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Fluctuations in resting-state cerebral hemodynamics show scale-free behavior over two

distinct scaling ranges. Changes in such bimodal (multi) fractal pattern give insight to

altered cerebrovascular or neural function. Our main goal was to assess the distribution of

local scale-free properties characterizing cerebral hemodynamics and to disentangle the

influence of aging on these multifractal parameters. To this end, we obtained extended

resting-state records (N = 214) of oxyhemoglobin (HbO), deoxyhemoglobin (HbR) and

total hemoglobin (HbT) concentration time series with continuous-wave near-infrared

spectroscopy technology from the brain cortex. 52 healthy volunteers were enrolled in

this study: 24 young (30.6± 8.2 years), and 28 elderly (60.5± 12.0 years) subjects. Using

screening tests on power-law, multifractal noise, and shuffled data sets we evaluated

the presence of true multifractal hemodynamics reflecting long-range correlation (LRC).

Subsequently, scaling-range adaptive bimodal signal summation conversion (SSC) was

performed based on standard deviation (σ) of signal windows across a range of temporal

scales (s). Building on moments of different order (q) of the measure, σ(s), multifractal

SSC yielded generalized Hurst exponent function, H(q), and singularity spectrum, D(h)

separately for a fast and slow component (the latter dominating the highest temporal

scales). Parameters were calculated reflecting the estimated measure at s = N (focus),

degree of LRC [Hurst exponent,H(2) andmaximal Hölder exponent, hmax] andmeasuring

strength of multifractality [full-width-half-maximum of D(h) and 1H15 = H(−15)−H(15)].

Correlation-based signal improvement (CBSI) enhanced our signal in terms of interpreting

changes due to neural activity or local/systemic hemodynamic influences. We

characterized the HbO-HbR relationship with the aid of fractal scale-wise correlation

coefficient, rσ (s) and SSC-based multifractal covariance analysis. In the majority of

subjects, cerebral hemodynamic fluctuations proved bimodal multifractal. In case

of slow component of raw HbT, hmax, and Ĥ(2) were lower in the young group

explained by a significantly increased rσ (s) among elderly at high temporal scales.

Regarding the fast component of CBSI-pretreated HbT and that of HbO-HbR covariance,
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hmax, and focus were decreased in the elderly group. These observations suggest an

attenuation of neurovascular coupling reflected by a decreased autocorrelation of the

neuronal component concomitant with an accompanying increased autocorrelation of

the non-neuronal component in the elderly group.

Keywords: aging, cerebral hemodynamics, neurovascular coupling, near-infrared spectroscopy (NIRS),

correlation-based signal improvement, multifractality, multifractal analysis, signal summation conversion

INTRODUCTION

Scale-free dynamics is an ubiquitous property of
physiological processes (West, 1991; Eke et al., 2000; Ivanov
et al., 2001) such as low frequency fluctuations of cerebral
hemodynamics (Fox and Raichle, 2007; Herman et al., 2009;
Pierro et al., 2012) and neural activity (Linkenkaer-Hansen
et al., 2001; Ivanov et al., 2009; He, 2014). Scale-free dynamics
is a hallmark of complexity viewed as an emergent property
of biological systems composed of numerous elements with a
network of stochastic (typically weak) connections amongst
them (Csermely, 2006). Several human studies investigated
the scale-free phenomenon of functional brain imaging signals
by using mono-(Eke and Hermán, 1999; Thurner et al., 2003;
Maxim et al., 2005; Eke et al., 2006; Khoa and Nakagawa, 2008;
Bullmore et al., 2009; He et al., 2010; He, 2011; Herman et al.,
2011) and multifractal analysis (Shimizu et al., 2004; Wink et al.,
2008; Ciuciu et al., 2012; Quang Dang Khoa and Van Toi, 2012).
Monofractal analysis reveals global, long-range correlation (LRC)
structuring in terms of the influence of past events in the process
on future ones (Bassingthwaighte et al., 1994; Eke et al., 2000,
2002). Multifractal analysis yields a distribution of fractality
measures (Barabási et al., 1991; Stanley et al., 1999; Kantelhardt
et al., 2002; Ihlen and Vereijken, 2010; Mukli et al., 2015) that
enables a more detailed characterization of local temporal scaling
behavior provided that fluctuations at wide range of temporal
scales are sufficiently represented in the sampled physiological
process (Eke et al., 2012). The estimation of these complexity
parameters is essentially based on a power-law model fitted to the
appropriate statistics of the data, which is reliable only if sample
size is large enough [at the order of hundreds, Eke et al., 2002;
Clauset et al., 2009]. Such statistics usually shows power-law
scaling—indicating LRC—within a bounded interval of temporal

Abbreviations: BOLD, blood oxygen level dependent; CBSI, correlation based

signal improvement; 1H15, the difference between the H(−15) and H(15) values;
f , measure describing the fast signal component dominating over the low-

frequency region; FMF, focus-based multifractal formalism (an approach using

focus-based regression scheme); fwhm, full-width of the singularity spectrum,

D(h), at half of its maximum; hmax, maximal Hölder exponent at which singularity

strength (D) is equal to 1; LRC, long-range correlation; Ns, number of non-

overlapping segments; PSD, power spectral density; rsNIRS, resting-state near-

infrared spectroscopy; rσ(s), scale-wise fractal correlation coefficient; s, measure

describing the slow signal component dominant over the lower scales; s’, scaling

boundary (possible breakpoint); XSσ (q, s), scaling function value at a given

moment order (q) and temporal scale (s), calculated from signal X, with σ as

measure; ln(X Ŝ(N)), the focus of the scaling function for signalX; SR, scaling range;

SSC, signal summation conversion (method); SSE, sum of squared error; v, the

order of non-overlapping segments v = 1, . . . , Ns; (V)LFO, (very) low-frequency

oscillation.

scales usually termed as scaling range (SR; Caccia et al., 1997). In
addition to the finite representation of the dynamics the lower
and upper boundary of SR are determined by the signal genesis
of the underlying physiological process. Nevertheless, numerous
examples of empirical data exhibit multiple SR indicating
multimodal scaling, see examples cited in Nagy et al. (2017).
Multimodality has also been of concern in case of cerebral
hemodynamics and typically present itself with two (case of
bimodality) or even more apparent SRs in which the statistical
measure of fractal analysis scales with a different exponent
(Nagy et al., 2017).

Application of a possible bimodal scale-free model on resting-
state hemodynamic signals requires a measurement technology,
which assures that the process is sampled at high enough rate
in long enough records. Near-infrared spectroscopy (NIRS)
is an emergent imaging technology which readily captures
cerebrocortical resting-state hemodynamic fluctuations at a cm
spatial resolution and at high sampling frequency with no
particular limitations on signal length (Jöbsis, 1977; Chance
et al., 2007; Fox and Raichle, 2007). In case of continuous wave
near-infrared spectroscopy (cwNIRS), the measured intensity
signals are determined by the relative tissue concentration
of total hemoglobin (HbT) and its constituents: oxy- and
deoxyhemoglobin (HbO and HbR, respectively; Cope et al.,
1988).

By now the physiological underpinnings of the functional
NIRS (fNIRS) signal has been elucidated (Jöbsis, 1977; Kocsis
et al., 2006a; Tachtsidis et al., 2008). As to its dynamics,
oscillations of cerebral hemodynamics has been characterized by
spectral analysis of NIRS signals (Elwell et al., 1999). Monofractal
pattern of NIRS spectral data was first reported by Eke and
Herman for the human brain cortex (Eke and Hermán, 1999).
Later, multifractal properties of fNIRS were also demonstrated
(Quang Dang Khoa and Van Toi, 2012). These pioneering reports
understandably focused on signal analysis and not making an
attempt to identify the underlying physiological mechanisms
shaping the observed complex patterns. As to the nature of
local hemodynamic fluctuations, they are primarily elicited by
neural activity via neurovascular coupling (NVC; Devor et al.,
2003; Drake and Iadecola, 2007) but the hemodynamic response
is also modulated by endothelial mechanism (Li et al., 2013;
Chen et al., 2014). In addition, systemic hemodynamic effects
should be considered (Yamada et al., 2012; Scholkmann et al.,
2014) for an enhanced interpretation of results obtained from
resting-state records from subjects with similar age. Apart
from non-biological noise and motion artifacts, resting-state
NIRS (rsNIRS) signal bears the fingerprint about systemic
hemodynamics such as cardiac cycle and respiration (Tian
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et al., 2009; Li et al., 2013). Separation of the functional and
the systemic components became of considerable interest and
various approaches have been developed to address this issue
(Scholkmann et al., 2014). Correlation between the fluctuations
of oxy- and deoxyhemoglobin concentration is the basis of
signal improvement presented by Cui et al. (2010) and the
technique proposed by Yamada et al. (2012). Under certain
assumptions—that usually hold in resting state, neural activity
renders the relationship between HbO and HbR fluctuations
more anticorrelated while fluctuations of systemic origin in the
resting state (Cui et al., 2010; Scholkmann et al., 2014) has a
correlated influence on hemoglobin chromophores.

The nonstationary fractal character of HbT (Eke et al., 2006)
implies that its constituents, HbO, and HbR, also exhibit non-
stationary dynamics. Consequently, their relationship should
be explored in terms of a non-stationary characterization of
correlation. Therefore, the HbO-HbR relationship was studied
with the aid of scale-wise fractal cross-correlation coefficient
and a novel adaptation of multifractal covariance analysis. The
former is essentially a measure applicable to nonstationary time
series building on the correlation of scale-wise mean variances
obtained separately for HbO and HbR signal (Podobnik and
Stanley, 2008; Zhou, 2008), while the latter is a multifractal
approach examining the scaling properties—and its moments of
various order—of HbO-HbR covariance similarly to the analyses
described in Refs (Kristoufek, 2011; Jiang et al., 2016; Zhao et al.,
2017).

It has been shown that aging (Goldberger et al., 2002; Lipsitz,
2003) and various diseases (Ivanov et al., 1999; Goldberger
et al., 2002; Maxim et al., 2005) affect complexity parameters
and the impact of other factors, such as gender (Ni et al.,
2014), have also been recognized. This study contributes to
this accumulating body of knowledge on the influence of aging
on the complexity of physiological processes. In general, the
contraction of homeodynamic space is an essential attribute
of an aging biological system meaning that the dynamics
of physiological processes in an elderly person is typically
confined to a restricted state space (Rattan, 2014). Taking the
cardiovascular system as an example the well-known dependence
of heart rate variability (Beckers et al., 2006; Vandeput et al.,
2012) on age can be attributed to a decline in autonomic
modulation (Nunes Amaral et al., 2001; Lipsitz, 2003; Tulppo
et al., 2005; Silva et al., 2017) reducing the adaptational
reserve of regulatory mechanisms (Goldberger et al., 2002).
Such reports on aging and altered complexity parameters are
typically based on demonstrating coincidences, while there is a
palpable need to establish a causal relationship for the changing
complexity.

Accordingly, our goal was to provide plausible explanation for
the physiological mechanism of observed age-related alterations
based on parameters of complexity obtained from measures of
brain hemodynamics captured by rsNIRS. Firstly, the measured
signals were evaluated for the presence of true LRC-type
multifractality. Multifractal parameters obtained for young
and elderly volunteers were compared to assess the impact
of aging on the complexity of cerebral hemodynamics. In
addition, we extended our analysis incorporating the oxy-

and deoxyhemoglobin signals in order to explore the age-
dependent alterations in their relationship. The influence of
age was characterized by exploring the strength of causal link
between these measures of the coupled fluctuations of oxy-
and deoxyhemoglobin and multifractal parameters of cerebral
hemodynamics.

METHODS

Extended records of fluctuating rsNIRS signals from the human
brain prefrontal cortex (PFC) analyzed for their multifractality in
this work have been collected in a previous study of the group
reporting on the monofractal serial correlation in these signals
(Eke et al., 2006).

Near Infrared Spectroscopy
According to the principle of cwNIRS, backscattered light
intensities were measured at wavelengths of 775, 830, 849, and
907 nm by a NIRO 500 Cerebral Oxygen Monitor (Hamamatsu
Photonics, Hersching, Germany), a single-channel instrument.
The mean penetration depth of near infrared photons for
the 4 cm interoptode distance of this device can be estimated
at approximately 2 cm (Firbank et al., 1998), thus our NIRS
optode sampled the brain cortex (Chance, 1994). Based on the
modified Beer-Lambert law (Kocsis et al., 2006b) the relative
tissue concentrations of HbO and HbR were calculated along
with HbT obtained as their sum. While the fluctuation of HbT
reflects on cerebral blood volume (CBV) dynamics, that of the
other two chromophores and their relationship are dependent on
oxygenation, too.

Data Collection
HbO, HbR, and HbT data were dumped via the RS232 port
of the NIRO instrument into a computer file at a rate of
2Hz. Extended records of HbO, HbR, and HbT samples
were created and processed for each subject in length of
N = 214 proven to be adequate for fractal analysis (Eke
et al., 2002). The source and detector fibers were secured
in a rubber pad. The optode was mounted just under the
hairline over the forehead. The cranium was shielded from
ambient light. Instrument noise was determined by placing
the optode over a slab of “mock” brain, whose scattering
(µs = 10.96 1/mm) and absorption (µa = 0.099 1/mm)
coefficients were matched to that of the human brain (courtesy of
Prof. Britton Chance, University of Pennsylvania, Philadelphia,
U.S.A.). The power of instrument noise was found negligible
when compared to the power of resting-state fluctuations in vivo
(Eke et al., 2006).

Subjects
Following approval by the Local Research Ethics Committee of
Semmelweis University and having obtained informed written
consent, 52 healthy volunteers with no neurological disorders
(28 women, 24 men) participated in the study. To evaluate the
effect of age and gender, subjects were assigned into groups of
young females (YF, n = 9, age<45 years), young males (YM,
n = 13, age<45 years) elderly females (EF, n = 19, age≥45
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years) and elderly males (EM, n= 10, age≥45 years). The rsNIRS
measurements were carried out in a comfortable sitting position
in a session slightly exceeding 2.5 h as previously described in
(Eke et al., 2006).

