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Important insights into the selection pressures and core molecular modules contributing
to the evolution of pain-related processes have come from studies of nociceptive
systems in several molluscan and arthropod species. These phyla, and the chordates
that include humans, last shared a common ancestor approximately 550 million years
ago. Since then, animals in these phyla have continued to be subject to traumatic injury,
often from predators, which has led to similar adaptive behaviors (e.g., withdrawal,
escape, recuperative behavior) and physiological responses to injury in each group.
Comparisons across these taxa provide clues about the contributions of convergent
evolution and of conservation of ancient adaptive mechanisms to general nociceptive
and pain-related functions. Primary nociceptors have been investigated extensively
in a few molluscan and arthropod species, with studies of long-lasting nociceptive
sensitization in the gastropod, Aplysia, and the insect, Drosophila, being especially
fruitful. In Aplysia, nociceptive sensitization has been investigated as a model for
aversive memory and for hyperalgesia. Neuromodulator-induced, activity-dependent,
and axotomy-induced plasticity mechanisms have been defined in synapses, cell
bodies, and axons of Aplysia primary nociceptors. Studies of nociceptive sensitization in
Drosophila larvae have revealed numerous molecular contributors in primary nociceptors
and interacting cells. Interestingly, molecular contributors examined thus far in Aplysia
and Drosophila are largely different, but both sets overlap extensively with those in
mammalian pain-related pathways. In contrast to results from Aplysia and Drosophila,
nociceptive sensitization examined in moth larvae (Manduca) disclosed central
hyperactivity but no obvious peripheral sensitization of nociceptive responses. Squid
(Doryteuthis) show injury-induced sensitization manifested as behavioral hypersensitivity
to tactile and especially visual stimuli, and as hypersensitivity and spontaneous
activity in nociceptor terminals. Temporary blockade of nociceptor activity during injury
subsequently increased mortality when injured squid were exposed to fish predators,
providing the first demonstration in any animal of the adaptiveness of nociceptive
sensitization. Immediate responses to noxious stimulation and nociceptive sensitization
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have also been examined behaviorally and physiologically in a snail (Helix), octopus
(Adopus), crayfish (Astacus), hermit crab (Pagurus), and shore crab (Hemigrapsus).
Molluscs and arthropods have systems that suppress nociceptive responses, but
whether opioid systems play antinociceptive roles in these phyla is uncertain.

Keywords: nociceptive sensitization, nociceptor, hyperalgesia, allodynia, nerve injury, synaptic potentiation,
anxiety, aversive learning

INTRODUCTION

Darwin (1871) considered pain an emotion that evolved by
natural selection and is shared by many species. While most
research addressing pain has focused on humans and a few
mammalian species, findings shedding light on pain-related
functions have also been made in invertebrate taxa. Many
of these findings came from studies of species in Mollusca
and Arthropoda. By species number, these are by far the two
largest metazoan phyla, and they contain species with the most
complex nervous systems and most sophisticated behavior of any
invertebrates.

If human pain is a product of evolution, its neural and
molecular mechanisms are unlikely to have arisen de novo in our
species, and thus at least some processes important for human
pain should also occur in other taxa. Informative comparisons
and contrasts of pain-related phenomena across taxa require
a clear definition of pain. Having primarily been investigated
within a clinical/preclinical tradition, the most frequently cited
definition of pain is from the International Association for the
Study of Pain1: pain is “an unpleasant sensory and emotional
experience associated with actual or potential tissue damage.”
This definition has three distinctive features: (1) pain sensation
is usually produced by noxious events that produce or threaten
to produce injury, (2) the sensation includes sensory information
about the noxious event (quality, location, intensity, etc.), and
(3) the sensation is tied to a negative emotion that motivates
immediate and future avoidance of the apparent source of the
sensation (Walters, 2018). Aspects of each of these features can
appear in responses to noxious stimuli in non-human species,
including molluscan and arthropod species. One property of
pain-like states that cannot be assessed conclusively in non-
human animals is their emotional content, at least when emotion
is defined in terms of conscious experience, as it often is (Izard,
2009). That is because subjective feeling is not directly accessible
to observers of non-verbal organisms (Allen, 2004). However,
the objective motivational effects that pain-like states have on
behavior can be determined experimentally. It is likely that the
behavioral consequences of pain-like motivational states were the
major selection pressures for the evolution of pain mechanisms.

Pain-like states are inferred in animals from animal behavior
and from neural activity in nociceptive systems that process
information related to actual or imminent bodily injury.
Noxious stimuli are detected by sensory neurons called primary
nociceptors, and their activation (nociception) evokes defensive
responses (Walters, 1994; Tobin and Bargmann, 2004; Smith

1http://www.iasp-pain.org/terminology?navItemNumber=576#Pain

and Lewin, 2009; Sneddon, 2015; Burrell, 2017). Because of
the potency of nociceptors in driving both human pain and
pain-like responses in animals (discussed in Odem et al.,
2018), including selected molluscs and arthropods, and because
enhanced function of nociceptors contributes substantially to
various persistent pain states in mammals (Gold and Gebhart,
2010; Walters, 2012), a major focus of this article is on primary
nociceptors.

IMMEDIATE RESPONSES TO NOXIOUS
STIMULATION IN GASTROPOD
MOLLUSCS

To protect their soft bodies, most molluscs produce a hard
shell, but many lack a shell or enough of a shell for adequate
protection and must rely on other defenses. Among the seven
extant taxonomic classes of molluscs, only two have been
studied extensively by behavioral scientists and neurobiologists:
Gastropoda and Cephalopoda, both of which include many
species possessing little or no shell. The gastropods represent 80%
of molluscan species and occupy an enormous range of marine,
freshwater, and terrestrial habitats. Within Mollusca, only the
coleoid cephalopods (octopus, cuttlefish, and squid) have more
complex nervous systems and behaviors. Selected cephalopods
and gastropods first attracted the attention of neuroscientists
because their giant axons and neuronal somata permitted
cellular studies that, until a few decades ago, were impossible
in mammals. From the 1960s through the 1990s numerous
laboratories exploited the experimental advantages of uniquely
identifiable neurons in central neural circuits of gastropods to
directly relate cellular and synaptic properties to the organization
and mediation of defensive, feeding, and reproductive behaviors
(Kandel, 1979; Chase, 2002). Unusual advantages include large
neuronal somata (cell bodies) that (1) exhibit overshooting action
potentials, (2) allow high-fidelity somal monitoring of synaptic
potentials, and (3) display exceptional tolerance for prolonged or
repeated impalement by micropipettes.

Behavioral Responses to Noxious
Stimulation in Gastropod Molluscs
Many mechanistic studies have focused on synaptic alterations
underlying aversive learning and memory in the large marine
snail, Aplysia californica (Kandel, 2001), which possesses only a
rudimentary, internal shell that provides little or no protection.
Associated behavioral studies of learning in Aplysia utilized
electric shock to the soft body surface to modify behavior.
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Such shock was considered aversive because it evoked the same
immediate defensive responses as produced either by strong
mechanical pinch delivered to the body by an experimenter
(which produced signs of tissue injury), by bites during staged
attacks from a predatory gastropod, Pleurobranchaea californica,
or by application of a chemical stimulus, NaCl crystals, to
the skin (Walters and Erickson, 1986; Walters, 1994; Gasull
et al., 2005). Noxious stimuli produced local withdrawal, directed
release of ink and other defensive secretions, and escape
locomotion directed away from the point of “attack” (Walters
and Erickson, 1986). These responses are examples of active
defenses that are common throughout the animal kingdom
(Edmunds, 1974; Kavaliers, 1988; Walters, 1994): most notably,
withdrawal, retaliation (in this case by directed ejection of
offending chemicals) (Kicklighter et al., 2005; Love-Chezem et al.,
2013), and flight. Production of defensive responses in Aplysia
is accompanied by inhibition of competing behavioral responses
(Walters et al., 1981; Illich et al., 1994; Acheampong et al., 2012).

Nociceptors That Detect Noxious
Stimulation in Gastropod Molluscs
Although electric shock is an artificial stimulus, shock delivered
to the body surface of Aplysia evokes strong defensive responses
indistinguishable from those activated by natural stimuli because
the shock activates peripheral axons of the same primary
nociceptors that are activated by noxious mechanical pressures
(Walters et al., 1983a; Illich and Walters, 1997). Important
functional properties of identified nociceptors in Aplysia (Walters
et al., 1983a, 2004; Frost et al., 1997; Illich and Walters,
1997) – especially a relatively high threshold for activation
by mechanical stimuli, and silence in the absence of noxious
stimulation – are typical of mechano-nociceptors described in
diverse animals, including leech (Nicholls and Baylor, 1968),
lamprey (Martin and Wickelgren, 1971), teleost fish (Ashley
et al., 2007); frog (Hamamoto and Simone, 2003), snake (Liang
and Terashima, 1993), chicken (Koltzenburg and Lewin, 1997),
mouse (Koltzenburg et al., 1997), rat (Handwerker et al., 1987),
cat (Burgess and Perl, 1967), and monkey (Perl, 1968).

