressing Akt phosphorylation, which
was associated with increased phosphatase and tensin (PTEN)
expression (Kalogirou et al., 2016; Li et al., 2018). Besides,
metformin could activate the MEK/ERK signaling pathway to
promote leukemia cell differentiation and apoptosis (Huai et al.,
2012). Moreover, metformin inhibits activation of NF-κB and
Stat3 signalings in cancer stem cells, resulting in a reduced
inflammatory response and attenuated tumor growth (Hirsch
et al., 2013).

Furthermore, modulation of microRNA expression has been
proposed to underlie the anticancer actions of metformin. It
has been reported that metformin treatment could induce the
expression of DICER, an enzyme that is crucial in regulating
microRNA biogenesis (Blandino et al., 2012). Downregulation of
DICER has been shown to represent an intrinsically oncogenic
event and predicts poor survival of several types of cancers
(Karube et al., 2005; Merritt et al., 2008; Martello et al., 2010).
Forced overexpression of DICER recapitulated the antineoplastic
role of metformin in vitro and in vivo. Besides, the effects
of metformin are substantially impaired in DICER-deficient

FIGURE 2 | Potential mechanisms of metformin in anti-tumorigenesis.
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tumor cells (Blandino et al., 2012), suggesting that upregulation
of DICER is required for its actions. As a result, metformin
treatment affected expression levels of many microRNAs such as
miR-21, miR-26a, miR-33a, miR-140-5p, miR-142-3p, miR-181a,
miR-192, miR-193b, R-20mi0, miR-205, miR-222, let-7a, and let-
7c, which further modulates several target genes in metabolic or
preoncogenic pathways (Pulito et al., 2014; Zhou et al., 2015).

Moreover, a recent study showed that the environment
drastically altered sensitivity to metformin (Gui et al., 2016).
They demonstrated that complex I supports proliferation by
regenerating nicotinamide adenine dinucleotide (NAD) and
metformin’s anti-proliferative effect is due to loss of NAD/NADH
homeostasis and inhibition of aspartate biosynthesis (Gui et al.,
2016). In agreement, through an integrative metabolomics
analysis of metformin action in ovarian cancer, Liu et al.
(2016) showed that metformin could target central carbon
metabolism, suggesting mitochondrial requirements for the
effects of metformin on cancer cells. In addition, through
genetic screening in C. elegans, Wu et al. (2016) identified two
metformin response elements: the nuclear pore complex (NPC)
and acylCoA dehydrogenase family member-10 (ACAD10). They
demonstrated that metformin inhibited cell growth by inhibiting
mitochondrial respiratory capacity, which restrains transit of
the RagA-RagC GTPase heterodimer through the NPC (Wu
et al., 2016). Together, these findings not only provide precise
indications of metformin in cancer but also uncover new insights
into mitochondrial metabolism.

Overall, the anti-proliferative effects of metformin share
common mechanisms with its anti-diabetic action, including
activation of AMPK signaling, inhibition of mTOR signaling,
targeting mitochondria complex I (Figures 1, 2). Although the
detailed reason remains poorly understood, we speculate that a
unified mechanism might exist in metformin-treated normal cells
and cancer cells, such as the alteration of cellular energy state. In
addition, several studies also demonstrated that use of metformin
is not associated with reduced incidence or improved outcome in
certain types of human cancers (Mamtani et al., 2014; Suissa and

Azoulay, 2014; Kordes et al., 2015). Therefore, the therapeutic
effect of metformin might be cell- or tissue-specific, which needs
to be determined in future studies.

CONCLUSION

Metformin has been widely used in the treatment of T2DM
and related metabolic diseases. However, as reviewed here, both
AMPK-dependent and AMPK-independent pathways have been
proposed to explain the glucose-lowering and anti-tumor effect
of metformin (Figures 1, 2). Besides, although the liver is
considered as the primary site of metformin pharmacodynamics,
the gut is also recognized an important site for its anti-diabetic
and anti-tumor effects (Duca et al., 2015; Paleari et al., 2018).
In addition, recent studies demonstrated that metformin might
affect metabolite profiles in patients with type 2 diabetes or tumor
cells (Zhang et al., 2014; He et al., 2015; Xu et al., 2015). All these
knowledge, we hope, will help to fully understand the mechanistic
action of metformin, which may propel the development of novel
potential therapeutic targets in treating human diseases.
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