Data Preprocessing
Multifractal analyses were performed on raw signals and
following correlation-based signal improvement (CBSI;
Cui et al., 2010; Scholkmann et al., 2014), the latter
designed to remove correlated (systemic) influences
(e.g., head movement). Specifically, this preprocessing
step incorporate a standard deviation ratio of HbO and
HbR that is used in their subsequent linear combination
yielding: CBSIHbT = 1

2 ·
(
HbR−

(
Oσ (N)/Rσ (N)

)
·HbR

)
+ 1

2 ·(
HbO−

(
Rσ (N)/Oσ (N)

)
·HbO

)
. The improved HbT signal is

regarded as a representation of anticorrelated hemodynamics
attributable to local hemodynamic influences and oxygen
consumption accompanying neuronal activity.

Multifractal Analyses
Multifractal Scaling Analysis

Signal summation conversion (SSC) method
The multifractal scaling functions of HbT, HbO, and HbR were
calculated by the multifractal SSC method (Mukli et al., 2015) as
the basis of our approach to evaluate the multifractality of our
bimodal rsNIRS signals (Figure 1). For detailed description of
the MF-SSC method the reader is referred to Refs. (Mukli et al.,
2015; Nagy et al., 2017). Briefly, multifractal SSC uses a measure
depending on the temporal scale (s) of signal window—bridge-
detrended variance σ(s), see Ref. (Eke et al., 2000)—and a set of q-
order statistical moments, to create corresponding moment-wise
generalized variance profiles, Sσ (q, s) of Equation 1, spanning
across a range of temporal scales within the chosen analytical SR.

Sσ

(
q, s

)
=

[
1

Ns

Ns∑

v=1

µ
q
v(s)

]1/q

∝ sH(q) (1)

Specifically, 60 logarithmically spaced time scales were chosen
between smin = 16 and smax = 8192 for computing σv(s) in each
non-overlapping time window [v = 1, 2, ..., Ns = int(N/s)] of
cumulatively summed signal. The low temporal scales dominated
by fast fluctuations with weak, non-fractal autocorrelation (Eke
et al., 2006) were excluded and the fairly high scales (Nagy et al.,
2017) with well-manifested scale-free processes were secured.
The selected moment orders ranging from −15 to 15 were
adequate1 to capture both large- and small-variance dynamics
in a fluctuating rsNIRS signal; the former being emphasized by
variance profiles corresponding to positivemoments, the latter by
those corresponding to negative moments (Grech and Pamuła,
2012; Mukli et al., 2015). Please note that statistical estimates
obtained at q= 2 obey rules of linearity, while in fact, those for q 6=
2 capture non-linearity in system dynamics (Gómez-Extremera
et al., 2016; Bernaola-Galván et al., 2017).

1q takes all integer values in this interval.

FIGURE 1 | Various representations of the measured NIRS signals. (A)

Resting-state raw NIRS signal components. (B) Variance profiles of different

signal components. (C) Variance profiles of HbT calculated at different set

cross-correlation levels. (D) Fractal correlation coefficient between HbO and

HbR as a function of scale. In this paper multifractal scaling function values are

actually given by Sσ (q, s) [or by Sσ (s) for q = 2], where the subscript σ refers

to the measure of the chosen multifractal method (SSC).

Relationship between variance profiles of hemoglobin

chromophores
Since HbT=HbO+HbR, it is the generalized Bienaymé formula
(Equation 2) which describes the relationship between their
variance profiles2: TSσ (2, s),

OSσ (2, s), and
RSσ (2, s) in an exact

form3 (Nagy et al., 2017).

2Different signal types (T –HbT; O –HbO; R –HbR; OR – relationship of oxy- and

deoxyhemoglobin) are indicated by a left superscript to the variable of multifractal

analysis.
3Note that the Bienaymé formula is not specific to fractal time series.
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TSσ (2, s)
2
= OSσ (2, s)

2
+RSσ (2, s)

2
+2rσ (s)·OSσ (2, s) ·RSσ (2, s) .

(2)
The unknown factor is the scale-wise fractal correlation
coefficient, rσ (s); all the others are scaling function values directly
calculated from the measured signal.

Focus-Based Scaling-Range Adaptive Analyses
Focus-based multifractal analysis (FMF-SSC) were carried out
(Mukli et al., 2015) to estimate the generalized Hurst exponent,
H(q), which is essentially a set of slopes of the scaling function
profiles fitted in the analytical SR, as expressed by

Sσ

(
q, s

)
∝ sH(q). (3)

H(q) describes the moment-wise or global distribution of fractal
correlation (essentially that of the fractal dimension) in the signal,
thereby generalizing H(2), the usual outcome of monofractal
time series analysis. Taking H(q) as its input, the multifractal
formalism (Frisch and Parisi, 1985; Barabási and Vicsek, 1991;
Muzy et al., 1993; Eke et al., 2012) via the multiscaling exponent,
τ (q)=qH(q)−1, and Legendre transformation will yieldD(h), the
local distribution of the fractal dimension or singularity strength,
D, as a function of roughness or Hölder exponent, h.

h =
dτ (q)

dq
, (4)

D
(
h
)
= inf

q

(
qh− τ (q)

)
. (5)

Incorporating the focus—obtained as a fitted intersection of
scaling function profiles at s = N–ensures monotonously
decreasing Ĥ(q) and thus stable, uncorrupted D(h). Enforcing
the focus of scaling function, ln(Ŝσ (N)), when regressing for
Ĥ(q) was recognized as a prerequisite to obtain stable results of
multifractal analysis (Mukli et al., 2015).

In an attempt to find the best fitting model for the observed
scaling functions we adapted the concept of bimodality originally
described in the frequency domain (Eke et al., 2006). This
pattern can be recognized as two scale-free processes separated
by moment-wise breakpoint scales (s’(q)) (Nagy et al., 2017).
The less correlated (“fast”) component dominates the lower
range of scales while a more correlated (“slow”) component is
characteristic in the higher scales (Figure 2A). A breakpoint-
based bilinear regression model (denoted as moment-wise SR
adaptive) was implemented as described in Ref. (Nagy et al.,
2017). Briefly, it is an iterative process by estimating breakpoint
scales that minimize sum of squared error (SSE) of the residuals
for each and every moment as

SSE
(
s′
(
q
))

=
∑15

q=−15

[ ∑s′(q)

s=smin

(
f Ĥ

(
q
)
·
(
ln s− lnN

)

+ ln f Ŝσ

(
N

)
− ln Sσ (q, s)

)2
+

(s
Ĥ

(
q
)
·
(
ln s− lnN

)

+ ln sŜσ

(
N

)
− ln Sσ (q, s)

)2
]
, (6)

where ln(sŜσ (N)) and ln(f Ŝσ (N)) are the moment-independent
foci (Figure 2B) associated with the slow and fast components,

respectively. sĤ(q), f Ĥ(q) are the slopes (Figure 2C) of the fitted
two lines of regression4 (i.e., the generalized Hurst exponent
functions of the two components). This iteration thus adaptively
yields the best segregation of scaling ranges. Ĥ(q) and D(h)
(Figure 2D) are obtained for the fast and the slow component,
respectively.

We calculated global multifractal endpoint parameters to
characterize the degree of autocorrelation [maximal Hölder
exponent, hmax and monofractal Hurst exponent, Ĥ(2)] and
multifractality [1H15 = H(−15)–H(15), and full-width at half
maximum (fwhm) of D(h) (Wink et al., 2008; Grech and
Pamuła, 2012)] in the measured cerebral hemodynamic signals
as illustrated in lower panels of Figure 2.

Evaluating True Multifractality
Since multifractal tools—including FMF-SSC—readily produce
seemingly realistic values for multifractal measures such as
D(h) even in the absence of true multifractality (Kantelhardt
et al., 2002; Clauset et al., 2009; Grech and Pamuła, 2012); it is
mandatory to evaluate our empirical signals in this regard using
the following framework. Accordingly, because our FMF-SSC
method always produces uncorrupted D(h) irrespective whether
the signal is a true multifractal or not, this property needs to be
tested separately (Figure A1). Verification of true multifractality
consists of three subsequent steps: (i) identifying general scale-
free behavior with power spectral density (PSD) analysis,
(ii) distinguishing true multifractality from multifractal noise,
and (iii) determining the origin of the expressed multifractal
scaling. Therefore, in these tests, true, long-range correlated
multifractals are to be distinguished from processes lacking
scale-free properties or not showing autocorrelation. Failing
to pass in any of the aforementioned tests resulted in the
exclusion of the subject in question from further analysis.
Details of this framework are explained in the Appendix
(Supplementary Material) and in Ref. (Racz et al., 2018).

Characterizing HbO-HbR Relationship

Scale-wise fractal cross-correlation coefficient
One approach to assess the relationship of HbO and HbR
fluctuations is to calculate ameasure of cross-correlation by using
variance profiles. After rearrangement of Equation 2 it is possible
to express rσ (s):

rσ (s) =
TSσ (2, s)

2
− OSσ (2, s)

2
− RSσ (2, s)

2

2 ·O Sσ (2, s) ·RSσ (2, s)
. (7)

This measure indicates whether the fluctuations at a given scale
are enhanced (rσ (s)>0), diminished (rσ (s)<0) by coupling HbO
and HbR signal or their relationship is insensitive to coupling
between them (rσ (s)= 0).

The fractal cross-correlation analysis yielding rσ (s) is
strikingly similar—in terms of calculation steps and order—to
the detrended cross correlation analysis, the major difference
of these methods concerns their measure (Podobnik and

4Parameters obtianed directly from multifractal regression analysis are denoted as

estimates with a hat: H(q) and ln(Ŝσ(N)).
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FIGURE 2 | Steps of bimodal multifractal SSC analysis. (A) Scaling function of SSC as moment-wise generalization of variance profiles. Separate components are

marked in blue (fast) and red (slow). (B) The sets of power-law functions fitted separately for the two components with focus-based regression. (C) Generalized Hurst

exponent functions, H(q)s of the two components as functions of moment order q. The focus point and H(q) for both components (f, fast; s, slow) were iterated for

finding the scale with minimum SSE(s’(q)) as the true breakpoint at a given moment, which process finally yields ln (sŜσ (N)), ln (f Ŝσ (N)),
sĤ(q), and f Ĥ(q) with the best

fit. (D) Singularity spectra of the two components. Multifractal endpoint parameters: the highest singularity strength (D = 1) is associated with the maximal Hölder

exponent (hmax), which usually correlates well with H(2), a measure of global LRC in the signal. Distribution of local scale-free behavior is captured in 1H15 = H(−15)

– H(15) and in full-width at half maximum (fwhm) of D(h) respectively, reflecting degree of multifractality.

Stanley, 2008). The cited approach uses fluctuation while
ours calculates bridge-detrended variance to assess correlation
of coupled non-stationary time series. When comparing the
above scale-wise approaches with the standard means of
calculating cross-correlation (i.e., Pearson and Spearman), the
first major difference is that the prerequisite of stationarity
applies to the latter methods. Furthermore, the sequence of
calculation steps is critical, too: because when the standard
cross-correlation is calculated it is followed by a step of
averaging effectively abolishing the scale-wise information. It
is worth of noting that Spearman proved a more robust
standard measure of correlation than the Pearson coefficient
as the latter assumes not only stationarity but linearity, too
(Zimeo Morais et al., 2018).

Multifractal covariance analysis
The other approach is based on the extension of FMF-SSC
in order to analyze the scaling of long-range cross-correlation.
This method assesses the multifractality emerging genuinely
from coupled oxy- and deoxyhemoglobin fluctuations. Scale-
and moment-wise bridge-detrended covariances (Cov) were
calculated of HbO and HbR signals to yield an estimate of
bivariate generalized Hurst exponent function, ORH(q).

ORSCov
(
q, s

)
=

[
1

Ns

Ns∑

v=1

OR |Cov|
q
v(s)

]1/q

∝ s
ORH(q) (8)

Now applying Equations 3–5 yields the corresponding singularity
spectrum andmultifractal endpoint parameters. Covariance truly
scales only if the ORĤ(q) function differs from the average
of RĤ(q) and OĤ(q). Therefore this comparison must be
carried out after obtaining the distribution of scaling exponents
and output parameters of multifractal analysis. Prior to that,
moment-wise bimodal regression analysis had been performed
on the q-wise (generalized) variance profiles of HbO, HbR,
and HbT and on the HbO-HbR covariance profile in the same
manner.

Descriptive Statistical Analyses
Normal distributions in each independent sample were checked
by Shapiro-Wilk’s test. Difference between group means or
medians were considered significant in case of p< αs, αs =0.05
(level of significance). Homogeneity of variances was confirmed
by Levene’s test.

Assessing the Effect of Age and Gender
Two-way univariate ANOVA were performed treating
multifractal endpoint parameters and rσ (s) as dependent
variables and assuming that there was an interaction
between age and gender (categorical factors). Most of the
results presented in this paper are based on the output
of two-way ANOVA with Tukey’s post hoc test. Had the
prerequisites of ANOVA been not met, group means were
compared with two-sample t-test (with Welch’s correction
for inhomogeneous variances in case of significant Levene’s
test). In the absence of normal distribution, the comparison
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of group medians was performed by Mann-Whitney U
test.

Multivariate ANOVA (MANOVA) was performed to detect
age- and gender-related differences between direct descriptors
of the scaling function: sĤ(2), f Ĥ(2), ln(sŜσ (N)), ln(f Ŝσ (N)).
As changes occurring by coincidence is of concern, MANOVA
tests were used taking Ĥ(2), ln(sŜσ (N)), ln(f Ŝσ (N)) and rσ (s) (at
scales corresponding to the slow component s = 4,344, 4,828,
5,367, and 5,965) as dependent variables. The p < 0.05 of Wilks’s
test suggests that the same subjects are responsible for each of
the between-group differences. Finally, examining the degree of
correlation of dependent variables (expressed as r2) enables to
identify the most relevant endpoint parameters of multifractal
analysis.

Explaining the Variance Profiles of HbT
In order to identify a link between the altered scale-wise fractal
cross-correlation coefficient and the alteredmultifractal endpoint
parameters, the influence of rσ (s) as an independent variable
were evaluated on TSσ (2, s) in a general linear model (GLM).
The Bienaymé formula expresses an explicit relationship between
TSσ (2, s) and the scaling function values obtained for HbO, HbR,
and rσ (s) (Equation 7). Accordingly, the variability of TSσ (2, s)
were explained with the aid of multiple regression tests that were
performed for each temporal scales. The regressors of this model
were OSσ (2, s),

RSσ (2, s), and rσ (s) but categorical predictors (age
and gender) were not included.