The nociceptors identified in Aplysia have coiled peripheral
terminals embedded in the muscle layer rather than the skin
(Steffensen and Morris, 1996), which can explain why sharp
poking or pinching stimuli produce optimal activation, and
light, brushing stimuli are ineffective. Unlike the nociceptors
in insects discussed below, these neurons have somata located
within central ganglia, far from their more vulnerable peripheral
terminals. These nociceptors show functional properties (Walters
et al., 1983a, 2004; Illich and Walters, 1997) more similar to
mechanosensitive nociceptors in mammals that are myelinated,
rapidly conducting, and rapidly adapting (Aδ- and Aβ-
nociceptors) than to unmyelinated, slowly conducting and slowly
adapting, often polymodal (chemosensitive) C-nociceptors
(Light et al., 1992; Djouhri and Lawson, 2004). Myelin does not
occur in molluscs (Roots, 2008), so increased conduction velocity
depends upon increased axonal diameter. Aplysia nociceptors
have central cell bodies and axonal diameters that, while not large
compared to axons of truly giant neurons in Aplysia (Rayport

et al., 1983; Steffensen et al., 1995), are much larger than the small
axons coming from the far more numerous afferent neurons of
unknown function that possess peripheral cell bodies (Xin et al.,
1995). Relatively rapid conduction in Aplysia nociceptors and
rapid adaptation are functionally consistent with rapid detection
of the onset of threatening peripheral stimulation rather than
provision of continuing information to the CNS about ongoing
(e.g., inflammatory) noxious states, which in mammals is
primarily provided by C-nociceptors (Odem et al., 2018). It
is not known whether any of the small-diameter afferents or
other sensory neurons in Aplysia have functions equivalent
to those of mammalian C-fiber nociceptors – especially, the
non-accommodating activity continuously induced by persistent
states of injury and/or inflammation. Among all invertebrates,
the leech N lateral neurons are the only nociceptors shown to
have non-accommodating, polymodal properties (as well as weak
capsaicin sensitivity) resembling the properties of mammalian
C-fiber nociceptors (Pastor et al., 1996).

NOCICEPTIVE SENSITIZATION AND
PAIN-LIKE STATES IN GASTROPOD
MOLLUSCS

In mammals, an unusual property of nociceptive systems is a
propensity to sensitize rather than adapt to repeated stimulation
(Light et al., 1992; Walters, 1994). Nociceptive sensitization in
mammals can also be produced by a single noxious event, which
is often manifested as a pain-like response to a subsequent
stimulus that normally would not be painful (allodynia) or as an
enhanced response to a normally painful stimulus (hyperalgesia).
As illustrated by the examples from gastropod molluscs discussed
below, nociceptive sensitization can be central or peripheral and
short-term or long-term, it includes both general sensitization
and site-specific sensitization, and it can refer either to sensitized
behavior or to sensitized neurons (for definitions, see Walters,
1994). Long-term sensitization probably protects animals made
more vulnerable by serious injury during prolonged recuperative
periods (Walters, 1994, 2012).

General Sensitization in Gastropod
Molluscs
Nociceptive sensitization has been studied more extensively in
Aplysia than any other invertebrate. Most mechanistic studies
have used a general sensitization paradigm, where noxious
shock applied to one part of the body produces sensitization of
withdrawal reflexes evoked by test stimuli applied to another
body part (the sensitization occurs generally across the body).
A single shock produces short-term general sensitization lasting
hours, whereas multiple shocks spaced over hours or days
produce long-term general sensitization lasting days or weeks
(Carew et al., 1971; Pinsker et al., 1973). General sensitization
can be induced by extrinsic neuromodulators (notably serotonin,
5-HT) released during noxious stimulation (Brunelli et al.,
1976; Glanzman et al., 1989; Marinesco et al., 2004b). General
sensitization in Aplysia was modeled at the cellular level by
culturing nociceptors with motor neurons known to produce
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withdrawal responses in vivo and stimulating the culture with
repeated application of the neuromodulator, 5-HT, to induce
long-lasting (24–48 h or longer) facilitation of the synapses
between these neurons. This simple model enabled the discovery
of basic memory mechanisms that helped Eric Kandel win a
Nobel Prize in 2000. The mechanisms by which 5-HT induces
long-term presynaptic facilitation include highly conserved cell
signaling pathways that also are involved in persistent pain in
mammals (Walters and Moroz, 2009; Rahn et al., 2013; Byrne
and Hawkins, 2015). Prominent among these are requirements
during the induction or maintenance of long-term facilitation for
signaling by cAMP and PKA (Brunelli et al., 1976; Castellucci
et al., 1980; Ocorr et al., 1986; Bergold et al., 1992), PKCs
(Sossin et al., 1994; Sutton et al., 2004; Cai et al., 2011), MAPK
(Martin et al., 1997; Sharma et al., 2003), and tyrosine kinases
(Purcell et al., 2003; Pu et al., 2014), as well as activation of
the transcription factors CREB (Dash et al., 1990; Kaang et al.,
1993; Liu et al., 2011) and C/EBP (Alberini et al., 1994; Herdegen
et al., 2014), and regulation of local protein synthesis at the
synapse by yet another protein kinase, target of rapamycin (TOR)
(Casadio et al., 1999; Weatherill et al., 2010) and by cytoplasmic
polyadenylation element binding protein (CPEB) (Miniaci et al.,
2008).

The cellular model of general, long-term sensitization in
Aplysia (5-HT applied to cultured nociceptors and motor
neurons) has revealed important roles for non-coding RNAs
in the regulation of gene expression in nociceptors. These
include 5-HT-induced downregulation of micro RNAs (miR-
124 and miR-22) (Rajasethupathy et al., 2009; Fiumara et al.,
2015) and upregulation of Piwi-associated RNAs (piRNAs)
(Rajasethupathy et al., 2012), which alter gene transcription,
mRNA translation, and enzyme expression (e.g., increased
presynaptic expression of atypical PKC) to enhance synaptic
transmission from nociceptors.

Non-coding RNAs were suggested recently to mediate the
transfer of sensitization from Aplysia receiving repeated noxious
electric shock to unshocked recipients by injection of RNA
extracted from central ganglia of shocked donors into the
recipients (Bédécarrats et al., 2018). This surprising study is
notable for several reasons. First, it suggests that extracellular
RNAs (presumably non-coding RNAs) can promote behavioral
and neuronal sensitization and thus might be yet another
of the myriad extracellular signals that produce nociceptive
sensitization (Walters, 2014; Ji et al., 2016). Second, the presumed
non-coding RNAs are specific to the noxious event; RNAs
extracted from the ganglia of unshocked Aplysia did not
produce sensitization. Third, the donor RNA extract modestly
increased the excitability of dissociated nociceptors, suggesting
that extracellularly transported non-coding RNAs can directly
sensitize nociceptors (perhaps by epigenetic alteration of gene
expression by appropriate DNA methylation, as suggested by
the authors’ finding that the RNA transfer effects were blocked
by a DNA methylation inhibitor). The authors assume that the
transferred non-coding RNA is part of the memory (“engram”)
of sensitization and they imply that this RNA comes from the
population of nociceptors they studied plus their downstream
neural circuits, thus storing a central neural memory of the shock.

However, the sensitization-specific RNA might be produced
within any neurons (or other cell types) strongly activated
(directly or indirectly) by the noxious shock, including numerous
unidentified afferents with peripheral cell bodies that send their
axons (which might transport RNA) to central ganglia (Xin et al.,
1995). Injected RNAs would have access to central and peripheral
neurons. Furthermore, the RNA-induced hyperexcitability of
dissociated nociceptors they describe is unlikely to explain the
observed enhancement of defensive siphon withdrawal because
the siphon responses were elicited by weak tactile stimuli that
are unlikely to activate this family of nociceptors (see above and
Illich and Walters, 1997; Walters et al., 2004). Thus, their test
stimuli, like the weak tactile test stimuli used in many Aplysia
sensitization studies (e.g., Pinsker et al., 1973; Hawkins et al.,
1998; Sutton et al., 2001; Cai et al., 2011), reveal an allodynia-
like effect that is more likely to involve enhanced responsiveness
of low-threshold mechanoreceptors than sensitization of the
nociceptors that have been examined electrophysiologically. On
the other hand, the interesting nociceptor hyperexcitability
observed by Bédécarrats et al. (2018) suggests that use of an
additional test stimulus that activates the nociceptors might
reveal RNA transfer of a hyperalgesia-like effect (see also Walters,
1987a,b).

Site-Specific Sensitization in Gastropod
Molluscs
Most pain research in mammals is more concerned with
the localized sensitization that occurs near a site of noxious
stimulation or injury than with general sensitization expressed at
distant sites (Woolf and Walters, 1991). Sensitization of Aplysia
tail and siphon withdrawal responses elicited at a site that had
received a brief series of electric shocks was found to be much
stronger and longer lasting than general sensitization produced
by the same shocks (Walters et al., 1983b; Walters, 1987b). This
site-specific sensitization also occurred at a site of tissue injury,
and thus appears functionally similar to primary hyperalgesia
in mammals (Walters, 1987b). Both general sensitization and
site-specific sensitization were linked to concurrent enhancement
of synaptic connections from primary nociceptors to motor
neurons mediating defensive reflexes, and to hyperexcitability
of the nociceptor soma (Brunelli et al., 1976; Walters et al.,
1983b; Frost et al., 1985; Scholz and Byrne, 1987; Cleary et al.,
1998). These electrophysiological alterations were especially
pronounced in tests of site-specific sensitization (Walters, 1987a).
Importantly, short-term and long-term behavioral sensitization
were found after staged attacks on Aplysia by lobsters, showing
that both forms of sensitization can be induced by trauma
resulting from interaction with a natural predator (Watkins
et al., 2010; Mason et al., 2014). Lobster attacks produced long-
term hyperexcitability (LTH) of nociceptor somata, but synaptic
facilitation was not observed (Watkins et al., 2010; Mason et al.,
2014).