Subsequently, – in addition to the regressors of the previously
described test—we took into account the effect of age and gender
by applying scale-wise covariance analysis (AnCova). Specifically,
age and gender were treated as categorical factors and OSσ (2, s),
RSσ (2, s), and rσ (s) as covariates. Before AnCova, homogeneity
of slopes model was evaluated for each s, significant result of
this test means that AnCova is inapplicable due to an interaction
between categorical predictors and covariates. In these cases the
separate slopes model was used which include these interaction
terms.

Software
For a more detailed description of our analytical flowchart as a
guide for the FMF-SSC analysis, see (Eke et al., 2000, 2012; Mukli
et al., 2015; Nagy et al., 2017). The above aspects of multifractal
analyses of rsNIRS time series have been implemented in Matlab
2012 (The MathWorks, Inc., Natick, MA, U.S.A.) by custom
scripts written by the authors based on the recently published
“MultiFracTool” software (Mukli et al., 2015; Nagy et al., 2017;
Racz et al., 2018). The toolbox can be requested from the
corresponding author. Statistical analyses were performed with
StatSoft Statistica 13.2.

RESULTS

The Presence of True Bimodal
Multifractality
All measured signals showed an apparent bimodal scaling
function. True multifractality was confirmed in 44 subjects, two

of them with an unacceptable fit of the bimodal model. For
further details, see Appendix in Supplementary Material.

Impact of Age-and Gender on Multifractal
Endpoint Parameters
In case of raw HbT signals, the degree of autocorrelation for the
slow component, marked by sĤ(2), significantly increased with
age unlike for the fast component (Figure 3A). Conversely, the
neural component obtained with CBSI significantly decreased
with age for the fast, but not for the slow component
(Figure 3B). In the elderly group, the hmax of the slow
component of the raw signal, shmax, was found increased
(Figure 3C), while it did not change with the CBSI-treated
signal. These changes were the opposite—similarly to Hurst
exponent—regarding f hmax in the young group (Figure 3D).
Regarding the foci, for the raw HbT signals they were
statistically the same in both age groups (Figure 3E), while
for the fast component of the CBSI-enhanced HbT signal
they were lower in elderly subjects (Figure 3F). Given that
the (SD(HbO)/SD(HbR) ratios—the key element in CBSI
model—did not differ between young and elderly groups
(p = 0.543), the above significant differences should be regarded
as real.

Age-related differences remained significant when the slow
and fast components were compared. Specifically, component-
wise contrast – defined as ln(sŜσ (N))/ln(f Ŝσ (N))—turned out
to be significantly different between the age groups (p = 0.03).
A concomitant—albeit non-significant—decrease characterizing
the fast component (p= 0.405) for focus contributed to an overall
increased ratio of foci (p= 0.067).

Comparing the multifractal parameters of cerebral
hemodynamic fluctuations of female and male subjects,
the only significant difference was observed for their HbO
slow component. Incorporating age groups rendered the
gender-related differences non-significant.

In order to prove that the significant differences in endpoint
parameters seen in Figure 3 attribute to alterations in a single
subject, endpoint parameters related to slow and fast component
were statistically evaluated in combination as dependent
variables in multivariate analysis. When scale-free endpoint
parameters of the same kind [Ĥ(2), hmax] were combined,
MANOVA revealed a strong correlation (r2 > 0.7). Furthermore,
significant multifractal endpoint parameters of slow component
of raw HbT and fast component of CBSI HbT showed joint
significance in a multivariate analysis (p = 0.045, Wilk’s test)
suggesting the coincident change of both components. Taken
it together, these findings indicate that the observed alterations
in the multifractal endpoint parameters resulted from subject-
wise aging. As to the key geometrical parameters of the
multifractal scaling functions, p-values obtained from Wilk’s test
indicated an overall non-significant influence of age. Of note
the two main estimates of the analysis – Ĥ(2) and ln(Ŝσ (N) –
showed positive correlation for the fast component of the CBSI-
pretreated (r2 = 0.46) and the slow component of the raw HbT
signal (r2 = 0.58). The p-values of the statistical analyses are
summarized Table 1.
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FIGURE 3 | Results of univariate statistical analysis of multifractal endpoint parameters. Ĥ(2) of slow and fast components in the two age groups calculated from raw

(A) and on CBSI-pretreated (B) HbT signals. hmax obtained from raw (C) and CBSI-treated (D) HbT signals. Focus of raw (E) and CBSI-pretreated (F) HbT signals.

Recall that the raw HbT signal represents neuronal and non-neuronal events combined, while the CBSI-pretreated signal is a enhanced representation of the

underlying neurodynamics. Accordingly, the fact that we found significant differences in the slow component for the raw HbT signal and in the fast component for the

CBSI-pretreated signals identifies the slow component emerging dominantly from vascular events, while the fast component attributed mainly to neurodynamics.

Influence of Age and Gender on the
HbO-HbR Relationship
Scale-Wise Fractal Cross-Correlation
The mean fractal scale-wise cross-correlation coefficient was
found higher at all scales in the elderly group (Figure 4A).

Importantly, this decrease in rσ (s)was more pronounced in
young participants at higher values of s achieving significance
(two-way ANOVA, confirmed by Tukey’s post-hoc test) at a
cluster of the corresponding high temporal scales (see the
probability profile on Figure 4A). Based on this parameter
calculated at these large scales, the oxy- and deoxyhemoglobin
fluctuations are uncorrelated (random) among the elderly and
were found anticorrelated in the young group. MANOVA
revealed a statistical coincidence between the age-related increase
in rσ (s) at specific high scales (corresponding to 2,172, 2,414,
2,683, and 2,982 s) and the same alteration observed for each
multifractal endpoint parameters [shmax,

sĤ(2) of the raw HbT
and f hmax,

f Ĥ(2) of CBSI-treated HbT]. In addition, concerning
rσ (s) and

TSσ (2, s) as dependent variables their close relationship
specifically appears at some of these aforementioned temporal

scales. Since rσ (s) is determined by the dynamics of oxygen
delivery and its extraction in the brain (i.e., supply and demand),
these are key results for discussing the impact of aging on cerebral
oxygenation.

Multifractal Covariance
In contrast to scale-wise fractal correlation analysis when
covariance is normalized by σ(s), the multifractal covariance
analysis allows for a moment-wise characterization of the scaling
properties of HbO-HbR coupling extending also for q 6= 2. This
method revealed a statistically significant age-related difference
concerning the fast component [see f hmax and ln(f ŜCov(N)),
Figure 4B], which is markedly correlated with f hmax (r

2 = 0.55)
and ln(f ŜCov(N)) (r2 = 0.69) obtained for CBSI-pretreated HbT
signals across age groups.

Power-law scaling of the multifractal HbO-HbR covariance
function may either originate from the independent scale-free
variance profiles of HbO and HbR or as from the coupled
fluctuations of the two. In case of the fast component, the
significant contribution from the latter is confirmed for the whole
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TABLE 1 | Significance of gender-related differences (p-values).

Parameter HbO–raw HbR–raw HbT–raw HbT–CBSI HbO vs. HbR

Slow component Ĥ(2) 0.938 0.086 0.559 0.437 0.673

hmax 0.600 0.273 0.849 0.416 0.656

1H15 0.828 0.671 0.305 0.591 0.852

fwhm 0.823 0.731 0.456 0.581 0.861

ln(sŜσ (N)) 0.408 0.539 0.273 0.296 0.494

Fast component Ĥ(2) 0.845 0.442 0.503 0.205 0.378

hmax 0.115 0.060 0.140 0.141 0.049

1H15 0.028 0.189 0.196 0.066 0.140

fwhm 0.014 0.220 0.247 0.071 0.138

ln(f Ŝσ (N)) 0.053 0.302 0.082 0.119 0.044

FIGURE 4 | Age-related differences revealed by scale-wise and scale-free analysis of oxy- and deoxyhemoglobin relationship. (A) Fractal correlation coefficient of

HbO and HbR as functions of scale in the elderly (upper) and young (middle) groups with the corresponding p-values (lower). At smin, these were above 0 and

decreased gradually toward-1 as s approached smax in both age groups. (B) Multifractal covariance of fhmax (upper) and ln(f Ŝσ (N); lower) of the fast component in

the young and elderly groups.

study population, given that ORH(q) derived from scale-wise
covariances differed from (OH(q)+RH(q))/2 both obtained at
q = 2 (p = 0.003, Wilcoxon matched pairs test). Moreover this
pattern was absent in the elderly group (p= 0.116), but not in the
young group (p= 0.006).

The correlation (r2) between dependent variables (i.e.,
multifractal endpoint parameters) captures the percentage of
mutual variance of multifractal HbO-HbR covariance profiles
and those obtained by SSC for the variance of CBSI-pretreated
HbT signals. The percentage of mutual variance was the highest
for ln(f ŜCov(N)) (r2 = 0.81), and there was a strong relationship
between their focus ratios (r2 = 0.72). However, the correlation
was moderate for f hmax (r2 = 0.56). To sum it up, results of

multifractal covariance analysis seems rather consistent with an
altered fast component of the CBSI-pretreated HbT signals.

Significance of Fractal Scale-Wise
Cross-Correlation
For the sake of comparison, we calculated fractal scale-wise
cross-correlation and averaged running Pearson and Spearman
correlation coefficients at the same time scales (Figure 5).

Variability of the HbT scaling function profiles at q = 2
and for all scales was explained as related to the independent
variables–rσ (s),

OSσ (2, s), and
RSσ (2, s)—based on the Bienaymé-

formula given in Equation 2 (Figure 6 top). First, a series of
multiple regression tests—not yet accounting for the effect of
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FIGURE 5 | Comparing means of different correlation coefficients between

HbO and HbR calculated for all subjects. We explain the less correlated values

observed for rσ (s) with the effect of calculation order on trends in the signal. In

case of the mean Pearson- and Spearman-coefficients, detrending and

averaging step come after calculating the correlation effectively neglecting the

fundamentally scale-free character of the processes. However, considering

fractal scale-wise correlation coefficient, this latter step is the last preceded by

averaging of bridge-detrended variances at a given scale. Please also note the

characteristic transient—indicated by red arrow—only appearing in rσ (s).

age and gender—were performed across all temporal scales that
yielded positive correlation between each regressors and TSσ (2,
s). Importantly, the standardized regression coefficients proved to
be significant for rσ (s) in case of all temporal scales. The highest
estimated effects were observed in case of OSσ (2, s) while this test
revealed the weakest effect of RSσ (2, s) being a non-significant
regressor of TSσ (2, s) at high scales (note the empty blue circles
on Figure 6 bottom).

Subsequently gender and age were incorporated in the
multiple regression model as categorical predictors to evaluate
their influence on the p-value of correlation between the
covariates and variance profiles related to CBV fluctuations
(TSσ (2, s)). In the GLM framework the appropriate choice was
AnCova or separate slopes model depending on the prerequisites
of each approach. Age in of itself turned out to be not
determinant of scale-wise hemodynamic fluctuations captured
by TSσ (2, s). It is the scale-wise cross-correlation on the basis
of which the impact of aging could be explained (Table 2).
These results confirm the outcome of multiple regression analysis
showing a significant and strong relationship between TSσ (2, s)
and OSσ (2, s) and a less steep but still significant relationship
between the dependent variable and the fractal scale-wise cross-
correlation coefficient.

DISCUSSION

In this study, we found that hemodynamics in the human
brain cortex captured by NIRS technology in most of the cases
exhibited a bimodal multifractal scaling emerging from a range
of low and high temporal scales (slow and fast components,
respectively). We suggest relating the slow component of

FIGURE 6 | Significance of multiple regression tests. (A) Scaling function value

of HbT as a function of OS(q, s) (left), RS(q, s) (middle) and scale-wise fractal

cross-correlation coefficient (right) acquired at equal scale and moment

(exemplary case at q = 2 and s = 4828). (B) Regression coefficients and their

significance (closed circle for cases of p < 0.05) related to scaling function

values of HbO, HbR; and rσ as functions of scale s. The estimated effect were

significant for all s values in case of OS(q and rσ (s), and the lower standardized

regression coefficients indicated the weak (not significant for all scales) effect

of RS(q, s). For further details, see main text.

the raw HbT signal to dominantly vascular (vasogenic, i.e.,
non-neural) dynamics, while we consider the fast component
primarily resulting from neurovascular coupling (i.e., neurogenic
component). In order to demonstrate the impact of healthy
aging, CBSI pretreatment of the raw HbT signal was necessary to
enhance the neurovascular contribution in the fast component.
Our main result is two-fold: first, we demonstrate that
the vasogenic hemodynamics (CBV fluctuations proportional
to HbT concentration changes) show increased long-range
autocorrelation in the elderly group compared to the young
group which is in agreement with what we had found previously
applying monofractal analysis (lowPSDw,e method5) within
comparable scaling ranges (Eke et al., 2006). Second, we show
that the fluctuations of the neural component are less correlated
in the elderly group. This opposite influence of healthy aging
on the slow vasogenic and the fast neurogenic fluctuations
is consistent with an attenuated NVC. In support of this
notion, we evidence that age-dependent alterations in HbO-
HbR relationship is a manifestation of altered neurovascular
coupling and also a determinant of scaling properties of CBV
dynamics. Specifically, in in silico experiments we substantiated

5low – right half (high frequencies) of the spectrum is excluded, w – windowing,

e – endmatching.
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TABLE 2 | Homogeneity of Slopes Model/Separate Slopes Model/Covariance

analysis results.

Effect Significance of the effect

Gender or Age (per se) Non-significant for any scale

Gender or Age (with interaction) Significant for 444 sec (Gender x Age x OSσ x
RSσ ), Significant for 1758 sec (see below)

OSσ (per se) Significant for all scales

RSσ (per se) Significant for time scales between 8 and 400

sec, non-significant for all time scales above

400 sec

OSσ or RSσ (with interaction) Significant for 444 sec (see above), significant

for 610 sec ( OSσ x RSσ x rσ ), significant for

1758 sec (see below)

rσ (per se) Significant for all scales

rσ (with interaction) Significant for 444 sec (see above), significant

for 1758 sec (for all interactions, with the

exception of Gender x rσ )

Interaction effects are denoted as “x”.

that (i) a decreased correlation in neurogenic fluctuations
is attributed to decreased incoming signaling, (ii) HbO-HbR
relationship became more correlated due to aging either as a
result of decreased incoming signaling concomitant to lesser
hemodynamic response or from increased vascular stiffening.
These alterations do indicate that linear CBV dynamics is
susceptible to aging. In contrast, non-linear CBV dynamics
is spared by aging as demonstrated in unaltered degree of
multifractality.

Multifractality of cerebral hemodynamics has been
investigated extensively in case of blood oxygen level dependent
(BOLD) signals using functional magnetic resonance imaging
(fMRI). The influence of brain activity was demonstrated in
the pioneering work of Shimizu et al. (2004). Later, findings
on the topology of multifractal parameters and methodological
refinements were reported (Wink et al., 2008; Ciuciu et al.,
2012). On data from a publicly available imaging repository
(Biswal et al., 2010), the effect of age and gender on multifractal
spectrum was shown for resting-state fMRI-BOLD signals (Ni
et al., 2014). While rsNIRS signals have been made subject to
multifractal analysis in an earlier feasibility study (Dzung, 2010;
Quang Dang Khoa and Van Toi, 2012), our study—to the best of
our knowledge—is the first reporting on it elucidating some of
the key underlying mechanisms using a scrutinized dataset with
proven true multifractality.

Multifractal CBV Dynamics
CBV dynamics in the human brain cortex was shown to follow
a complex, scale-free temporal pattern in the frequency domain
that could be captured in the 1/f β model, where β is spectral
index (Eke et al., 2006). The variance profile at q= 2 is analogous
to the power spectrum, thus their apparent similarity can be
readily shown (Figure 7). The estimated β obtained by lowPSDw,e

method is directly related to Ĥ(2), given the explicit relation of
H(2)=(β+1)/2 (Eke et al., 2000). In fact, the power spectrum is
equivalent to the Fourier transform of the signal’s autocorrelation

function according to Wiener-Khinchin theorem (He et al.,
2010)6. Since its decay follows a power law with 2Ĥ(2)−1 as
its exponent, Ĥ(2) and β̂ are interpreted as equivalent measures
of LRC in the fractional Gaussian noise / fractional Brownian
motion framework (Eke et al., 2002).

It should be recalled that Fourier transform builds on
independency of frequency components. As multifractality can
emerge from interactions betweenmultiple time scales (Ihlen and
Vereijken, 2010), it cannot be captured in the power spectrum
alone. Nevertheless, its presence still could be detected in the
form of phase-amplitude coupling [nested frequency, see Ref.
(He et al., 2010)]. Thus capturing multifractality in the time
domain can reveal the underlying multiplicative interactions
between the temporal scales of the observation with 1H15 and
fwhm as the measures of these cross-scale interactions (Ihlen and
Vereijken, 2010).

Separation of Neurogenic and Vasogenic Multifractal

Dynamics: CBSI-Pretreatment
In pursuit of the physiological origin of hemodynamic
fluctuations, the analyses were performed both on raw and
CBSI-pretreated (Cui et al., 2010) data. In addition, we
carried out in silico experiments to substantiate the need of
this preprocessing step to identify components dominated
by vasogenic and neurogenic influences, respectively (see
Supplementary Material). CBSI method builds on the
assumption that maximally correlated fluctuations of HbO
and HbR are not related to neural activity. Given our recent
demonstration of CBSI pretreatment enhancing the neuronal
component in the signal (Racz et al., 2017) our two-teared
approach of signal processing allows for a distinction between
influences of neuronal and non-neuronal nature in this study;
aspects of particular interest in the aging process. Accordingly,
the age-related differences of the calculatedmultifractal measures
revealed for the fast component of the pretreated signal should
reflect altered neurogenic fluctuations. Vice versa, we found
that the significant age-related differences in the multifractal
indices obtained for the slow component of raw NIRS signals
disappeared after applying CBSI. This indicated that the slow
component was non-neural, referred to as vasogenic.

Some authors pointed out specific limitations of CBSI to
isolate the neural component in the signal in fNIRS studies
using various stimulus response paradigms (Scholkmann et al.,
2014). Although the neural activity readily and always induces
anticorrelated dynamics in HbO and HbR—as postulated in
CBSI –, the response to a specific task may elicit systemic
confounding effects, too. In this regard, CBSI cannot be
considered to be immune to global effects (Tachtsidis et al.,
2008). Nevertheless, as we present results based on the analysis
of resting-state NIRS observations we do not need to deal with
such confounding influences in task.

In principle, we could not a priori exclude that CBSI-
pretreatment would not distort the signal. The formulation of

6Since Wiener-Khinchin theorem only applies to wide-sense stationary processes,

the autocorrelation function of the increment process is considered according to

the fGn6fBm framework.
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FIGURE 7 | Relationship between power spectrum and scaling function profiles obtained by the FMF-SSC method. Although multifractal analyses were performed in

the time domain, its design and results can be interpreted in the frequency domain as well owing to the explicit relationship between representation of dynamics in the

temporal and the spectral domains both for the raw (A) and CBSI-pretreated (B) signal. The ordinate shows both frequency and temporal scale. It is the

variance profile at q = 2 that corresponds well with the mean spectral estimates. The range of spectral estimates fall in between S(q, s) profiles for q = 15 and

q = −15. The fractal scaling range emerges from the (non-fractal) noise (of biological origin) dominating the low temporal scales. It contains a breakpoint, which

separates S(2, s) into a slow (associated with high temporal scales) and a fast (associated with intermediate temporal scales) scale-free component. This appears as a

low- and a very-low frequency spectral band in the frequency domain. For further details, see text. Component-based focus is indicated by asterisk (*) as ln(Ŝσ (N)) for

the raw (A) and ln(Ŝσ (N)) for the CBSI-pretreated HbT signal (B).

the pretreatment algorithm allows for analytical considerations
about the influence of CBSI on multifractal parameters, which
in cases of other pretreatment algorithms would be more
difficult to make. In particular, the above step in the algorithm
can be shown to affect only the scale-dependent measures
such as ln(Ŝσ (N)) and breakpoint scales but not the scale-free
parameters (Ĥ(2), hmax, 1H15, and fwhm), unlike with various
filteringmethods (Valencia et al., 2008). Nevertheless, these scale-
dependent influences spared the impact of age on scale-free
parameters because mean Oσ(N)/Rσ(N) were found very similar
in all measurement groups.

Origin of Multifractality in Resting-State

Hemodynamic Fluctuations
Fluctuations of rsNIRS signal related to neural activity should
be viewed as a sampled representation of an interim stage
from intrinsic signal generation throughout the brain to
the region of interest (ROI), where it is transformed into
hemodynamic fluctuations. The regionally recorded rsNIRS
signal—aside from systemic influences—is produced by the
NVC driven by incoming signaling. Directly, it represents
the hemodynamics within a population of vessels behaving
like viscoelastic balloons in the ROI. As to the non-neural
component of the rsNIRS signal, a likely origin of scale-
free behavior is the numerous weekly coupled vascular source
(diameter-dependent segmental oscillations along the arterial
tree) blending into a fractally correlated pattern (Colantuoni
et al., 1994).

Signal generation also raises questions about the spatial
dynamics and resting-state functional connectivity. Regarding
the incoming neural activity, electrocorticography records
captured across various locations in the brain cortex have
been shown scale-free temporal structuring (He et al., 2010;
He, 2011). Moreover, the power spectral density of cortical
EEG exhibits scale-free structuring not only in the temporal
but—in an interrelated manner—in the spatial domain, too,

(Freeman et al., 2003). Specifically, as demonstrated by these
authors, fluctuations spanning from high-frequency/low-power
bands to the low-frequency/high-power ranges reflect upon
neural events propagating across the micro-meso-macro scales
representing contributions from ion channels, across gyri
all the way to those of lobes, respectively. Hence a PSD
and scaling function representations of neurodynamics and
coupled hemodynamics could be viewed as capturing the
information flow within the system from its sources via
inhomogeneous network routes eventually converging onto
the signaling input of the monitored ROI (Buzsaki, 2006).
The sampled representation of this process will typically
show inhomogeneously distributed fluctuations, visible as
intermittent periods of small and large variability; genuine
properties of multifractal processes (Ihlen and Vereijken,
2010).

When the multiplicative cascading process was extended into
the spatial domain, a description was obtained comparable to
the one by the self-organizing branching process (Zapperi et al.,
1995); a refined extension of the SOC model (Bak et al., 1987).
The inference is that the intermittent in essence multifractal
temporal patterns and the inhomogeneous incoming network
connections are manifestations of the same phenomenon:
emergence of intermittent regional activity from multiple sites
of the brain converging via multiplicative interactions between
spatiotemporal scales as integrated incoming signaling in the
ROI.

Indeed, our findings related to fractal dynamics could
potentially reflect the presence of SOC (Bak et al., 1987)
in the observed physiological subsystems shaping cerebral
hemodynamics in the ROI. SOC, substantiating the 1/f noise-
type neurodynamics of the human brain, builds on the notion
that the brain dissipates the local low-frequency perturbation
elicited by external or internal stimuli without any particular
spatial or temporal scales (Stam, 2005; Bullmore et al., 2009;
Chialvo, 2010; Sporns, 2011). When interactions between scales
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occur, multifractality can readily emerge in systems showing
properties of SOC (Tebaldi et al., 1999; Lima et al., 2017).
Of relevance, in a recent rsNIRS study using 16 channels
sampling of resting-state hemodynamics in the PFC, it has been
evidenced that the presence of critical state in resting-state
dynamic functional connectivity (Racz et al., 2018). In sum, the
measured signals are considered as a composite of hemodynamic
fluctuations of vasogenic and those elicited by incoming signaling
of neurogenic origins with NVC as the link between the
two.

Interpretation of Multifractal Endpoint Parameters
The vasogenic component of the rsNIRS signal in terms of
its observed multifractal temporal patterns can be interpreted
as a consequence of attenuated neurovascular coupling—
reflected by an anticorrelated → random shift in the fractal
cross-correlation of HbO and HbR. As to the neurogenic
fluctuations here we explain the altered multifractal endpoint
parameters resulting from interactions between multiple time
scales along functional connections (Ihlen and Vereijken,
2010). Along with our focus-based multifractal formalism
(Mukli et al., 2015) and a small world implementation
(Watts and Strogatz, 1998) of the concept of self-organized
criticality (Mandelbrot, 1974; Ihlen and Vereijken, 2010) offer
a concise framework for the interpretation of the results
obtained in this study the way outlined in the followings.
Further details are provided below and please also see the
Supplementary Material.

Linear dynamics: H(2) vs. hmax

Since the degree of global LRC is quantified by H(2), its changes
can be interpreted as increased or decreased persistence, meaning
correlation of a non-stationary process (Eke et al., 2000; Herman
et al., 2011). Furthermore, Deligniéres et al. established a
relationship between network degeneracy—meaning partial
overlap in heterogeneous functional connections—and
output signal correlation (Delignières and Marmelat, 2013).
Accordingly, the Hurst exponent does not only reflect upon
global scale-free properties emerging from a network, but its
degree of degeneracy, too.

While LRC—and thus H(2)—reflects global scale-free
properties, the Hölder trajectory is a local scale-free measure
varying along the signal. Although multifractal analysis of
physiological data usually shows tightly correlating changes
of hmax and Ĥ(2), the interpretation of hmax as a measure of
correlation within the signal is only approximate, since it is
associated with q= 0, not q= 2.

Non-linear dynamics: 1H15 and fwhm
Though1H15 is defined onH(q) and fwhm is derived fromD(h),
their excellent correlation – owing to the deterministic formalism
established by Equations 3–5 – offers a rationale to interpret
them together. The applications of q-order statistics reveals non-
linear properties in scaling of the signal (Ashkenazy et al., 2003).
Thus these two multifractal endpoints are indeed equivalent
measures of multiplicative interaction between temporal scales
of the observed dynamics process (Ihlen and Vereijken, 2010).

Importantly,1H15 and fwhm should be regarded as indicators of
non-linear dynamics (Gómez-Extremera et al., 2016; Bernaola-
Galván et al., 2017).

Asymmetry of D(h)—an occasionally observed
phenomenon—could be incorporated in the analysis of
multifractality in terms of W=W+/W– where fwhm is equal
to the sum of W+ and W– (Wink et al., 2008), corresponding
to the width of left and right-half of the singularity spectrum.
We calculated the W and found the shape of our singularity
spectra symmetric and not affected by age and gender. We stress
that testing for true multifractality based on 1H15 statistics
(for details see Appendix in Supplementary Material) is an
essential prerequisite when it comes to evaluating changes
in these endpoint parameters in regard of multifractal CBV
dynamics.

A scale-dependent measure of hemodynamic power: focus
The focus of the scaling function is a key element of our
regression scheme for obtaining H(q) thus securing a robust
estimate of D(h) free of inversion (Mukli et al., 2015).
Importantly, it is also a robust scale-dependent statistics
estimated at signal length as a point of convergence for the scaling
function profiles. Since our analysis is based on the SSC method
using bridge-detrended variance, Ŝσ (N) is essentially the variance
associated with the whole signal. Given that the coefficient of
variance for our rsNIRS signals were the same, Ŝσ (N) is also the
measure of the signal mean, which is consistent with our SOC-
simulations (Figure S3). In the frequency domain, it is analogous
with the power of the DC-component of the signal (see the
behavior of spectra and scaling functions on Figure 7 as f→ 0).

Since its value is influenced by numerous other variables,
conclusions regarding hemodynamic alterations can be drawn
if focus is interpreted together with Ĥ(2). Given their
analogous frequency domain parameter the hemodynamic power
corresponding to a spectral band can be estimated. The separated
components of the rsNIRS signal have distinct scaling ranges,
and the area under the scaling function corresponding to such
SRs is an approximation of summed logarithmic variance of the
given component. This area can be explicitly calculated as it is
proportional with ln(Ŝσ (N)) andwidth of SR, and it also increases
with decreased Ĥ(2). Given the straightforward relationship
between summed variance and total hemodynamic power in
a given temporal/frequency range, the obtained results for the
area should be viewed as power of hemodynamic fluctuations
associated with the isolated components.