Site-specific sensitization is produced by activity-
dependent enhancement of the modulatory effects of
extrinsic neuromodulators including 5-HT (Carew et al.,
1983; Hawkins et al., 1983; Walters and Byrne, 1983; Walters,
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1987a,b; Billy and Walters, 1989a; Lin et al., 2010). Other likely
contributors to site-specific sensitization in Aplysia are NMDA-
receptor-dependent long-term synaptic potentiation (LTP) of the
activated synapses between nociceptors and motor neurons (Lin
and Glanzman, 1994; Murphy and Glanzman, 1997; Antonov
et al., 2003) and activity-dependent, proteolytic generation of
several active PKC fragments (PKMs) in nociceptors and their
postsynaptic targets (Sutton et al., 2004; Farah et al., 2017; Hu J.
et al., 2017).

Nociceptive sensitization has also been investigated in the
snail, Helix lucorum. An aversive chemical stimulus, quinine
solution, applied to the head evokes head withdrawal and
enhances subsequent withdrawal responses to mechanical
and chemical test stimuli for several days, paralleled by
potentiation of synapses onto withdrawal command neurons
from mechanosensory and chemosensory neurons, along with
hyperexcitability of the command neurons (Nikitin and Kozyrev,
1996). This sensitization involves many of the mechanisms
described for general and site-specific sensitization in Aplysia.
These include potentiating roles for 5-HT, cAMP, PKC, and
C/EBP (Shevelkin et al., 1998; Nikitin and Kozyrev, 2000, 2005b;
Nikitin et al., 2005; Tagirova et al., 2009) and NMDA receptor-
dependent LTP of synapses from sensory neurons activated by
the noxious stimulus (Nikitin et al., 2002; Nikitin and Kozyrev,
2003).

Peripheral Sensitization in Gastropod
Molluscs
In mammals, one component of site-specific sensitization
contributing to primary hyperalgesia is localized hypersensitivity
of the peripheral receptive fields of primary nociceptors (Gold
and Gebhart, 2010; Smith et al., 2013). In Aplysia, short-
term sensitization of nociceptor fields occurs after peripheral
injection of 5-HT into the same fields (Billy and Walters,
1989b). Sensitization was recognized by a reduction in the
force threshold for eliciting a response during application of
a series of increasingly stiff nylon (von Frey) filaments to the
skin. Either tissue injury (deep incision through half of the
tail) or strong shock applied to the tail produced a persistent
decrease in threshold for mechanical activation of nociceptors
with receptive fields bordering a site traumatized 1–3 weeks
earlier, but no sensitization in nociceptors with distant receptive
fields (Billy and Walters, 1989a). This study also found a long-
term expansion of the receptive fields of nociceptors innervating
the traumatized region, and evidence for collateral sprouting
from neighboring fields. The receptive field alterations are likely
to involve injury-induced growth of peripheral fibers, given that
nociceptor axons are capable of impressive regenerative growth
after injury produced by crushing the nerve innervating the tail
of Aplysia (Steffensen et al., 1995). Importantly, prior to complete
regeneration (before receptive fields are restored to their
normal size), the regenerating nociceptors exhibit peripheral
sensitization, which was manifested as reduced threshold for
activation by von Frey filaments, and hyperexcitability expressed
as afterdischarge of action potentials in response to these brief
mechanical stimuli (Dulin et al., 1995). In addition, nociceptor

sprouting was observed within central ganglia (Steffensen et al.,
1995), perhaps contributing to the enhancement of synaptic
transmission observed after peripheral neural injury (see below).
Peripheral regenerative growth and collateral sprouting can
increase the density of nociceptive terminals near the injury and
thereby increase nociceptive sensitivity, which also should be
increased by hyperexcitability occurring in individual peripheral
processes. These complementary alterations may function to
compensate for loss of peripheral innervation caused by
traumatic injury (Billy and Walters, 1989a; Dulin et al., 1995),
and to protect the animal by increasing somatosensory vigilance
(especially to mechanical stimulation in the injured region) after
the animal is made more vulnerable by the injury (Walters, 1991,
1994).

Axotomy-Induced Alterations of the
Nociceptor Soma in Aplysia Resembling
Alterations Linked to Neuropathic Pain in
Mammals
Deep tissue injury is likely to sever nociceptor axons. In
mammals, peripheral axotomy of a sufficient number of
somatosensory neurons leads to neuropathic pain, which has
been associated with hyperexcitability of primary afferent
neurons at both the site of axonal injury (the neuroma) and
the distant soma (Baron, 2009; Devor, 2009; Gold and Gebhart,
2010; Walters, 2012; Ellis and Bennett, 2013; Smith et al.,
2013). The tail incision that was first used to study peripheral
sensitization in Aplysia nociceptors cut through the entire depth
of the mid-tail region to the midline, transecting ∼100% of
the axons innervating a distal quarter of the tail (Billy and
Walters, 1989a). A less severe incision transecting ∼50% of the
axons innervating this tail quadrant was used to investigate
effects of deep tissue injury on the excitability of the nociceptor
soma (located in a central ganglion ∼10 cm away). One to
2 weeks after partial tail cut, somata of nociceptors likely to
have been axotomized exhibited LTH compared to nociceptors
with uninjured receptive fields, which showed little difference
from nociceptors tested from uninjured animals (Gasull et al.,
2005). LTH was similar when Ca2+-dependent exocytosis of
neuromodulators was blocked during testing, suggesting that
maintenance of the LTH was independent of ongoing modulation
by extrinsic neuromodulators and instead represented long-
lasting intrinsic alterations. On the other hand, induction of
somal LTH by the injury could have been caused by activity-
dependent extrinsic modulation (because no local anesthetic was
present during the incision to reduce neuromodulator release),
which as discussed above is known to induce LTH of the
nociceptor soma and hypersensitivity of peripheral terminals
after tail shock (Scholz and Byrne, 1987; Walters, 1987a; Billy and
Walters, 1989b).

Evidence that somal LTH also can be induced directly by
injury to nociceptor axons came from studies in anesthetized
Aplysia utilizing an in vivo nerve crush injury. Crushing the nerve
with forceps transected all axons in the peripheral nerve that
innervates the tail without severing the nerve sheath (Walters
et al., 1991; Steffensen et al., 1995). This injury produced, after a
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delay of 1–2 days, LTH of the nociceptor soma and an increase in
amplitude of EPSPs from axotomized nociceptors onto tail motor
neurons (Walters et al., 1991). The delay was caused by retrograde
axonal transport of molecular signals from the injury site to
the ganglion (Gunstream et al., 1995), a conclusion supported
by showing that injection of axoplasm collected from crushed
nerves into the somata of nociceptors from uninjured animals
also produced somal LTH (Ambron et al., 1995). Furthermore,
somal LTH could be induced by transecting the neurites of
isolated nociceptors growing in culture, showing that extrinsic
signals such as 5-HT released at the time of nociceptor injury
are not required to induce LTH (Ambron et al., 1996; Bedi
et al., 1998). At least two of the axonally transported induction
signals are protein kinases; one an unidentified kinase that
phosphorylates the transcription factor, Elk1 (Lin et al., 2003),
and the other the cGMP-activated kinase, PKG (Sung et al.,
2004). While injection into the soma of high concentrations
of cAMP (a major downstream signal of 5-HT in Aplysia
nociceptors) can induce somal LTH (Scholz and Byrne, 1988),
somal injection of cGMP was much more potent than cAMP.
NO-cGMP-PKG signaling was found to be required for induction
of LTH by a damaging stimulation sequence applied to the body
wall (Lewin and Walters, 1999). On the other hand, continuing
activity of PKA in the nociceptor soma was required for the
maintenance of somal hyperexcitability after nerve crush (Liao
et al., 1999b). Crush-induced somal LTH lasted as long as 41 days,
but decreased significantly in animals showing recovery of a tail-
evoked, centrally mediated siphon response when nociceptors
regenerated into the tail, with some recovery of the reflex and
normal excitability evident within 2 weeks of the nerve crush
(Gasull et al., 2005). LTH of the nociceptor soma after nerve
injury (Ungless et al., 2002), like somal hyperexcitability and
perhaps action potential broadening in the presynaptic terminal
observed acutely or persistently by 5-HT or cAMP (Klein et al.,
1982, 1986; Scholz and Byrne, 1988; Goldsmith and Abrams,
1992), involves the closing of “S-type” K+ channels that are open
at resting potential and may be members of the 2-pore domain
K+ (leak) channel family (Patel et al., 1998).

Axotomy-Induced Alterations in Axons of
Aplysia Nociceptors Similar to Persistent
Somal Alterations, and Their Surprising
Ca2+-Independent Induction
Long-term hyperexcitability lasting at least 1 day is also exhibited
by Aplysia nociceptor axons following nerve crush in an
excised ganglion-nerve preparation (Weragoda et al., 2004). This
hyperexcitability, manifested as a decrease in both axonal action
potential threshold and accommodation, is highly localized,
extending <2 mm along the proximal side of the crush site.
Axonal LTH was not reduced when the nerve was crushed in
saline containing 1% of the normal extracellular [Ca2+], which
blocked detectable effects of any released neuromodulators,
suggesting that axonal LTH is a direct effect of axotomy. Because
transection can depolarize Aplysia axons for several minutes
(Berdan et al., 1993; Spira et al., 1993), an interesting question
was whether similar depolarization (to ∼0 mV, produced by

2-min exposure of a 1.5 cm nerve segment to elevated [K+])
might by itself induce axonal LTH. Depolarization-induced
axonal LTH was produced in 1% [Ca2+] saline and, like the
induction of long-term synaptic facilitation by 5-HT (Montarolo
et al., 1986; Casadio et al., 1999), induction of axonal LTH
by either depolarization or nerve crush required rapamycin-
sensitive (TOR-dependent) protein synthesis in the same nerve
segment (Weragoda et al., 2004). Unexpectedly, given the general
importance of Ca2+ as a cellular transducer of depolarization,
the depolarization-induced LTH, as well as short-term (minutes)
and intermediate-term (hours) axonal hyperexcitability induced
by 2 min of strong depolarization occurred equally well when
all detectable Ca2+ signaling was prevented by chelation of
virtually all extracellular and intracellular Ca2+ (Kunjilwar et al.,
2009). These results suggest that axotomy directly induces
localized axonal LTH by mechanisms involving local rapamycin-
sensitive protein synthesis (see Price and Inyang, 2015, for
discussion of similar signaling in mammalian nociceptors)
and, at least in part, a surprising depolarization-activated
pathway that does not require Ca2+ signaling. The same Ca2+-
independent depolarization procedure applied to the ganglion
containing nociceptor-motor neuron synapses potentiated EPSPs
from 15 min to >24 h, indicating that this unconventional
depolarization-activated pathway can induce synaptic LTP as well
as axonal LTH (Reyes and Walters, 2010).

Axonal LTH, unlike somal LTH (Liao et al., 1999a) can also be
induced by prolonged or repeated exposure of a nerve segment to
5-HT (which modulates but does not activate nociceptor axons)
in the absence of injury to the segment (Weragoda and Walters,
2007). Axonal LTH was induced by 5-HT in 1% or 0.02% [Ca2+]
saline, suggesting a direct, Ca2+-independent effect on the axons.
This neuromodulator-induced LTH, like injury-induced and
depolarization-induced axonal LTH, requires local rapamycin-
sensitive protein synthesis. It thus seems likely that natural
injuries severe enough to transect nociceptor axons produce LTH
in injured and nearby uninjured nociceptor axons by multiple
mechanisms, including depolarization-induced and possibly 5-
HT-induced signaling within the axons. Sources of peripheral
5-HT after injury could be central neuroendocrine release into
the hemolymph (Cooper et al., 1989; Levenson et al., 1999),
release by peripheral axons from central serotonergic axons at
the site of injury (Marinesco et al., 2004a; Jhala et al., 2011),
and/or local release from hemocytes mediating inflammatory-
like responses at the injury site (Clatworthy et al., 1994; Farr
et al., 1999). As in mammalian neuropathic pain models (Ellis and
Bennett, 2013; Walters, 2014), not only injury signals intrinsic
to damaged axons but also multiple extrinsic (inflammatory and
damage-related) signals may contribute to persistent sensitizing
effects of peripheral nerve injury in gastropod molluscs.

Inhibition of Nociceptive Responses in
Gastropod Molluscs
Nociception elicits and sensitizes some defensive responses in
Aplysia but at the same time inhibits competing behavioral
responses, including defensive responses incompatible with those
directly elicited by the noxious stimulus (Walters et al., 1981;
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Walters and Erickson, 1986; Illich et al., 1994; Acheampong
et al., 2012). The strongest evidence for an endogenous chemical
inhibitor of nociceptive behavior and nociception in Aplysia has
been found for FMRFamide, a short neuropeptide that is found
in several phyla. In Aplysia, FMRFamide suppresses responses
of primary nociceptors and their downstream targets centrally
(Belardetti et al., 1987; Mackey et al., 1987; Montarolo et al.,
1988; Schacher and Montarolo, 1991) and peripherally (Billy and
Walters, 1989b; Cooper et al., 1989), at least in part by decreasing
the excitability and synaptic strength of the nociceptors.

Opioid systems have been claimed to exist in gastropod
molluscs on the basis of numerous behavioral-pharmacological
and immunohistochemical studies, as well as on some
biochemical and molecular evidence (e.g., Kavaliers et al.,
1983; Leung et al., 1986; Kavaliers, 1987; Carpenter et al., 1995;
Cadet and Stefano, 1999; Achaval et al., 2005; Nikitin and
Kozyrev, 2005a; Miller-Pérez et al., 2008). In Aplysia, application
of met-enkephalin at low doses suppressed the gill-withdrawal
reflex (Lukowiak et al., 1982; Cooper et al., 1989). However, the
existence in invertebrates of opioid systems that are homologous
and functionally similar to opioid systems in vertebrates is
controversial (Dores et al., 2002; Dreborg et al., 2008; Mills et al.,
2016). Opioids and FMRFamide-related neuropeptides have been
suggested to originate from a common ancestral gene (Taussig
and Scheller, 1986). Alternatively, the weak molecular similarities
between opioids and FMRFamide-related neuropeptides (and
other families) might reflect convergent evolution because of
fundamental constraints on binding between peptides and
certain types of receptor proteins rather than homology across
neuropeptide families (Greenberg et al., 1988).

IMMEDIATE RESPONSES TO NOXIOUS
STIMULATION IN CEPHALOPOD
MOLLUSCS

Cephalopods (squid, cuttlefish, octopuses, and nautiloids)
comprise far fewer extant species than do gastropods or bivalves.
However, they boast the largest living invertebrate (the colossal
squid, weighing half a ton) as well as the largest nervous systems
of any animal except some species of mammals and birds.
While today’s cephalopods are far less common than fish, which
currently represent the majority of large marine predators, during
the Paleozoic and Mesozoic eras cephalopods were dominant
marine predators (Kröger et al., 2011). For neuroscientists, the
squid giant axon is famous because it enabled the discovery
of the basic mechanisms of the action potential (e.g., Hodgkin
and Huxley, 1952), and fundamental discoveries were also made
about mechanisms of neurotransmitter release at the squid giant
synapse (e.g., Katz and Miledi, 1967). However, few scientists
working in pain-related fields have investigated squid.

Defensive functions, usually related to visual stimuli,
have been investigated extensively in cephalopods, especially
camouflage (Langridge et al., 2007; Allen et al., 2010; Staudinger
et al., 2013; Bedore et al., 2015; Panetta et al., 2017), escape jetting
(Otis and Gilly, 1990; Preuss and Gilly, 2000; Huffard, 2006),
and chemical defense (Derby et al., 2007, 2013). In contrast,

little attention has been paid to cephalopod responses to noxious
stimulation or injury of the body, although the squid giant axon
has been used to study cellular reactions to injury (Fishman
et al., 1990; Godell et al., 1997). Behavioral responses to noxious
stimulation were first described systematically for the squid
Doryteuthis pealeii. Minor injury produced by amputation of
the distal third of one of the 10 arms of an unanesthetized squid
immediately evoked escape jetting and ink release, followed by
display of cryptic body patterns and settling of the body onto
the substrate (Crook et al., 2011). Grooming of the injured
arm (which occurs after similar injuries in mammals) was
never observed. Recordings of afferent electrical activity from
the fin nerve in an excised fin preparation during mechanical
stimulation revealed a population of nociceptive fibers that
fire preferentially in response to high intensity mechanical
stimuli (Crook et al., 2013). Because neuronal somata are not
present in the fin, these mechanosensory neurons appear to be
primary nociceptors, with somata located somewhere within
the CNS. Nociceptive behavioral and neuronal responses were
also described in a small octopus, Abdopus aculeatus, which
sometimes uses self-amputation (autotomy) of an arm as a
defense. Crushing the middle of an arm with forceps usually
induced immediate autotomy, and always evoked escape jetting
and ink release (Alupay et al., 2014). Interestingly, unlike squid
with injured arms, all the octopuses showed wound-grooming
behavior, holding the injured arm in the animal’s beak for at least
10 min. Nociceptive afferent units were found in recordings from
the proximal end of the axial nerve cord, but these might have
been second- or third-order neurons from ganglia within more
distal parts of the arms. Direct evidence for primary nociceptors
was found in units recorded from the mantle nerve that were
activated selectively by strong mechanical stimuli applied to the
mantle (Alupay et al., 2014).

NOCICEPTIVE SENSITIZATION AND
PAIN-LIKE STATES IN CEPHALOPOD
MOLLUSCS

Nociceptive sensitization was not described in any cephalopod
until recently. Crook et al. (2011) showed that amputation
of the distal third of one arm of an unanesthetized squid
(D. pealeii) sensitized defensive responses (escape jetting, ink
ejection) for at least 2 days after injury. Some site-specific
cutaneous sensitization was evident near the injury site in
blindfolded squid. However, equally strong general sensitization
was revealed by similarly enhanced responses to the tactile test
stimulus applied to a contralateral arm, the head, or mantle of
both freely swimming and partially restrained squid. Squid are
highly visual species, and the largest enhancement of defensive
responses occurred in freely swimming squid without blindfolds
before contact with the von Frey filament, showing that the
arm injury produced long-lasting sensitization (hypervigilance)
to visual stimuli (Crook et al., 2011). Injured squid also became
more likely to join schools of other squid when exposed to
predator cues (Oshima et al., 2016). The hypervigilance and
increased tendency to “seek safety in numbers” are consistent

Frontiers in Physiology | www.frontiersin.org 7 August 2018 | Volume 9 | Article 1049

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01049 August 2, 2018 Time: 12:56 # 8

Walters Molluscan and Arthropod Nociceptive Sensitization

with an injury-induced, anxiety-like state. A somewhat different
pattern of behavioral sensitization was reported after arm injury
in the octopus, Abdopus aculeatus. Crushing the middle of an arm
produced site-specific sensitization to von Frey stimulation, but
little general sensitization of defensive behavior was found and
no hypervigilance to visual stimuli was reported (Alupay et al.,
2014).