The Inference of Bimodality
The majority of the measured rsNIRS signal showed bimodal
scaling that was statistically confirmed by comparing the errors
of fits for the bimodal and unimodal models. We used a
scaling-range adaptive method to assess scaling exponents and
multifractal endpoint parameters of the two components, which
approach has already been used in our previous study (Nagy
et al., 2017) and in other studies as well (Ge and Leung, 2012;
Kuznetsov et al., 2013). The apparent structural heterogeneity
in the scaling functions of our dataset (convex and/or concave
transient range) prompted us to choose the robust moment-wise
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SR-adaptive method instead of an alternative (decomposition of
scaling function) that was specifically designed to assess additive
properties of bimodal scaling.

The bimodal analysis is an adaptive tool that separates two
fractal SRs within an overall range of scales between the lowest
temporal scale of 8 seconds (smin = 16) and 4096 seconds
(smax = 8192). Although the Fourier transform does not assume
an exact relationship between temporal scales and frequencies,
we can still assign the non-fractal “noise” component below smin

to a spectral range from 0.125 to 1Hz (i.e., Nyquist frequency). It
is known that this band is dominated by fluctuations of systemic
origin such as cardiac pulsation and respiration (Tian et al.,
2009; Sassaroli et al., 2012), which is corroboratory regarding the
exclusion of time scales shorter than 8 s.

Earlier we introduced the slow and fast components as
dominantly neurogenic and vasogenic, in the followings the
reader is taken through arguments substantiating this division.
The fast and slow components were identified in the time
domain within their respective analytical scaling ranges in
the time domain. In a frequency domain representation, they
correspond to the low- and very low-frequency oscillations (LFO
and VLFO, respectively; Figure 7). The LFO/VLFO classification
was used by authors evaluating fundamental spectral aspects of
NIRS dynamics (Obrig et al., 2000; Schroeter et al., 2004; Li
et al., 2013; Vermeij et al., 2014). LFO is generally regarded
of neural origin and thus is a commonly investigated in
NIRS studies of cognition (Chance et al., 1993) and functional
connectivity (Sasai et al., 2011). Also, it substantiated the concept
of fMRI-based functional connectivity ever since Biswal et al.
(1995) analyzed cross-correlations in paired signals by clipping
their power spectra to zero above 0.1Hz in order to identify
temporal coincidences in local activities thus excluding the global
influences. It seems reasonable to separate the VLFO component
since its dynamics is dominated by non-neural (Schroeter
et al., 2004; Li et al., 2013; Vermeij et al., 2014), particularly
endothelium-related mechanisms (Li et al., 2013; Chen et al.,
2014). VLFO would manifest as the slow, vasogenic component
in our study within the breakpoints and smax, while the range
down to smin corresponds to LFO (Figure 7). Nevertheless,
the debate is still ongoing over further contributors to CBV
dynamics such as vasomotion (Elwell et al., 1999) and Mayer-
waves (Sassaroli et al., 2012); effectively being excluded from
our analyses by setting smin to 8 s corresponding to 0.125Hz.
In fact, vasomotion may show up, but within a narrow range of
scales and at low fluctuation amplitudes thus having a weak effect
if any on our scaling analysis. Please note that the assessment
of bimodality and scale-free properties of both LFO and VLFO
were only possible because the analyses were performed with a
high-enough smax as recommended by Nagy et al. (2017). The
consequent statistical instability is compensated by our focus-
based regression model.

Healthy Aging Is Associated With Altered
Complexity of Cerebral Hemodynamics
In the present study, decreased Ĥ(2), hmax, and ln(Ŝσ (N))
were seen in the fast—neurogenic—component of the CBSI-
pretreated NIRS signals of the elderly participants. In addition,
we found an increased Ĥ(2) and hmax in the elderly group

for the slow—vasogenic—component of the raw rsNIRS signal
(Figure 3) with spared ln(Ŝσ (N)) and multifractality (i.e.,
no difference in 1H15 and fwhm). These changes in the
multifractal endpoint parameters are consistent with attenuated
neurovascular coupling concomitant to declining incoming
signaling and impaired vascular responses.

Altered Neurogenic Component Due to Declining

Neurodynamics
Multifractal measures of the fast component (∼ LFO) of the
CBSI-pretreated NIRS signal revealed a difference between young
and elderly subjects. Specifically, Ĥ(2), hmax, and ln(f Ŝσ (N))—
a key parameter characterizing the overall decline in the
neurogenic component—was found decreased among the elderly
participants. In principle, a decrease of Ĥ(2) and hmax could have
resulted from the contribution of biological noise. The decreased
ln(f Ŝσ(N)) can be directly interpreted as a decreased power in LF
oscillations which was concluded by other studies, too (Schroeter
et al., 2004; Li et al., 2013; Vermeij et al., 2014). Although the
decline in power appears at all frequencies, a disproportionate
decrease could still manifest from biological noise present across
the lower frequencies first seen in our previous study (Eke et al.,
2006). A recent numerical study clearly showed that varying
signal/noise ratio by adding white noise yielded underestimation
of H(q) (Ludescher et al., 2011). Hence our decreased Ĥ(q) and
hmax of the fast component can at least in part be explained by the
relative impact of biological noise progressively dominating the
higher temporal scales. Although our choice of smin exceeds this
range of temporal scales, this factor must be taken into account
in our interpretation of the observed alterations of the neurogenic
component associated with the LFO range in our rsNIRS signals.
In spite of the spurious estimates of Ĥ(q) attributable to the
increased relative impact of biological noise, the conclusion of
an overall decline in the neurogenic component can be still
held. Nevertheless, please note that CBSI-pretreatment of raw
HbT signal effectively removes the impact of non-anticorrelated
dynamics in the signal. Therefore the impact of biological noise
is unlikely and the observed changes should be regarded as real.

This allows us to interpret the decreased focus as a sign
of decreased incoming signaling in line with the dominantly
neurogenic origin of the LFO and the aforementioned in
silico observations (Supplementary Material). As multifractality
can be viewed as resulting from cross-scale spatiotemporal
interactions (Monto, 2012), unchanged 1H15 and fwhm suggest
that healthy aging spared these interactions within the incoming
networks.

As to the multiple mechanisms involved in neurogenic aspects
of the aging process, based on our results we argue that even
healthy aging leads to progressive attenuation in incoming
signaling that to some unknown extent could be masked by
impaired neurovascular coupling. The aging process is known
leading to graymatter atrophy associated with dropping neuronal
count (McGeer et al., 1984) and lower gray matter density
(Sowell et al., 2003) along with impaired synaptic activity. The
latter is known to be prevailing in postmenopausal women
due to lower levels of estrogen (Gibbs and Aggarwal, 1998;
Khan et al., 2013). In addition, an age-related decrease in
the hemodynamic response elicited by cognitive task has been
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observed in the human prefrontal cortex by NIRS (Schroeter
et al., 2004). Several studies have evidenced that significant
changes in resting state functional connectivity take place in
the aging brain at large and small spatial scales alike with
inference to temporal dynamics (Ferreira and Busatto, 2013).
For example, the structural changes occurring in the aging brain
imply changes in its functional connectivity readily manifesting
in altered parameters of complexity parameters (Sun et al.,
2012). Specifically, global deleterious effects of older age has
been reported on functional networks (Achard and Bullmore,
2007) mounting to “topological marginalization” like that of the
prefrontal cortex due to segregation in the global network. It
was suggested that even healthy aging disrupts the underlying
networks by severing the long-range connections, especially in
higher-function areas like the prefrontal cortex (Ferreira and
Busatto, 2013). In a sample of subjects (19–80 years) a linear
effect of age associated with impaired resting-state functional
connectivity has been demonstrated (Mevel et al., 2013).

Indeed, when eliminating the multiplicative neural
interactions across spatial scales in an interaction-dominant
model of human cognition (Ihlen and Vereijken, 2010), more
aggregated, focal activities remain. Putatively, this model
behavior (global→ focal shift in intrinsic activities of the brain)
is capable of explaining the loss of complexity in our rsNIRS
signal as the sign of decreased incoming signaling. Nevertheless,
this takes place in the PFC during healthy aging to such an extent
that would still not interfere with the cross-scale spatiotemporal
interactions in the observed dynamics captured in unaltered
parameters of multifractality.

A further theory suggests the role of dedifferentiation in
the aging of physiological subsystems like the brain function
(Sleimen-Malkoun et al., 2014). Experiment using a motor task
paradigm indeed demonstrated that in addition to stronger
activation in dedicated regions to a motor task, older adults
generally exhibit activation of additional areas of the brain not
or only marginally involved in young participants (Sleimen-
Malkoun et al., 2014). Approaches relying on fMRI-based
connectivity studies accounting for the difference in task and
connectivity paradigms demonstrated that higher levels of
activity coexists with disrupted connectivity (Sala-Llonch et al.,
2015).

Altered Vasogenic Component Due to Impaired

Vascular Responses
The observations regarding the vasogenic component are
compatible with those of our previous monofractal study using
raw rsNIRS signals reporting on an increased spectral index
β in the elderly suggesting the impact of age-related vascular
sclerosis on CBV dynamics (Eke et al., 2006). The increased
Ĥ(2) and focus indicate a more correlated vascular dynamics
with decreased hemodynamic power in the elderly group. The
mean singularity spectrum for the vasogenic component was
found shifted to the right (reflected by hmax) with maintained
shape and width (Figure 8). Consistent with this view, we
hypothesize that healthy aging leads to this increased correlation
pattern in the vasogenic (VLF) component as a result of
vessel stiffening and a decline in the endothelium-mediated

(metabolic) regulation of cerebrovascular smooth muscle tone.
Our evidence to this hypothesis is indirect, though: the result of
CBSI-pretreatment and the temporal scales characterizing VLF
hemodynamics. Nevertheless, this interpretation of our results is
in agreement with several studies on this component of cerebral
hemodynamics. In an rsNIRS study investigating the effect of
age, Li et al. demonstrated (Li et al., 2013) decreased average
amplitudes of spontaneous oscillations in the elderly. The latter
authors assumed that the oscillations in the 0.005–0.02Hz range
originated from the endothelium. Aging has also been shown
decreasing the responsiveness of distal segments of the arterial
tree due to endothelial dysfunction (Toda, 2012) and increasing
wall stiffness (Schroeter et al., 2004; Zhu et al., 2011; Wardlaw
et al., 2013; Vermeij et al., 2014). The functional hyperemia
studied by selectively interrupting endothelial signaling in the
somatosensory cortex of rats confirmed its key role in mediating
the very slow—maintained—hemodynamic response brought
about by NVC (Chen et al., 2014). The vascular decline in the
elderly thus may attenuate the local hemodynamic response, too.

As to the attenuation in local vascular dynamics, indeed,
the local hemodynamic response elicited by incoming neural
activity is known to be driven locally by fast glutamate-mediated
signaling, andmore globally by amine- and ACh-mediated neural
systems (Attwell and Iadecola, 2002). Both have been shown
declining with age (McGeer et al., 1984; Gibbs and Aggarwal,
1998; Attwell and Iadecola, 2002). The above scenario may
indicate that an impaired neurovascular coupling (Fabiani et al.,
2014; Tarantini et al., 2017) could to some degree mask the
effects of deterioration of connectivity on neurogenic signal
complexity.

Implications of HbO-HbR Relationship
Age-related physiological dysregulation is essentially a gradual
and typically irreversible loss of regulatory control originating
from structural instabilities in regulatory systems (Cohen, 2016).
We shall discuss this phenomenon concerning parameters
reflecting neurovascular coupling with coupled HbO-HbR
dynamics in its focus. We used multifaceted approach for
its characterization: (i) scale-wise fractal cross-correlation, (ii)
multifractal covariance and (iii) statistical analysis of Bienaymé-
formulation of the HbO-HbR relationship. At this end, we
interpret our results as the impact of age on the output of
an integrated system of neurodynamics, coupled HbO-HbR
dynamics and hemodynamics as genuinely interrelated aspects of
neurovascular coupling.

Age-Related Increase in Scale-Wise Fractal

Cross-Correlation
In elderly participants, the higher rσ (s) capturing HbO-
HbR relationship indicate the relatively larger contribution
of correlating systemic hemodynamics to the recorded NIRS
signal (which) is also consistent with declining neurodynamics.
Furthermore, scale-wise correlation coefficients were found
significantly elevated for rather high temporal scales directly
influencing this domain of the variance profiles associated with
the vasogenic component (Figure 4A). In a certain range of
scales characterizing VLFO, the increase in rσ (s) values were
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FIGURE 8 | Input and output parameters of the focus-based multifractal formalism in the young and elderly groups for the slow (vasogenic) and fast (neurogenic)

components of CBV fluctuations. Average scaling functions (A,B) and average singularity spectra (C,D) obtained for the raw and CBSI-pretreated HbT signal. Age

coding: young—red (A,C), blue (C,D); elderly—green (A,C), orange (B,D). Preserved focus and increased correlation characterize the age-related changes of the

vasogenic component (A). Conversely, these parameters of the neurogenic component indicate a decline apparent in the average scaling functions (B). The alteration

of hmax is a good indicator of the right-ward shift of D(h) for the vasogenic (C) and a left-ward shift for the neurogenic component (D). It also reveals altered correlation

properties if the shape and distribution of singular behavior is not much affected, which happens to be the case in this study as the distribution of Hölder exponents

was found symmetrical around hmax irrespective of age and gender.

significantly associated with the shmax and sĤ(2) of the raw
HbT. Given the demonstrated association between endothelial-
mediated responses and VLFO (Stefanovska et al., 1999), the
pattern found in our study should be regarded as evidence
supporting the endothelial contribution to the age-related
increase in shmax and

sĤ(2).
Analyzing the coupled fluctuations of oxy- and

deoxyhemoglobin has been used to assess cerebral oxygenation
changes and the underlying processes (Reinhard et al., 2006;
Wylie et al., 2009; Pierro et al., 2012). There is scarce evidence
to determine the effects of aging on their relationship and the
rationale behind the utilized parameters is also debatable. Please
note the difference in the scale-wise pattern of rσ (s) only showing
a clear gradual decrease below ≈50–100 s (see the red arrow on
Figure 5). It is reasonable to assume that such pattern reflects
the relative contribution of mechanisms eliciting correlated or
anticorrelated chromophore dynamics. Supposing the origin
of the anticorrelated dynamics within the local balloons, and
regarding the correlated dynamics mainly of systemic origin,
this pattern may be informative of a relative impact of local
and systemic hemodynamics on our measured rsNIRS signals.
Specifically, local determinants of oxygen supply and extraction
dominate the correlation across wide range of frequencies below
0.01Hz (Stefanovska et al., 1999) emphasizing the potential
contribution of spatiotemporally sustained response mediated by
astrocyte-endothelial signaling (Iadecola and Nedergaard, 2007).