Peripheral injury in cephalopods can sensitize primary
nociceptors to mechanical stimulation of their peripheral
receptive fields. A crush injury to one fin produced both
immediate and long-term (lasting at least 24 h) sensitization,
observed as a decrease in mechanical threshold and an
increase in the number of afferent action potentials evoked
by stimulation with a moderate intensity von Frey stimulus
(Crook et al., 2013). Like the behavioral sensitization found
after arm injury (Crook et al., 2011), nociceptor sensitization
was not specific to the injured region; similar sensitization was
found in nociceptors innervating the contralateral fin, suggesting
that widespread nociceptor sensitization contributes to general
behavioral sensitization in squid. Long-term sensitization of
nociceptor responses was also found after natural injuries
produced by attacks from other squid. Unexpectedly, fin injury
produced significant ongoing (apparently spontaneous) electrical
activity in fin nociceptors both ipsilateral and contralateral
to the injured fin (Crook et al., 2013). Spontaneous activity
in probable nociceptors has not been reported previously in
invertebrates, although it is not uncommon in persistent pain
models in mammals (Djouhri et al., 2006; Devor, 2009; Walters,
2012; Odem et al., 2018). This persistent spontaneous activity
in the periphery may drive continuing activity in the brain
that produces hypervigilance. At the same time, spontaneous
activity generated in widespread nociceptors can provide little
or no information about the location of the injury. Knowing
the injury location may be less important for squid than the
basic information that they have sustained a significant injury
and are in a dangerous environment (Crook et al., 2013). In the
octopus, Adopus, arm injury also produced widespread activity in
peripheral neurons, increasing evoked and spontaneous activity
recorded from the axial nerve cord at the base of both the
previously injured and uninjured arms excised from injured
animals compared to those excised from uninjured animals
(Alupay et al., 2014). Given the large number of neuronal
cell types in the axial nervous system, this afferent activity
could represent activity in interneurons and/or primary sensory
neurons.

Experiments on squid nociceptors led to the first direct
demonstration in any species of the adaptiveness of nociceptive
sensitization. Local and general nociceptor sensitization were
found to be prevented by locally blocking all neural activity
during fin crush, which was accomplished by injecting isotonic
MgCl2 into the site to be injured (Crook et al., 2013; see
also Butler-Struben et al., 2018). This non-specific local block
effectively anesthetized the squid at the injured site while
also locally blocking motor function (for similar effects and
mechanisms in Aplysia, see Walters, 1987a,b and discussion
in Liao and Walters, 2002). The localized motor block
was experimentally useful because local relaxation of the

chromatophores indicated the very limited spread and rapid
reversal of the effects of the injected MgCl2. To test the
adaptiveness of nociceptive sensitization, isotonic MgCl2 was
injected into an arm just before distal amputation, 6 h before
exposing the squid to a natural predator – black sea bass – for
30 min while confined in a relatively large tank (Crook et al.,
2014). Direct effects of the MgCl2 remained localized to the
injected arm, dissipated long before introduction to the fish, and
by itself failed to alter camouflage, escape jetting, or inking during
the encounter, or the likelihood of pursuit, attack, and capture
by the fish. Interestingly, although human observers could not
discern any difference in the general appearance or behavior of
injured and uninjured squid (regardless of whether the neural
block had been given earlier), the injured squid were selectively
targeted by the fish and captured more often than uninjured
squid. The adaptiveness of nociceptive sensitization was revealed
by greater mortality during the 30-min encounter in squid that
had been anesthetized during injury (81%) compared to squid
sensitized by injury without anesthesia (55%), or to uninjured
squid given sham procedures with anesthesia (25%) or without
anesthesia (20%). Thus, persistent nociceptive sensitization can
be evolutionarily adaptive by enhancing survival of a previously
injured animal during predatory attack.

IMMEDIATE RESPONSES TO NOXIOUS
STIMULATION IN CRUSTACEANS

The phylum Euarthropoda contains over 80% of living animal
species, most of which are terrestrial insects, but also includes
crustaceans, arachnids (spiders, ticks, and mites), and myriapods
(millipedes, centipedes). Most marine arthropods are in the
crustacean subphylum, which includes both the most massive
arthropod (the American lobster, weighing over 40 pounds) and
tiny copepods that may have the greatest biomass of any animal
group on the planet. All arthropods have a hard, chitinous,
often mineralized cuticle that provides protection and a firm
exoskeleton for attachment of muscles. Defensive behaviors have
been investigated extensively in arthropods. In crustaceans, these
include neurobiological studies of escape behavior, especially in
crayfish (e.g., Edwards et al., 1999), and ecological studies of
inducible defenses, often using water fleas (Daphnia) (Tollrian
and Leese, 2010; Herzog et al., 2016). Across all arthropods,
far less research has been conducted on behavioral and neural
responses to noxious somatosensory stimuli than on responses
to visual, auditory, and chemosensory stimuli (e.g., Joseph and
Carlson, 2015; Göpfert and Hennig, 2016; Knaden and Graham,
2016; Ter Hofstede and Ratcliffe, 2016; Tomsic, 2016).

Surprisingly, primary nociceptors have yet to be identified
in any crustacean, although indirect evidence supports their
existence. Earlier suggestions that crustaceans have sensory
neurons that detect noxious stimuli came from the elicitation
of vigorous defensive responses by electric shock applied to the
hard exoskeleton of crayfish and crabs (Krasne and Glanzman,
1986; Lozada et al., 1988; Fossat et al., 2014). The aversiveness
of the shock was suggested by learning experiments, in which
crayfish or crabs would escape or avoid a chamber paired
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with shock (Denti et al., 1988; Kawai et al., 2004; Magee and
Elwood, 2013), and by anxiety-like effects produced by shock
(Fossat et al., 2014). Somewhat similarly, shock delivered within
a shell of a hermit crab stimulated evacuation of the shell and
promoted switching to a new shell (Appel and Elwood, 2009a,b).
A possible caveat in some of these studies, however, was a lack
of controls for the possibility that avoidance was produced by
long-lasting repellent chemicals released from animals shocked
in a conditioning chamber or shell. A more general caveat for
all studies of aversive learning (including mammalian studies)
is that aversion, although arguably the most important feature
of human pain, is not equivalent to pain; electric shock might
produce non-painful sensations an animal seeks to avoid, such
as itch, or unpleasant but non-painful feelings such as the pins
and needles sensation that low-intensity shock can evoke in
humans.

Other noxious stimuli investigated in crustaceans include the
injection of formalin (sometimes used to model inflammatory
or arthritic pain in rodents) into the joint of the claw of
a crab, which produced brief freezing, rubbing of the claw,
autotomy of the claw, and guarding-like postures (Dyuizen
et al., 2012). These responses lasted less than 10 min, and tests
for persistent sensitizing effects of the formalin injection were
not reported. A few studies have described the elicitation of
defensive responses in crustaceans by more natural noxious
stimuli, providing indirect evidence for functional nociceptors.
These include grooming by prawns of antennae stimulated
with low- or high-pH saline (Barr et al., 2008) (although
another study failed to find such responses in three decapod
crustaceans) (Puri and Faulkes, 2010); grooming-like responses,
escape, and withdrawal after stimulation of the mouth or eyes
of crabs with acetic acid (Elwood et al., 2017); and defensive
responses to touching crayfish claws or antennae with a hot probe
(Puri and Faulkes, 2015). Tentative electrophysiological evidence
for crustacean nociceptors came from recordings of increased
ongoing afferent activity in crayfish antennal nerves during
application of hot saline (Puri and Faulkes, 2015). However,
the observed increase in activity was modest and the small
volume applied in the bath might not have been sufficient to
heat antennal receptors to noxious levels. Thus, the observed
neural responses might have been to warmth rather than intense
heat that threatens imminent tissue damage. An interesting
question is whether peripheral nociceptors homologous with, or
functionally equivalent to, the class IV multidendritic nociceptors
in insects (see below) are found underneath the exoskeleton of
crustaceans.

NOCICEPTIVE SENSITIZATION AND
PAIN-LIKE STATES IN CRUSTACEANS

Few crustacean studies have addressed sensitizing effects of
noxious stimulation that persist for hours, days, or longer. An
early study showed that amputation of both claws of crayfish
sensitized tail-flip escape behavior elicited by tactile or visual
stimuli for at least several days (Krasne and Wine, 1975). Long-
lasting nociceptive sensitization produced by aversive shock has

been implicated in hermit crabs which, 24 h after being shocked
in their shell, approached and occupied new shells more rapidly
than did previously unshocked crabs (Appel and Elwood, 2009a).
Sensitization lasting hours was found for the crayfish lateral-
giant-fiber-mediated tail flip response after repeated electric
shock (Krasne and Glanzman, 1986), which was associated
with long-term synaptic potentiation of chemical and electrical
synapses onto the lateral giant command neuron (Edwards et al.,
2002). Long-lasting sensitization of the crayfish escape system,
like sensitization of defensive responses in Aplysia (see above),
may involve actions of 5-HT (Schnorr et al., 2014). Another
similarity to Aplysia (see Lewin and Walters, 1999; Sung et al.,
2004) is potential involvement of NO, with increased activity
of NO synthase being reported in the crab nervous system
for at least 1 h after injection of formalin into the joint of a
claw (Dyuizen et al., 2012). Extensive knowledge of the neural
circuitry controlling escape behavior in crayfish (Edwards et al.,
1999) should facilitate investigation of nociceptive alterations
in crustaceans, but very little is known about mechanisms of
short- or long-term nociceptive sensitization in any crustacean
species. Similar to the earlier finding with squid (Crook et al.,
2014), the evolutionary adaptiveness of nociceptive sensitization
in a crustacean was indicated recently by demonstrating that
noxious shock applied to small amphipods (Gammarus fossarum)
increased anxiety-like sheltering behavior and reduced capture by
predatory goldfish (Perrot-Minnot et al., 2017).

Evidence for opioid inhibition of nociceptive behavioral
responses in crustaceans, based on injection of morphine, has
been reported for a mantis shrimp (Maldonado and Miralto,
1982) and crab (Lozada et al., 1988; Maldonado et al., 1989;
Valeggia et al., 1989). However, a later study found that the
high concentrations of morphine used in these crustacean studies
did not reduce pain-like responses to shock in crabs, and
may instead have produced a transient general impairment
of motor function (Barr and Elwood, 2011). Although opioid
systems are reported in crustaceans (Leung et al., 1987;
Martinez et al., 1988), controversy about the existence of opioid
systems in any invertebrate taxa (Dores et al., 2002; Dreborg
et al., 2008) suggests that more study is needed to establish
whether opioid-mediated anti-nociceptive function occurs in
this sub-phylum. On the other hand, potent neuromodulatory
systems that strongly suppress nociceptive responses have been
found in crustaceans (e.g., Krasne and Wine, 1975; Vu and
Krasne, 1993), so it will be of interest to further define the
neuromodulatory mechanisms involved and their relationships
to those described for anti-nociceptive systems in other animal
groups.

IMMEDIATE RESPONSES TO NOXIOUS
STIMULATION IN INSECTS

Insects have been the subject of numerous neurobiological studies
of escape behavior (Camhi and Levy, 1988; Hoy et al., 1989; Allen
et al., 2006; Card, 2012; Yager, 2012) and of chemical defenses
(Sobotník et al., 2010; Nouvian et al., 2016; Touchard et al., 2016).
Until recently, little attention was paid to injury-related behavior

Frontiers in Physiology | www.frontiersin.org 9 August 2018 | Volume 9 | Article 1049

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01049 August 2, 2018 Time: 12:56 # 10

Walters Molluscan and Arthropod Nociceptive Sensitization

or to primary nociceptors in insects. Because they are relatively
small, often very short-lived, and are reported to continue normal
activities such as feeding or mating without interruption even
as they sustain mortal injury, it has often been assumed that
nociceptive systems are rudimentary and that pain-like states are
absent in insects (Eisemann et al., 1984).

As in molluscs and crustaceans, some of the early experimental
evidence for nociceptive responses came from experiments on
learning in which electric shock was observed to elicit immediate
withdrawal and escape responses as well as aversive learning
(Horridge, 1962; Pritchatt, 1968; Booker and Quinn, 1981;
Eisenstein et al., 1985). An early report described defensive
responses of several lepidopteran larvae (caterpillars) to sharp
mechanical stimuli, which included withdrawal, striking at the
stimulation site with the head and mandibles, and non-directed
thrashing of the body (Frings, 1945). The same responses, as well
as cocking before striking (a preparatory posture to increase the
force of the strike), regurgitation, and grooming-like behavior
directed at a wound were analyzed in detail in larvae of the
large moth, Manduca sexta, in response to stimulation with stiff
filaments and sharp pinch (Walters et al., 2001). Striking and
prolonged thrashing were described in the field during natural
attacks by an avian predator, and similar striking responses were
noted in wild lepidopteran larvae during egg-deposition attempts
by parasitoid wasps (Walters et al., 2001). Tiny Drosophila
larvae also show a well-studied nocifensive response – vigorous
corkscrew-like rolling elicited by sharp mechanical stimuli or
noxious heat (Tracey et al., 2003). Like the strike response of
lepidopteran larvae, the rolling response of fruit fly larvae is
evoked by attacks from parasitoid wasps, especially when the
cuticle is penetrated, and this response was demonstrated to
be adaptive by promoting escape from attacking wasps (Hwang
et al., 2007; Robertson et al., 2013).

Primary nociceptors have been identified in both Manduca
and Drosophila. A subset of sensory neurons with peripheral cell
bodies and profuse multidendritic arbors beneath the epidermis
and cuticle was discovered and shown to respond preferentially
to strong mechanical stimuli in Manduca larvae (Grueber et al.,
2001). The vast set of experimental genetic tools available for
research on Drosophila has encouraged intensive research on
apparently homologous nociceptors in fruit fly larvae (Grueber
et al., 2002). These multidendritic class IV nociceptors were
shown to be required for rolling responses to heat, sharp
mechanical stimuli, and attacks by parasitoid wasps, and also
for aversion to dry substrates (Tracey et al., 2003; Hwang
et al., 2007; Johnson and Carder, 2012). Extracellular recordings
showed heat-evoked activity in nerves containing axons of the
nociceptors (Tracey et al., 2003). Optogenetic activation of this
class of multidendritic sensory neurons was sufficient to trigger
rolling behavior, and genetically targeted RNA interference
(RNAi) silenced the nociceptors and prevented rolling responses
(Hwang et al., 2007). The nociceptors express an ion channel
in the TRPA family, “Painless,” that is distantly related to
TRPA1 in vertebrates, and this channel is necessary for the
defensive responses evoked by heat, harsh mechanical stimuli,
and wasp attacks, and for aversion to dry substrates (Tracey et al.,
2003; Hwang et al., 2007; Johnson and Carder, 2012). Class IV

nociceptors also express TRPA1 (a close homolog of mammalian
TRPA1), which contributes to noxious heat detection (Neely
et al., 2011; Zhong et al., 2012), and they express at least
two widely conserved channel types associated with mechanical
nociception: degenerin/epithelial sodium channels (Zhong et al.,
2010; Gorczyca et al., 2014; Mauthner et al., 2014) and a
mechanosensitive piezo channel (Kim et al., 2012). Targeted
silencing, optogenetic activation, and electron microscopy have
revealed some of the downstream neural circuitry of interneurons
and motor neurons that mediate rolling and other defensive
responses in Drosophila in response to activation of identified
nociceptors (Hu C. et al., 2017; Yoshino et al., 2017; Burgos et al.,
2018). A separate class (III) of multidendritic sensory neurons
was found to mediate cold nociception, involving three different
TRP channels (Turner et al., 2016).

A mammalian transcription factor, PRDM12, known
to control the developmental specification of primary
somatosensory neurons and linked to nociceptive function
in humans (Nagy et al., 2015), has a homolog, Hamlet, in
Drosophila that specifies the fly multidendritic sensory neurons
embryonically (Moore et al., 2002). This intriguing finding
indicates that the development of insect and human nociceptive
sensory neurons involves a shared regulatory gene inherited from
an extremely ancient metazoan ancestor. RNAi knockdown of
Hamlet in Drosophila or knockdown of some of its target genes
reduced the sensitivity of larvae to noxious heat and decreased
dendritic branching of the Class IV nociceptors (Nagy et al.,
2015). Remarkably, overexpression in Drosophila nociceptors
of PRDM12 mutants associated with impaired pain function
in humans also impaired the larval response to noxious heat
(Nagy et al., 2015). Another example of a conserved protein
that was found to have similar functions related to noxious heat
sensitivity in Drosophila and mammals is an auxiliary subunit,
α2δ3, of voltage-gated Ca2+ channels (Neely et al., 2010). These
results point to the conservation of some very basic molecular
mechanisms tied to nociceptive function over at least 550 million
years of evolution.

NOCICEPTIVE SENSITIZATION AND
PAIN-LIKE STATES IN INSECTS

The first description of nociceptive sensitization produced by
a stimulus other than artificial electric shock in any arthropod
came from studies of M. sexta larvae (Walters et al., 2001).
Incremental sensitization of directed strike responses occurred
during repeated sharp pinch but not gentle pokes delivered to
one or more prolegs. General sensitization was also seen, lasting
for up to an hour and expressed by an increased number of
strikes during a series of gentle pokes applied to prolegs ipsilateral
or contralateral to prolegs previously stimulated by multiple
pinches. General sensitization after just a single noxious pinch
of a proleg was later shown to be expressed as a marked decrease
in strike threshold to mechanical stimulation, which persisted for
at least 19 h (McMackin et al., 2016). This robust sensitization
survived dissection after in vivo pinch, which allowed neural
correlates of the sensitization to be examined (Tabuena et al.,
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2017). In contrast to nociceptive sensitization in Aplysia and
mammals, neural sensitization did not include enhancement
of primary afferent activity evoked by test stimulation of the
previously pinched region, but it was expressed as increased
evoked activity recorded from an interganglionic connective.
This shows a form of central sensitization, perhaps with some
functional and mechanistic similarities to the central sensitization
that contributes to pain states in mammals (Woolf, 2011). Clues
about the mechanisms of pinch-induced central sensitization
came from blocking the induction of sensitization of strike
responses (and central hyperactivity) by pre-treatment with
NMDA receptor blockers, and reversal of sensitized strike
responses by post-treatment with a blocker of cAMP-activated
HCN channels (Tabuena et al., 2017). This pattern is interesting
because, like some forms of nociceptive sensitization in Aplysia
and mammals, it suggests that NMDA receptor-dependent LTP
is involved in the induction of sensitization, and ongoing
generation of cAMP may be involved in the maintenance of
sensitization (e.g., Bavencoffe et al., 2016).