The Significance of Non-linear Relationship Revealed

by Multifractal Covariance Analysis
While scale-wise cross-correlation analysis does not reveal scale-
free properties, multifractal covariance analysis is specifically
designed to characterize LRCs and multifractality in the coupled
HbO-HbR dynamics. The covarying fluctuations of HbO and
HbR originate from their respective individual fluctuations and
the directly coupled dynamics of the exchange between the two
compartments. Following the approach of Kristoufek (2011) the
deviation of ORĤ(2) from (OĤ(2)+RĤ(2))/2 indicates oxygen
exchange within the hemoglobin pool. We found a clearly
significant decrease of ln(f ŜCov(N)) in the elderly (Figure 4B)
indicating weakening of the coupled fluctuation of HbO and
HbR. Indeed, the inference is an upset balance between oxygen
demand and supply. Given the strong association between
the foci of the fast component of the covariance scaling
function and of CBSI-pretreated signal scaling function, this
change supposedly can be attributed to the age-related decline
in neurodynamics. Although at a weaker significance and
lower correlation with the corresponding multifractal endpoint
parameter (obtained for multifractal covariance analysis and
multifractal analysis of CBSI-pretreated signals, respectively),
the decreased f hmax of HbO-HbR covariance in the elderly
participants besides its similar pattern with f hmax of neurogenic
fluctuations supports this notion. Clearly, more evidence is
needed coming from measurements and synthesized datasets
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to elaborate and consolidate physiological models for this
interpretation.

Although our approach is essentially similar to themultifractal
detrended- (Zhou, 2008), height cross-correlation (Kristoufek,
2011) analyses and cross-wavelet analysis (Ciuciu et al., 2014;
Jiang et al., 2016), this is the first paper describing and utilizing
the bivariate adaptation ofmultifractal SSC analysis. Owing to the
similarities between our implementation and other time domain
algorithms a reliable parameter estimation was expected. A
performance characterization of multifractal covariance analysis
on synthetic signals with known degree of correlation, while
is certainly desirable, but is beyond the scope of the present
study.

The Importance of Coupled HbO-HbR Fluctuations

Driving Cerebral Hemodynamics
Physiologically, oxygen consumption related to neural activity
is not blood flow-limited, but rather neural activity controls
the CMRO2 and cerebral hemodynamics (Raichle and Mintun,
2006). Consequently, it is plausible to explain variations of
CBV fluctuations (proportional to the measured HbT signal)
as a function of HbO-HbR relationship providing insight in
variations in cerebral oxygenation. The explicit deterministic,
quantitative relationship between key variables of the study
established by Bienaymé-formula (Equation 2) offers an explicit
way assigned by GLM to evaluate their role with special emphasis
on rσ (s).

Scale-wise cross-correlation is a robustly significant
determinant of HbT fluctuations at all temporal scales within
the framework of GLM. Omitting either age and gender from
the statistical analyses (i.e., multiple regression, Figure 6) or
incorporating these categorical variables in it (AnCova/separate
slopes) yields essentially the same outcome on the role of rσ (s).
Considering the impact of age on rσ (s) and the age-corrected
dependence of rσ (s) CBV fluctuations (see Table 2) it can be
concluded that age exerts its effect on TSσ (2, s) in part via
rσ (s) shifting toward uncorrelated chromophore dynamics.
The impact of weakened HbO-HbR coupling in the elderly—
supposedly due to declining neurodynamics—is clearly seen
in the age-related changes of multifractal endpoint parameters
characterizing cerebral hemodynamics.

Limitations and Future Perspectives
Acquiring additional modalities would have allowed for a
more straightforward physiological interpretation of the signal.
Specifically, transcranial Doppler measurement (capturing blood
flow velocity in the middle cerebral artery) or continuous blood
pressure records offer measures on systemic influences that could
have been regressed out. To compensate, we applied CBSI to
remove these influences from the signal. Further development
and testing of robust pre-processing methods are in place to
further enhance the interpretation of multifractal measures of
physiological processes.

The intimate relationship between multifractal hemodynamic
fluctuations and functional connectivity has been demonstrated
and characterized on intrinsic fMRI networks (Ciuciu
et al., 2014) and by revealing scale-free network dynamics

in the prefrontal cortex captured by NIRS (Racz et al.,
2018). In this comparison, our single-region measurement
measurement appears like a limitation (Novi et al., 2016).
However, in fact, we present an analytical framework which
is capable of integrating aspects on incoming signaling with
those of regional hemodynamics elicited by neurovascular
coupling.

The tools developed for characterizing the coupled HbO-
HbR dynamics have potentials in other applications, too. The
fractal scale-wise correlation analysis captures linear aspects
while the multifractal covariance analysis adds a non-linear
dimension to the assessment of coupling between non-stationary
time series. These methods open new ways in uni- and
multimodal applications to investigate functional connectivity or
neurovascular coupling, respectively.

CONCLUSIONS

Mono- and multifractal approaches have greatly enriched our
insight of biological complexity in particular that of the
brain (Bullmore and Sporns, 2009; Herman et al., 2009; Ihlen
and Vereijken, 2010; Nagy et al., 2017; Racz et al., 2018).
To the best of our knowledge, this study is the first using
consolidated datasets with tested and proven correlation-type
multifractality for an in-depth characterization of resting-state
NIRS fluctuations. Here we interpret the multifractality of single-
region cerebral hemodynamics as resulting from neurogenic
oscillations via cross-scale interactions blending into a scale-
free intermittent arrhythmic pattern via neurovascular coupling.
However, the intrinsic and endothelium-evoked heterogeneous
oscillations of the vascular smooth muscle tone give rise
to multifractality of vasogenic fluctuations. The multifractal
endpoint parameters obtained from raw and pre-processed signal
attest to the impact of healthy aging on cerebral hemodynamic
fluctuations in the human prefrontal cortex. Specifically, we
report that the total power of very-low frequency—vasogenic—
oscillations of CBV decreased due to a preserved value
of focus and an increase of LRC, (sĤ(2)); the latter is
concomitant to the right-shifting singularity spectra [D(h) along
with its shmax]. As to the hemodynamic fluctuations elicited
by neural activity—related to low-frequency oscillations—we
show a general decline indicated by decreased Ĥ(2), hmax,
and focus of the neurogenic component. On the contrary,
parameters reflecting degree of multifractality are the same in
the group of young and elderly subjects which demonstrates
non-pathological aging spares non-linear hemodynamics. In
case of the elderly participants, the anticorrelation of HbO
and HbR fluctuations were barely present at high temporal
scales, while an attenuated cross-correlation was revealed by
multifractal covariance analysis. We show that the impact of
age on the parameters of neuro- and vasogenic components
must have resulted from the age-related alterations in HbO-HbR
coupling. In our study, the HbO-HbR relationship appears as
a key element directly influenced by the neuronal activity and
directly coupled to CBV dynamics via neurovascular coupling
which seems like sensitive to aging. We suggest that decreased
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incoming signaling and the prevalence of an altered pattern
of moment-to-moment HbO-HbR coupling could contribute to
the mismatch between oxygen demand and supply. Together
with vascular dysfunction could well be considered as factors
behind the observed age-dependent alterations of cerebral
hemodynamics.

AUTHOR CONTRIBUTIONS

PM adapted the multifractal analytical framework to resting-
state NIRS signals, performed the analysis on measured data
and wrote the manuscript. ZN developed methods and helped
writing the manuscript. FR implemented a testing framework
and assessed truemultifractality of themeasured data. PH carried

out the measurements. AE helped developing and writing the
manuscript and provided conceptual guidance in the study.

ACKNOWLEDGMENTS

The authors acknowledge the support from the
Hungarian Scientific Research Found OTKA grant T 034122
awarded to AE.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.01072/full#supplementary-material

REFERENCES

Achard, S., and Bullmore, E. (2007). Efficiency and cost of

economical brain functional networks. PLoS Comput Biol. 3:e17.

doi: 10.1371/journal.pcbi.0030017

Ashkenazy, Y., Havlin, S., Ivanov, P. C., Peng, C. K., Schulte-Frohlinde,

V., and Stanley, H. E. (2003). Magnitude and sign scaling in power-

law correlated time series. Phys. A Statist. Mech. Appl. 323, 19–41.

doi: 10.1016/S0378-4371(03)00008-6

Attwell, D., and Iadecola, C. (2002). The neural basis of functional brain imaging

signals. Trends Neurosci. 25, 621–625. doi: 10.1016/S0166-2236(02)02264-6

Bak, P., Tang, C., and Wiesenfeld, K. (1987). Self-organized criticality:

an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384.

doi: 10.1103/PhysRevLett.59.381

Barabási, A. L., and Vicsek, T. (1991). Multifractality of self-affine fractals. Phys.

Rev. A 44, 2730–2733. doi: 10.1103/PhysRevA.44.2730

Barabási, A. L., Szépfalusy, P., and Vicsek, T. (1991). Multifractal spectra of multi-

affine functions. Physica A 178, 17–28. doi: 10.1016/0378-4371(91)90072-K

Bassingthwaighte, J. B., Liebovitch, L. S., and West, B. J. (1994). Fractal Physiology.

New York, NY: Oxford University Press.

Beckers, F., Verheyden, B., and Aubert, A. E. (2006). Aging and nonlinear heart

rate control in a healthy population. Am. J. Physiol. Heart Circ. Physiol. 290,

H2560–H2570. doi: 10.1152/ajpheart.00903.2005

Bernaola-Galván, P. A., Gómez-Extremera, M., Romance, A. R., and Carpena, P.

(2017). Correlations in magnitude series to assess nonlinearities: Application

to multifractal models and heartbeat fluctuations. Phys. Rev. E 96:032218.

doi: 10.1103/PhysRevE.96.032218

Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010).

Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A.

107, 4734–4739. doi: 10.1073/pnas.0911855107

Biswal, B., Yetkin F. Z., Haughton, V. M., and Hyde, J. S. (1995). Functional

connectivity in the motor cortex of resting human brain using echo-planar mri.

Magn. Reson. Med. 34, 537–541. doi: 10.1002/mrm.1910340409

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical

analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198.

doi: 10.1038/nrn2575

Bullmore, E., Barnes, A., Bassett, D. S., Fornito, A., Kitzbichler, M.,

Meunier, D., et al. (2009). Generic aspects of complexity in brain

imaging data and other biological systems. NeuroImage 47, 1125–1134.

doi: 10.1016/j.neuroimage.2009.05.032

Buzsaki, G. (2006). Rhythms of the Brain. New York, NY: Oxford University Press.

Caccia, D. C., Percival, D., Cannon, M. J., Raymond, G., and Bassingthwaighte, J.

B. (1997). Analyzing exact fractal time series: evaluating dispersional analysis

and rescaled range methods. Phys. A Statist. Mech. Appl. 246, 609–632.

doi: 10.1016/S0378-4371(97)00363-4

Chance, B. (1994). Current state of methodology on hemoglobin oximetry in

tissues. Adv. Exp. Med. Biol. 345, 23–32.

Chance, B., Nioka, S., and Zhao, Z. (2007). A wearable brain imager. IEEE Eng.

Med. Biol. Mag. 26, 30–37. doi: 10.1109/MEMB.2007.384093

Chance, B., Zhuang, Z., UnAh, C., Alter, C., and Lipton, L. (1993). Cognition-

activated low-frequency modulation of light absorption in human brain. Proc.

Natl. Acad. Sci. U.S.A. 90, 3770–3774. doi: 10.1073/pnas.90.8.3770

Chen, B. R., Kozberg, M. G., Bouchard, M. B., Shaik, M. A., and Hillman,

E. M. (2014). A critical role for the vascular endothelium in functional

neurovascular coupling in the brain. J. Am. Heart Assoc. 3:e000787.

doi: 10.1161/JAHA.114.000787

Chialvo, D. R. (2010). Emergent complex neural dynamics. Nat. Phys. 6, 744–750.

doi: 10.1038/Nphys1803

Ciuciu, P., Abry, P., and He, B. J. (2014). Interplay between functional connectivity

and scale-free dynamics in intrinsic fMRI networks. Neuroimage 95, 248–263.

doi: 10.1016/j.neuroimage.2014.03.047

Ciuciu, P., Varoquaux, G., Abry, P., Sadaghiani, S., and Kleinschmidt, A. (2012).

Scale-free and multifractal time dynamics of fmri signals during rest and task.

Front. Physiol. 3:186. doi: 10.3389/fphys.2012.00186

Clauset, A., Shalizi, C. R., and Newman, M. E. J. (2009). Power-law distributions in

empirical data. SIAM Rev. 51, 661–703. doi: 10.1137/070710111

Cohen, A. A. (2016). Complex systems dynamics in aging: new

evidence, continuing questions. Biogerontology 17, 205–220.

doi: 10.1007/s10522-015-9584-x

Colantuoni, A., Bertuglia, S., and Intaglietta,M. (1994).Microvascular vasomotion:

origin of laser Doppler flux motion. Int. J. Microcirc. Clin. Exp. 14, 151–158.

Cope, M., Delpy, D. T., Reynolds, E. O., Wray, S., Wyatt, J., and van der Zee, P.

(1988). Methods of quantitating cerebral near infrared spectroscopy data. Adv.

Exp. Med. Biol. 222, 183–189. doi: 10.1007/978-1-4615-9510-6_21

Csermely, P. (2006).Weak Links: The universal key to the stability of networks and

complex systems. Berlin; Heidelberg: Springer.

Cui, X., Bray, S., and Reiss, A. L. (2010). Functional near infrared spectroscopy

(NIRS) signal improvement based on negative correlation between oxygenated

and deoxygenated hemoglobin dynamics. Neuroimage 49, 3039–3046.

doi: 10.1016/j.neuroimage.2009.11.050

Davies, R. B., and Harte, D. S. (1987). Tests for hurst effect. Biometrika 74, 95–101.

doi: 10.1093/biomet/74.1.95

Delignières, D., andMarmelat, V. (2013). Degeneracy and long-range correlations.