In insects (especially Drosophila, but also honeybees), as with
gastropods and crabs, early indirect evidence for long-lasting
effects of noxious stimulation came from studies of aversive
learning and memory (e.g., Booker and Quinn, 1981; Busto
et al., 2010; Diegelmann et al., 2013; Tedjakumala and Giurfa,
2013), including “pain relief learning” in which flies learned
that a stimulus predicts safety from shock (Gerber et al., 2014).
Intriguingly, a form of aversive operant learning potentially
similar to conditioned place aversion was found in honeybees,
in which flight of harnessed bees toward a salient landmark
was punished by focused heat (Heisenberg et al., 2001). Direct
studies of nociceptive sensitization have already yielded rich
molecular insights. Epidermal damage and apoptosis caused by
UV radiation without apparent injury to underlying nociceptors
were associated with a long-lasting (∼1 day) sensitization
of heat-evoked rolling responses (Babcock et al., 2009). The
sensitization was expressed as both an enhanced incidence of
rolling to focal contact with a probe heated to a noxious
temperature (“hyperalgesia”) and by a decrease in the threshold
temperature to elicit rolling (“allodynia”). Genetically targeted
RNAi manipulations indicated that the allodynia required
activation of a caspase in the epidermis with consequent signaling
via Drosophila homologs of TNFα in epidermal cells and TNF
receptor in adjacent nociceptors. Epidermal apoptosis turned out
not to be necessary for sensitization, but downstream targets of
TNF binding in nociceptors were, including a pathway involving
p38 MAPK, NFκB, and a nuclear transcriptional regulator,
enhancer of zeste (Jo et al., 2017).

A surprising discovery was that both thermal allodynia
and hyperalgesia in larvae required a developmental signaling
protein, the morphogen Hedgehog (Hh), a finding that inspired
experiments by these authors using rats that provided the
first evidence that the vertebrate morphogen homolog, sonic
hedgehog, contributes to inflammatory and neuropathic pain
in mammals (Babcock et al., 2011). In Drosophila, the thermal
allodynia was found to depend upon TRPA (Painless) function,
whereas thermal hyperalgesia depended on TRPA1 function in
the same nociceptors (Babcock et al., 2011). Heat allodynia was

found to require signaling by a tachykinin neuropeptide which,
unlike substance P in mammals, is not produced by primary
nociceptors (Im et al., 2015). Instead, UV radiation appears
to stimulate the release of tachykinin from central neurons,
which then binds to G protein-coupled tachykinin receptors
in nociceptors, where it stimulates release of Hh, which by
autocrine actions increases the expression and/or function of
TRPA (Painless) channels and thereby causes allodynia. A critical
pathway downstream from Hh in nociceptors is the bone
morphogenetic pathway (BMP), which is required for nociceptive
sensitization but not for normal nociception or nociceptor
development in Drosophila (Follansbee et al., 2017).

Little or no evidence is available for endogenous
antinociceptive systems in insects. Genes that are clearly
homologous to opioid or opioid receptor genes in humans were
not found in the Drosophila genome (Kreienkamp et al., 2002).
While FMRFamide, which is antinociceptive in Aplysia, also
occurs in insects, no links of this neuropeptide to inhibition of
nociceptive responses have yet been implicated in arthropods
(e.g., Merte and Nichols, 2002).

IMPLICATIONS FOR THE EVOLUTION OF
FUNCTIONS AND MECHANISMS
IMPORTANT FOR NOCICEPTIVE
SENSITIZATION AND PAIN

Paraphrasing the widely accepted definition of pain stated in
the Introduction, pain is an aversive emotional experience
related to actual or imminent tissue damage. A premise of this
article is that mechanisms important for pain evolved from
mechanisms that (1) have functioned to detect and evaluate
tissue damage (nociception) and (2) to motivate adaptive
behavior that would help avoid or minimize probable tissue
damage (nociceptive sensitization). Molluscs and arthropods
have provided abundant information about general functions
and mechanisms of nociception and especially of nociceptive
sensitization. Before discussing the implications of these findings,
it should be noted that these animal groups are not optimal
for answering all basic questions about the biology of pain.
For example, questions related to the emotional content of
pain can be addressed more clearly with mammalian species in
which the expression of pain-related emotions appears similar
to human expression (Darwin, 1886; Williams, 2002; Damasio
and Carvalho, 2013). As another example, more has been
learned about fundamental molecular mechanisms of nociceptive
sensory transduction from the extremely simple, genetically
tractable nematode, Caenorhabditis elegans, than from any
other species, even genetically tractable Drosophila (Tobin and
Bargmann, 2004; Venkatachalam et al., 2014; Katta et al., 2015).
However, the molluscan and arthropod species discussed here
have many analytic advantages, and in terms of numbers of
neurons and some prominent physiological properties (notably,
a reliance on classical overshooting action potentials for neural
communication) (Lockery and Goodman, 2009) their nervous
systems appear more similar to mammals than to C. elegans.
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Evolutionary and Functional
Considerations
The large taxonomic separation between chordate, molluscan,
and arthropod phyla means that similar functions and
mechanisms found across these taxa represent either convergent
evolution (homoplasy) or highly conserved descent from the last
common ancestor of these groups (homology). This common
ancestor is now thought to have lived more than 550 million years
ago, near the end of the Ediacaran Period, when the complexity
of animals, their nervous systems, and behavior began to
increase quickly in response to substantial changes in the marine
environment and the appearance of predators (Telford et al.,
2015; Kristan, 2016; Budd and Jensen, 2017). It seems likely
that the evolution of nociception, nociceptive sensitization,
and pain-like responses, like other defensive responses, has
been shaped by strong selection pressures exerted by predation
(Vermeij, 1987; Walters, 1994; Huntley and Kowalewski, 2007;
Crook et al., 2014; Monk and Paulin, 2014; Budd, 2015; Kristan,
2016). Similarities in nociception- and pain-related processes
across all three phyla may point to common, independently
derived solutions to general problems related to avoiding and
surviving traumatic injury in a hostile environment. If effective
solutions (and/or molecular building blocks that later proved
effective for these solutions) had already evolved in the last
common ancestor of chordates, molluscs, and arthropods, then
some of these early solutions might have been conserved to
function in today’s species. A fascinating finding consistent
with this possibility is the common involvement in Drosophila
and mammals of the PRDM family of transcription factors
in both the embryonic development of nociceptive sensory
neurons and in nociceptive responsiveness or pain (Nagy et al.,
2015).

Many similarities in immediate responses to noxious
stimulation are obvious in molluscs, arthropods, and chordates.
Damaging or potentially damaging stimulation of the body
(or electric shock that is likely to activate the fibers of primary
nociceptors) usually elicits rapid defensive responses in nearly
all animals tested across the animal kingdom, including all the
molluscs and arthropods discussed here. The types of defensive
responses vary enormously, depending upon the size, mobility,
structure (including armor), developmental stage (larval versus
adult), habitat, and life style of the species.

The prevalence of defensive responses to intense stimulation
of the body surface supports the universal and obvious
presumption that acute activation of nociceptive systems is
an adaptive response to somatosensory stimuli threatening the
integrity of the body (Sherrington, 1906; Kavaliers, 1988; Walters,
1994; Tobin and Bargmann, 2004; Costigan et al., 2009; Smith
and Lewin, 2009; Burrell, 2017; Tracey, 2017; Sneddon, 2018).
However, evolutionary adaptiveness is defined by reproductive
success, not by survival; avoiding mortal danger is only adaptive
to the extent that it enhances successful reproduction (Stearns
and Medzhitov, 2015). In certain physiological states or at
some stages of life it can be adaptive to lack, suppress, or
ignore nociceptive sensation, an idea familiar to pain researchers
because of the powerful suppression of nociceptive responses
and pain by opioid and non-opioid systems during human

fight-or-flight situations (Wall, 2002). Indeed, possession of
opioid systems that strongly inhibit nociceptive responses has
often been considered evidence for the possible existence
of pain-like states in non-human species (Bateson, 1991;
Sneddon et al., 2014). While the activation of opioid systems
plays a large role in suppression of pain-related responses
in mammals, it remains unclear whether homologous opioid
systems function similarly or even exist in molluscs and
arthropods (Dores et al., 2002; Kreienkamp et al., 2002; Dreborg
et al., 2008).

Trade-offs between survival and reproductive success are
found in all animal groups but seem especially striking in
insects. It is well known that nociceptive responses fail to deter
male mantids from mating with females that practice sexual
cannibalism (Schwartz et al., 2016), and there are innumerable
observations of adult insects showing no obvious changes in
behavior after severe injury, e.g., continuing to use badly
damaged limbs, copulating or eating while being eaten, or even
eating their own innards spilled by abdominal rupture (Eisemann
et al., 1984; Adamo, 2016). In contrast to these observations on
adults, examination of larvae of Drosophila and Manduca has
revealed specialized nociceptors that cover the entire body wall,
and these larvae show strong, relatively long-lasting (hours or
days) nociceptive sensitization of defensive behaviors evoked by
mechanical or heat stimulation.

It would not be surprising for adults of short-lived species like
most insects to maximize reproductive activities at the expense
of behavior (such as nociceptive sensitization) that promotes
survival of the adult but diverts energy and time away from
mating and reproduction (Stearns and Medzhitov, 2015). On
the other hand, some arthropods, such as lobsters, can live
for several decades or longer. Lobsters have not been tested
explicitly for nociceptive sensitization, and it is possible that
the strong armor of large adults might reduce the need for
such sensitization. However, claw amputation sensitizes escape
behavior in crayfish (Krasne and Wine, 1975) – a much smaller
but closely related decapod crustacean – and adult lobsters
are reported to change their preferred defensive response from
retaliation to escape after loss of their claws (Lang et al., 1977). It
will be interesting to test lobsters and other long-lived crustaceans
for long-lasting nociceptive sensitization after actual injury or
events threatening damage that would increase vulnerability to
predators and decrease future reproductive success.

Long-lasting nociceptive sensitization (lasting hours, days,
or weeks) is expressed readily in molluscs such as Aplysia
and squid. With lifespans of 1–2 years, these animals are
not long lived, but their adult lives are substantially longer
than many insects, and they grow much larger than insects.
The high susceptibility to traumatic injury of their soft bodies
and their well-developed capacities for repair and regeneration
after injury sustained as adults (Dulin et al., 1995; Moffett,
2000; Shaw et al., 2016; Imperadore et al., 2017) coupled with
documented risks of injury from predators (and in the case of
squid, from conspecifics) (Nolen et al., 1995; Kicklighter et al.,
2005; Watkins et al., 2010; Crook et al., 2013; Hanlon and
Messenger, 2018) seems likely to make long-lasting nociceptive
sensitization evolutionarily adaptive in these species. This
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prediction was confirmed in experiments on squid that provided
the first demonstration that a procedure preventing nociceptive
sensitization during injury reduces survival during subsequent
exposure to a natural predator (Crook et al., 2014). Similar
evidence for the adaptiveness of nociceptive sensitization came
from showing that noxious shock delivered to an amphipod
crustacean increased anxiety-like sheltering behavior and thereby
reduced capture by a fish predator (Perrot-Minnot et al., 2017).

Comparative Mechanistic
Considerations
At physiological and molecular levels, as well as behavioral
levels, the similarities of nociceptive sensitization across
molluscs, arthropods, and chordates is striking. Each group
shows enhanced defensive responses after noxious stimulation,
and the behavioral sensitization is often associated with
enhanced function (hyperexcitability, hypersensitivity, synaptic
potentiation, growth) in primary nociceptors. Possible exceptions
are crustaceans, where nociceptors have not yet been identified,
and perhaps Manduca larvae, where prominent sensitizing
effects of pinch have been found in central neural activity
but not primary afferent activity (Tabuena et al., 2017). The
neurophysiological alterations in nociceptors and their synaptic
targets that have been identified in gastropods and insects involve
signaling pathways known to contribute to the induction and
maintenance of persistent pain in mammals.

Interestingly, the pathways identified in Aplysia and Helix
are largely different from those identified in Drosophila, even
though both sets are important in mammalian pain models. In
addition to differences in focus between fields with different
experimental traditions, this difference in pathways may reflect
differences in the noxious stimuli employed in each model:
primarily shock, nerve injury, or 5-HT application in Aplysia
versus UV irradiation in Drosophila. Major pathways identified
in Aplysia (and to a large extent in Helix) include G
protein-coupled receptor- and NMDA receptor-driven signaling
involving cAMP, PKA, PKC, and other protein kinases, regulation
of gene expression by transcription factors such as CREB and
C/EBP, regulation of mRNA translation by kinases such as
TOR, and epigenetic regulation by non-coding RNAs. Major
pathways identified in Drosophila include TNFα-p38 MAPK-
NFκB, enhancer of zeste, Hedgehog, and BMP. In contrast,
nociceptive sensitization in another insect, Manduca, induced
by a different noxious stimulus, sharp pinch, was blocked by
inhibitors of cAMP-activated ion channels and NMDA receptors
(resembling effects in Aplysia). This suggests that differences
between gastropods and insects in the pathways found thus far
to be involved in nociceptive sensitization reflect at least in part
differences in the noxious stimulation models employed rather
than fundamental differences between the phyla in the cellular
signaling underlying nociception-related neuronal plasticity.

Many of the pathways discussed here and others (e.g.,
growth factor-regulated pathways) implicated in nociceptive
sensitization across major phyla are also important both for
pain and for learning and memory (Walters and Moroz, 2009;
Rahn et al., 2013; Géranton and Tochiki, 2015; Price and

Inyang, 2015), although some features of epigenetic mechanisms
in Drosophila have been noted to differ from mammals (and
implicitly from molluscs) (Deobagkar, 2018). Widely shared
molecular contributors to neural plasticity might represent
conservation of fundamental mechanisms that originally were
selected for adaptive responses to bodily injury (including
nociceptive sensitization) and were later co-opted for learning
and memory (Walters, 1991; Walters and Moroz, 2009; Price
and Dussor, 2014). Alternatively, the original mechanisms could
have evolved for learning and memory, later being co-opted
for adaptive responses to injury. A possibility not mutually
exclusive with the preceding two is that a set of core signaling
modules evolved earlier for other functions and were pre-adapted
for later use in plasticity underlying both injury/pain-related
functions and learning-related functions (an example of what
some evolutionary biologists call exaptation).

Motivational and Emotional
Considerations
During evolution, physiological and molecular mechanisms
driving nociceptive functions became linked not only to sensory
and discriminative processes that elicit immediate defensive
responses, but also to motivational and cognitive processes
that enable an animal to avoid ongoing and future threats
related to a noxious experience. This requires an ability to
maintain functional “awareness” of injury-induced vulnerability
until the vulnerability subsides (perhaps until adequate repair of
damaged body parts has been achieved). The phylogenetically
widespread occurrence of memory of injury that may drive
defensive motivational states is indicated by the examples of
nociceptive sensitization described above in several molluscs and
arthropods. Important support for this idea comes from the
studies described in squid and amphipods in which nociception-
induced, hypervigilant (anxiety-like) states reduce mortality from
predators (Crook et al., 2014; Perrot-Minnot et al., 2017).

Interesting examples of nociception-induced hypervigilance
also come from Aplysia. The general sensitization to tactile
stimuli produced in Aplysia by unpredictable noxious shocks
typically used to induce long-term general sensitization can be
considered a hypervigilant state resembling the anxiety states
in humans that motivate avoidance of general threats (Walters,
1980; Kandel, 1983). Interestingly, when repeated shock to
Aplysia was predicted by pairing it with a non-threatening
chemical cue, a conditioned fear-like state was triggered by
subsequent exposure to the previously paired cue (Walters
et al., 1981). This state was expressed as enhanced defensive
responses (head withdrawal, tail withdrawal, inking, escape
locomotion) and a suppressed appetitive response (feeding)
in the presence of the chemical cue. Unlike the anxiety-
like motivational state (ongoing general sensitization), the
conditioned fear-like motivational state produced by similar
amounts of shock was only expressed in the presence of the
conditioned chemical cue, indicating that the same motivational
state in Aplysia either can be persistently active if predictive cues
are unavailable during noxious experience, or it can be activated
selectively and transiently by subsequent detection of predictors
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of the noxious event (Walters et al., 1979, 1981; Walters, 1980;
Colwill et al., 1988a,b). This indicates that gastropods have
a capacity for cognitive processing of predictive information
available during noxious experience. A similar capacity is
suggested by higher-order aspects of aversive conditioning in
Drosophila, such as learning about signals predicting safety from
shock (Gerber et al., 2014).

Important questions remain about how invertebrates employ
information from nociception and from nociception-associated
stimuli to avoid further noxious stimulation. The ability to make
adaptive choices on the basis of cognitive and motivational
processing of information from noxious experience appears
likely in many invertebrates, given that operant paradigms in
which animals can freely choose among alternative responses
reveal that noxious shock can produce diverse examples
of avoidance. These include conditioned food aversion in
gastropods (Mpitsos and Davis, 1973; Maximova and Balaban,
1984), conditioned avoidance of odors in Drosophila (Quinn
et al., 1974), and avoidance learning in crabs (Fernandez-
Duque et al., 1992; Magee and Elwood, 2013) and cockroaches
(Pritchatt, 1968; Eisenstein et al., 1985) that may involve
alterations in motor as well as sensory systems. Moreover,
avoidance learning similar to conditioned place aversion
produced by noxious heat in honeybees has been reported
(Heisenberg et al., 2001). Conditioning of aversion to a
place in which nociception had occurred previously and of
preference to a place in which pain relief was experienced
may be the clearest methods available for demonstrating the
aversiveness of states hypothesized to be painful in animals
(Minami, 2009; Navratilova et al., 2013). Increasingly used
in mammalian pain studies (although the tests are still
uncommon), conditioned place aversion and conditioned place
preference tests could also help fill a large gap in the evidence
implicating pain-like features of nociceptive sensitization states
in invertebrates.

It seems likely that behavioral consequences of pain-like
motivational states were major selection pressures for the
evolution of mechanisms important for human pain. At some
point(s) in evolution, physiological and molecular mechanisms
driving the motivational and cognitive responses to actual or

likely tissue damage became linked in some species to conscious
emotional experience of pain. Building on the results reviewed
here, it is likely that much more will be learned about mechanisms
that not only detect and remember noxious experience, but also
motivate a mollusc or arthropod to avoid further injury after
significant nociception. Sensory and motivational mechanisms
involved in nociceptive sensitization may also help to drive
potentially separate processes that generate pain-like emotions
in those animals that are capable of emotion. Whether any
molluscs or arthropods have evolved a capacity for conscious
emotion and for suffering after noxious experience remain major
questions (see also Walters, 2018). While these questions are
probably impossible to answer conclusively in species that are
distantly related to humans (Allen, 2004), additional study of
the nociceptive biology of molluscs and arthropods should
point to commonalities and differences across these major phyla
in selected biological characteristics that are important for
producing pain and suffering in people.
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