Chaos 23:043109. doi: 10.1063/1.4825250

Devor, A., Dunn, A. K., Andermann, M. L., Ulbert, I., Boas, D. A., and Dale,

A. M. (2003). Coupling of total hemoglobin concentration, oxygenation,

and neural activity in rat somatosensory cortex. Neuron 39, 353–359.

doi: 10.1016/S0896-6273(03)00403-3

Drake, C. T., and Iadecola, C. (2007). The role of neuronal signaling in controlling

cerebral blood flow. Brain Lang. 102, 141–152. doi: 10.1016/j.bandl.2006.08.002

Dutta, S. (2010). Eeg pattern of normal and epileptic rats: monofractal or

multifractal? Fractals 18, 425–431. doi: 10.1142/S0218348x10005081

Dzung, N. T. (2010). “Multifractality in NIRS data of brain activity,” in IFMBE

Proceedings (Ho Chi Minh City), 80–83.

Frontiers in Physiology | www.frontiersin.org 18 August 2018 | Volume 9 | Article 1072

https://www.frontiersin.org/articles/10.3389/fphys.2018.01072/full#supplementary-material
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.1016/S0378-4371(03)00008-6
https://doi.org/10.1016/S0166-2236(02)02264-6
https://doi.org/10.1103/PhysRevLett.59.381
https://doi.org/10.1103/PhysRevA.44.2730
https://doi.org/10.1016/0378-4371(91)90072-K
https://doi.org/10.1152/ajpheart.00903.2005
https://doi.org/10.1103/PhysRevE.96.032218
https://doi.org/10.1073/pnas.0911855107
https://doi.org/10.1002/mrm.1910340409
https://doi.org/10.1038/nrn2575
https://doi.org/10.1016/j.neuroimage.2009.05.032
https://doi.org/10.1016/S0378-4371(97)00363-4
https://doi.org/10.1109/MEMB.2007.384093
https://doi.org/10.1073/pnas.90.8.3770
https://doi.org/10.1161/JAHA.114.000787
https://doi.org/10.1038/Nphys1803
https://doi.org/10.1016/j.neuroimage.2014.03.047
https://doi.org/10.3389/fphys.2012.00186
https://doi.org/10.1137/070710111
https://doi.org/10.1007/s10522-015-9584-x
https://doi.org/10.1007/978-1-4615-9510-6_21
https://doi.org/10.1016/j.neuroimage.2009.11.050
https://doi.org/10.1093/biomet/74.1.95
https://doi.org/10.1063/1.4825250
https://doi.org/10.1016/S0896-6273(03)00403-3
https://doi.org/10.1016/j.bandl.2006.08.002
https://doi.org/10.1142/S0218348x10005081
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukli et al. Multifractal Cerebrocortical Hemodynamics and Aging

Eke, A., and Hermán, P. (1999). Fractal analysis of spontaneous fluctuations in

human cerebral hemoglobin content and its oxygenation level recorded by

NIRS. Adv. Exp. Med. Biol. 471, 49–55. doi: 10.1007/978-1-4615-4717-4_7

Eke, A., Hermán, P., and Hajnal, M. (2006). Fractal and noisy CBV dynamics in

humans: influence of age and gender. J. Cereb. Blood Flow Metab. 26, 891–898.

doi: 10.1038/sj.jcbfm.9600243

Eke, A., Hermán, P., Bassingthwaighte, J. B., Raymond, G. M., Percival, D.

M., Cannon, M., et al. (2000). Physiological time series: distinguishing

fractal noises from motions. Pflügers Archiv. Eur. J. Physiol. 439, 403–415.

doi: 10.1007/s004249900135

Eke, A., Herman, P., Kocsis, L., and Kozak, L. R. (2002). Fractal characterization

of complexity in temporal physiological signals. Physiol. Meas. 23, R1–R38.

doi: 10.1088/0967-3334/23/1/201

Eke, A., Herman, P., Sanganahalli, B. G., Hyder, F., Mukli, P., and Nagy, Z. (2012).

Pitfalls in fractal time series analysis: Fmri BOLD as an exemplary case. Front.

Physiol. 3:417. doi: 10.3389/fphys.2012.00417

Elwell, C. E., Springett, R., Hillman, E., and Delpy, D. T. (1999). Oscillations in

cerebral haemodynamics. Implications for functional activation studies. Adv.

Exp. Med. Biol. 471, 57–65.

Fabiani, M., Gordon, B. A., Maclin, E. L., Pearson, M. A., Brumback-Peltz,

C. R., Low, K. A., et al. (2014). Neurovascular coupling in normal aging:

a combined optical, ERP and fMRI study. Neuroimage 85 (Pt 1), 592–607.

doi: 10.1016/j.neuroimage.2013.04.113

Ferreira, L. K., and Busatto, G. F. (2013). Resting-state functional

connectivity in normal brain aging. Neurosci. Biobehav. Rev. 37, 384–400.

doi: 10.1016/j.neubiorev.2013.01.017

Firbank, M., Okada, E., and Delpy, D. T. (1998). A theoretical study of the signal

contribution of regions of the adult head to near-infrared spectroscopy studies

of visual evoked responses. Neuroimage 8, 69–78. doi: 10.1006/nimg.1998.0348

Fox, M. D., and Raichle, M. E. (2007). Spontaneous fluctuations in brain activity

observed with functional magnetic resonance imaging. Nat. Rev. Neurosci. 8,

700–711. doi: 10.1038/nrn2201

Freeman, W. J., Holmes, M. D., Burke, B. C., and Vanhatalo, S. (2003). Spatial

spectra of scalp EEG and EMG from awake humans. Clin. Neurophysiol. 114,

1053–1068. doi: 10.1016/s1388-2457(03)00045-2

Frisch, U., and Parisi, G. (1985). “Turbulence and predictability in geophysical

fluid dynamics and climate dynamics,” in Fully Developed Turbulence and

Intermittency Appendix: On the Singularity Structure of Fully Developed

Structure, eds M. Ghil, R. Benzi, and G. Parisi (Amsterdam: North-Holland),

823.

Ge, E., and Leung, Y. (2012). Detection of crossover time scales in

multifractal detrended fluctuation analysis. J. Geogr. Syst. 15, 115–147.

doi: 10.1007/s10109-012-0169-9

Gibbs, R. B., and Aggarwal, P. (1998). Estrogen and basal forebrain cholinergic

neurons: implications for brain aging and Alzheimer’s disease-related cognitive

decline. Horm. Behav. 34, 98–111. doi: 10.1006/hbeh.1998.1451

Goldberger, A. L., Amaral, L. A., Hausdorff, J. M., Ivanov, P. C. h., Peng, C. K.,

and Stanley, H. E. (2002). Fractal dynamics in physiology: alterations with

disease and aging. Proc. Natl. Acad. Sci. U.S.A. 99 (Suppl. 1), 2466–2472.

doi: 10.1073/pnas.012579499

Gómez-Extremera, M., Carpena, P., Ivanov, P. c. h., and Bernaola-Galván,

P. A. (2016). Magnitude and sign of long-range correlated time series:

Decomposition and surrogate signal generation. Phys. Rev. E 93:042201.

doi: 10.1103/PhysRevE.93.042201

Grech, D., and Pamuła, G. (2012). Multifractal background noise of monofractal

signals. Acta Phys. Pol. 121(2 B), B34–B39. doi: 10.12693/APhysPolA.121.B-34

He, B. J. (2011). Scale-free properties of the functional magnetic resonance

imaging signal during rest and task. J. Neurosci. 31, 13786–13795.

doi: 10.1523/JNEUROSCI.2111-11.2011

He, B. J. (2014). Scale-free brain activity: past, present, and future. Trends Cogn.

Sci. 18, 480–487. doi: 10.1016/j.tics.2014.04.003

He, B. J., Zempel, J. M., Snyder, A. Z., and Raichle, M. E. (2010). The temporal

structures and functional significance of scale-free brain activity. Neuron 66,

353–369. doi: 10.1016/j.neuron.2010.04.020

Herman, P., Kocsis, L., and Eke, A. (2009). Fractal characterization of complexity

in dynamic signals: application to cerebral hemodynamics. Methods Mol. Biol.

489, 23–40. doi: 10.1007/978-1-59745-543-5_2

Herman, P., Sanganahalli, B. G., Hyder, F., and Eke, A. (2011). Fractal analysis

of spontaneous fluctuations of the BOLD signal in rat brain. NeuroImage 58,

1060–1069. doi: 10.1016/j.neuroimage.2011.06.082

Iadecola, C., and Nedergaard, M. (2007). Glial regulation of the cerebral

microvasculature. Nat. Neurosci. 10, 1369–1376. doi: 10.1038/nn2003

Ihlen, E. A., and Vereijken, B. (2010). Interaction-dominant dynamics in human

cognition: beyond 1/f(alpha) fluctuation. J. Exp. Psychol. Gen. 139, 436–463.

doi: 10.1037/a0019098

Ihlen, E. A., and Vereijken, B. (2013). Multifractal formalisms of human behavior.

Hum. Mov. Sci. 32, 633–651. doi: 10.1016/j.humov.2013.01.008

Ivanov, P. C. h., Ma, Q. D., Bartsch, R. P., Hausdorff, J. M., Amaral, L. A.,

Schulte-Frohlinde, V., et al. (2009). Levels of complexity in scale-invariant

neural signals. Phys. Rev. E 79 (4 Pt 1):041920. doi: 10.1103/PhysRevE.79.

041920

Ivanov, P. C., Nunes Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum,M. G.,

Stanley, H. E., et al. (2001). From 1/f noise to multifractal cascades in heartbeat

dynamics. Chaos 11, 641–652. doi: 10.1063/1.1395631

Ivanov, P. C., Amaral, L. A., Goldberger, A. L., Havlin, S., Rosenblum, M. G.,

Struzik, Z. R., et al. (1999).Multifractality in human heartbeat dynamics.Nature

399, 461–465. doi: 10.1038/20924

Jiang, Z. Q., Gao, X. L., Zhou, W.-X., and Stanley, H. E. (2016). Multifractal cross

wavelet analysis. Fractals 25:1750054. doi: 10.1142/S0218348X17500542

Jöbsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial

oxygen sufficiency and circulatory parameters. Science 198, 1264–1267.

doi: 10.1126/science.929199

Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin,

S., Bunde, A., and Stanley, H. E. (2002). Multifractal detrended

fluctuation analysis of nonstationary time series. Physica A 316, 87–114.

doi: 10.1016/S0378-4371(02)01383-3

Khan, M. M., Dhandapani, K. M., Zhang, Q. G., and Brann, D. W.

(2013). Estrogen regulation of spine density and excitatory synapses in

rat prefrontal and somatosensory cerebral cortex. Steroids 78, 614–623.

doi: 10.1016/j.steroids.2012.12.005

Khoa, T. Q., and Nakagawa, M. (2008). Recognizing brain activities by functional

near-infrared spectroscope signal analysis. Nonlinear Biomed. Phys. 2:3.

doi: 10.1186/1753-4631-2-3

Kocsis, L., Herman, P., and Eke, A. (2006a). Mathematical model for the estimation

of hemodynamic and oxygenation variables by tissue spectroscopy. J. Theor.

Biol. 241, 262–275. doi: 10.1016/j.jtbi.2005.11.033

Kocsis, L., Herman, P., and Eke, A. (2006b). The modified Beer-Lambert law

revisited. Phys. Med. Biol. 51, N91–N98. doi: 10.1088/0031-9155/51/5/N02

Kristoufek, L. (2011). Multifractal height cross-correlation analysis: a

new method for analyzing long-range cross-correlations. Epl 95:6.

doi: 10.1209/0295-5075/95/68001

Kuznetsov, N., Bonnette, S., Gao, J., and Riley, M. A. (2013). Adaptive fractal

analysis reveals limits to fractal scaling in center of pressure trajectories. Ann.

Biomed. Eng. 41, 1646–1660. doi: 10.1007/s10439-012-0646-9

Li, Z., Zhang, M., Xin, Q., Luo, S., Cui, R., Zhou, W., et al. (2013). Age-related

changes in spontaneous oscillations assessed by wavelet transform of cerebral

oxygenation and arterial blood pressure signals. J. Cereb. Blood Flow Metab. 33,

692–699. doi: 10.1038/jcbfm.2013.4

Lima, G. Z. d. S., Corso, G., Correa, M. A., Sommer, R. L., Ivanov, P.

C., and Bohn, F. (2017). Universal temporal characteristics and vanishing

of multifractality in Barkhausen avalanches. Phys. Rev. E 96:022159.

doi: 10.1103/PhysRevE.96.022159

Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., and Ilmoniemi,

R. J. (2001). Long-range temporal correlations and scaling

behavior in human brain oscillations. J. Neurosci. 21, 1370–1377.

doi: 10.1523/JNEUROSCI.21-04-01370.2001

Lipsitz, L. A. (2003). “Aging as a process of complexity loss,” in Complex Systems

Science in Biomedicine, eds T. S. Deisboeck, D. Kresh, and J. K. Kepler (Boston,

MA: Springer), 641–654.

Lo, C. C., Amaral, L. A. N., Havlin, S., Ivanov, P. C., Penzel, T., Peter, J. H., et al.

(2002). Dynamics of sleep-wake transitions during sleep. Europhys. Lett. 57,

625–631. doi: 10.1209/epl/i2002-00508-7

Ludescher, J., Bogachev, M. I., Kantelhardt, J. W., Schumann, A. Y., and Bunde,

A. (2011). On spurious and corrupted multifractality: the effects of additive

Frontiers in Physiology | www.frontiersin.org 19 August 2018 | Volume 9 | Article 1072

https://doi.org/10.1007/978-1-4615-4717-4_7
https://doi.org/10.1038/sj.jcbfm.9600243
https://doi.org/10.1007/s004249900135
https://doi.org/10.1088/0967-3334/23/1/201
https://doi.org/10.3389/fphys.2012.00417
https://doi.org/10.1016/j.neuroimage.2013.04.113
https://doi.org/10.1016/j.neubiorev.2013.01.017
https://doi.org/10.1006/nimg.1998.0348
https://doi.org/10.1038/nrn2201
https://doi.org/10.1016/s1388-2457(03)00045-2
https://doi.org/10.1007/s10109-012-0169-9
https://doi.org/10.1006/hbeh.1998.1451
https://doi.org/10.1073/pnas.012579499
https://doi.org/10.1103/PhysRevE.93.042201
https://doi.org/10.12693/APhysPolA.121.B-34
https://doi.org/10.1523/JNEUROSCI.2111-11.2011
https://doi.org/10.1016/j.tics.2014.04.003
https://doi.org/10.1016/j.neuron.2010.04.020
https://doi.org/10.1007/978-1-59745-543-5_2
https://doi.org/10.1016/j.neuroimage.2011.06.082
https://doi.org/10.1038/nn2003
https://doi.org/10.1037/a0019098
https://doi.org/10.1016/j.humov.2013.01.008
https://doi.org/10.1103/PhysRevE.79.041920
https://doi.org/10.1063/1.1395631
https://doi.org/10.1038/20924
https://doi.org/10.1142/S0218348X17500542
https://doi.org/10.1126/science.929199
https://doi.org/10.1016/S0378-4371(02)01383-3
https://doi.org/10.1016/j.steroids.2012.12.005
https://doi.org/10.1186/1753-4631-2-3
https://doi.org/10.1016/j.jtbi.2005.11.033
https://doi.org/10.1088/0031-9155/51/5/N02
https://doi.org/10.1209/0295-5075/95/68001
https://doi.org/10.1007/s10439-012-0646-9
https://doi.org/10.1038/jcbfm.2013.4
https://doi.org/10.1103/PhysRevE.96.022159
https://doi.org/10.1523/JNEUROSCI.21-04-01370.2001
https://doi.org/10.1209/epl/i2002-00508-7
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukli et al. Multifractal Cerebrocortical Hemodynamics and Aging

noise, short-term memory and periodic trends. Physica A 390, 2480–2490.

doi: 10.1016/j.physa.2011.03.008

Mandelbrot, B. B. (1974). Intermittent turbulence in self-similar cascades:

divergence of high moments and dimension of the carrier. J. Fluid Mech. 62,

331–358. doi: 10.1017/S0022112074000711

Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., et al.

(2005). Fractional Gaussian noise, functional MRI and Alzheimer’s

disease. NeuroImage 25, 141–158. doi: 10.1016/j.neuroimage.2004.

10.044

McGeer, P. L., McGeer, E. G., Suzuki, J., Dolman, C. E., and Nagai, T. (1984).

Aging, Alzheimer’s disease, and the cholinergic system of the basal forebrain.

Neurology 34, 741–745. doi: 10.1212/WNL.34.6.741

Mevel, K., Landeau, B., Fouquet, M., La Joie, R., Villain, N., Mezengé,

F., et al. (2013). Age effect on the default mode network, inner

thoughts, and cognitive abilities. Neurobiol. Aging 34, 1292–1301.

doi: 10.1016/j.neurobiolaging.2012.08.018

Monto, S. (2012). Nested synchrony-a novel cross-scale interaction among

neuronal oscillations. Front. Physiol. 3:384. doi: 10.3389/fphys.2012.00384

Mukli, P., Nagy, Z., and Eke, A. (2015). Multifractal formalism by enforcing

the universal behavior of scaling functions. Physica A 417, 150–167.

doi: 10.1016/j.physa.2014.09.002

Muzy, J. F., Bacry, E., and Arneodo, A. (1993). Multifractal formalism for

fractal signals: the structure-function approach versus the wavelet-transform

modulus-maxima method. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 47,

875–884. doi: 10.1103/PhysRevE.47.875

Nagy, Z., Mukli, P., Herman, P., and Eke, A. (2017). Decomposing multifractal

crossovers. Front. Physiol. 8:00533. doi: 10.3389/fphys.2017.00533

Ni, H. J., Huang, X. L., Ning, X. B., Huo, C. Y., Liu, T. B., and Ben,

D. (2014). Multifractal analysis of resting state fMRI series in default

mode network: age and gender effects. Chinese Sci. Bull. 59, 3107–3113.

doi: 10.1007/s11434-014-0355-x

Novi, S. L., Rodrigues, R. B., and Mesquita, R. C. (2016). Resting state connectivity

patterns with near-infrared spectroscopy data of the whole head. Biomed. Optics

Express 7, 2524–2537. doi: 10.1364/BOE.7.002524

Nunes Amaral, L. A., Ivanov, P. C., Aoyagi, N., Hidaka, I., Tomono,

S., Goldberger, A. L., et al. (2001). Behavioral-independent features of

complex heartbeat dynamics. Phys. Rev. Lett. 86(26 Pt 1), 6026–6029.

doi: 10.1103/PhysRevLett.86.6026

Obrig, H., Neufang, M., Wenzel, R., Kohl, M., Steinbrink, J., Einhäupl,

K., et al. (2000). Spontaneous low frequency oscillations of cerebral

hemodynamics and metabolism in human adults. Neuroimage 12, 623–639.

doi: 10.1006/nimg.2000.0657

Pierro, M. L., Sassaroli, A., Bergethon, P. R., Ehrenberg, B. L., and

Fantini, S. (2012). Phase-amplitude investigation of spontaneous low-

frequency oscillations of cerebral hemodynamics with near-infrared

spectroscopy: a sleep study in human subjects. Neuroimage 63, 1571–1584.

doi: 10.1016/j.neuroimage.2012.07.015

Podobnik, B., and Stanley, H. E. (2008). Detrended cross-correlation

analysis: a new method for analyzing two nonstationary time

series. Phys. Rev. Lett. 100:084102. doi: 10.1103/PhysRevLett.100.

084102

QuangDang Khoa, T., and Van Toi, V. (2012).Multifractals Properties on the Near

Infrared Spectroscopy of Human Brain Hemodynamic.Math. Probl. Eng. 2012,

1–12. doi: 10.1155/2012/670761

Racz, F. S., Mukli, P., Nagy, Z., and Eke, A. (2017). Increased prefrontal cortex

connectivity during cognitive challenge assessed by fNIRS imaging. Biomed.

Optics Express 8, 3842–3855. doi: 10.1364/BOE.8.003842

Racz, F. S.,Mukli, P., Nagy, Z., and Eke, A. (2018).Multifractal dynamics of resting-

state functional connectivity in the prefrontal cortex. Physiol. Meas. 39:024003.

doi: 10.1088/1361-6579/aaa916

Raichle, M. E., and Mintun, M. A. (2006). Brain work and brain imaging. Annu.

Rev. Neurosci. 29, 449–476. doi: 10.1146/annurev.neuro.29.051605.112819

Rattan, S. I. S. (2014). Aging is not a disease: implications for intervention. Aging

Disease 5, 196–202. doi: 10.14336/AD.2014.0500196

Reinhard, M., Wehrle-Wieland, E., Grabiak, D., Roth, M., Guschlbauer, B.,

Timmer, J., et al. (2006). Oscillatory cerebral hemodynamics–the macro-

vs. microvascular level. J. Neurol. Sci. 250, 103–109. doi: 10.1016/j.jns.2006.

07.011

Roux, S. G., Venugopal, V., Fienberg, K., Arneodo, A., and Foufoula-Georgiou,

E. (2009). Evidence for inherent nonlinearity in temporal rainfall. Adv. Water

Resour. 32, 41–48. doi: 10.1016/j.advwatres.2008.09.007

Sala-Llonch, R., Bartrés-Faz, D., and Junqué, C. (2015). Reorganization of brain

networks in aging: a review of functional connectivity studies. Front. Psychol.

6:663. doi: 10.3389/fpsyg.2015.00663

Sasai, S., Homae, F., Watanabe, H., and Taga, G. (2011). Frequency-specific

functional connectivity in the brain during resting state revealed by NIRS.

Neuroimage 56, 252–257. doi: 10.1016/j.neuroimage.2010.12.075

Sassaroli, A., Pierro, M., Bergethon, P. R., and Fantini, S. (2012). Low-frequency

spontaneous oscillations of cerebral hemodynamics investigated with near-

infrared spectroscopy: a review. IEEE J. Sel. Topics Quant. Elect. 18, 1478–1492.

doi: 10.1109/jstqe.2012.2183581

Saupe, D. (1988). “Algorithms for random fractals,” in The Science of Fractal

Images, eds H. O. Peitgen and D. Saupe. (New York, NY: Springer-Verlag),

71–136.

Scholkmann, F., Kleiser, S., Metz, A. J., Zimmermann, R., Mata Pavia, J., Wolf,

U., et al. (2014). A review on continuous wave functional near-infrared

spectroscopy and imaging instrumentation and methodology. NeuroImage 85,

6–27. doi: 10.1016/j.neuroimage.2013.05.004

Schroeter, M. L., Schmiedel, O., and Von Cramon, D. Y. (2004). Spontaneous low-

frequency oscillations decline in the aging brain. J. Cereb. Blood Flow Metab.

24, 1183–1191. doi: 10.1097/01.WCB.0000135231.90164.40

Schumann, A. Y., and Kantelhardt, J. W. (2011). Multifractal moving average

analysis and test of multifractal model with tuned correlations. Phys. A 390,

2637–2654. doi: 10.1016/j.physa.2011.03.002

Shimizu, Y., Barth, M., Windischberger, C., Moser, E., and Thurner, S. (2004).

Wavelet-based multifractal analysis of fMRI time series. Neuroimage 22,

1195–1202. doi: 10.1016/j.neuroimage.2004.03.007

Silva, L. E., Silva, C. A., Salgado, H. C., and Fazan, R. (2017). The

role of sympathetic and vagal cardiac control on complexity of heart

rate dynamics. Am. J. Physiol. Heart Circ. Physiol. 312, H469–H477.

doi: 10.1152/ajpheart.00507.2016

Sleimen-Malkoun, R., Temprado, J. J., and Hong, S. L. (2014). Aging induced loss

of complexity and dedifferentiation: consequences for coordination dynamics

within and between brain, muscular and behavioral levels. Front. Aging

Neurosci. 6:140. doi: 10.3389/fnagi.2014.00140

Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L.,

and Toga, A. W. (2003). Mapping cortical change across the human life span.

Nat. Neurosci. 6, 309–315. doi: 10.1038/nn1008

Sporns, O. (2011). The human connectome: a complex network. Ann. N. Y. Acad.

Sci. 1224, 109–25. doi: 10.1111/j.1749-6632.2010.05888.x

Stam, C. J. (2005). Nonlinear dynamical analysis of EEG and MEG:

review of an emerging field. Clin. Neurophysiol. 116, 2266–2301.

doi: 10.1016/j.clinph.2005.06.011

Stanley, H. E., Amaral, L. A., Goldberger, A. L., Havlin, S., Ivanov, P.

C. h., and Peng, C. K. (1999). Statistical physics and physiology:

monofractal and multifractal approaches. Phys. A 270, 309–324.

doi: 10.1016/S0378-4371(99)00230-7

Stefanovska, A., Bracic, M., and Kvernmo, H. D. (1999). Wavelet analysis of

oscillations in the peripheral blood circulation measured by laser Doppler

technique. IEEE Trans. Biomed. Eng. 46, 1230–1239.

Sun, J., Tong, S., and Yang, G. Y. (2012). Reorganization of brain networks in aging

and age-related diseases. Aging Dis. 3, 181–193.

Tachtsidis, I., Leung, T. S., Devoto, L., Delpy, D. T., and Elwell, C. E. (2008).

Measurement of frontal lobe functional activation and related systemic effects:

a near-infrared spectroscopy investigation. Adv. Exp. Med. Biol. 614, 397–403.

doi: 10.1007/978-0-387-74911-2_44

Tarantini, S., Tran, C. H. T., Gordon, G. R., Ungvari, Z., and Csiszar, A.

(2017). Impaired neurovascular coupling in aging and Alzheimer’s disease:

contribution of astrocyte dysfunction and endothelial impairment to cognitive

decline. Exp. Gerontol. 94, 52–58. doi: 10.1016/j.exger.2016.11.004

Tebaldi, C., De Menech, M., and Stella, A. L. (1999). Multifractal scaling

in the Bak-Tang-Wiesenfeld sandpile and edge events. Phys. Rev. Lett. 83,

3952–3955.doi: 10.1103/PhysRevLett.83.3952

Thurner, S., Windischberger, C., Moser, E., Walla, P., and Barth, M. (2003).

Scaling laws and persistence in human brain activity. Phys. A 326, 511–521.

doi: 10.1016/S0378-4371(03)00279-6

Frontiers in Physiology | www.frontiersin.org 20 August 2018 | Volume 9 | Article 1072

https://doi.org/10.1016/j.physa.2011.03.008
https://doi.org/10.1017/S0022112074000711
https://doi.org/10.1016/j.neuroimage.2004.10.044
https://doi.org/10.1212/WNL.34.6.741
https://doi.org/10.1016/j.neurobiolaging.2012.08.018
https://doi.org/10.3389/fphys.2012.00384
https://doi.org/10.1016/j.physa.2014.09.002
https://doi.org/10.1103/PhysRevE.47.875
https://doi.org/10.3389/fphys.2017.00533
https://doi.org/10.1007/s11434-014-0355-x
https://doi.org/10.1364/BOE.7.002524
https://doi.org/10.1103/PhysRevLett.86.6026
https://doi.org/10.1006/nimg.2000.0657
https://doi.org/10.1016/j.neuroimage.2012.07.015
https://doi.org/10.1103/PhysRevLett.100.084102
https://doi.org/10.1155/2012/670761
https://doi.org/10.1364/BOE.8.003842
https://doi.org/10.1088/1361-6579/aaa916
https://doi.org/10.1146/annurev.neuro.29.051605.112819
https://doi.org/10.14336/AD.2014.0500196
https://doi.org/10.1016/j.jns.2006.07.011
https://doi.org/10.1016/j.advwatres.2008.09.007
https://doi.org/10.3389/fpsyg.2015.00663
https://doi.org/10.1016/j.neuroimage.2010.12.075
https://doi.org/10.1109/jstqe.2012.2183581
https://doi.org/10.1016/j.neuroimage.2013.05.004
https://doi.org/10.1097/01.WCB.0000135231.90164.40
https://doi.org/10.1016/j.physa.2011.03.002
https://doi.org/10.1016/j.neuroimage.2004.03.007
https://doi.org/10.1152/ajpheart.00507.2016
https://doi.org/10.3389/fnagi.2014.00140
https://doi.org/10.1038/nn1008
https://doi.org/10.1111/j.1749-6632.2010.05888.x
https://doi.org/10.1016/j.clinph.2005.06.011
https://doi.org/10.1016/S0378-4371(99)00230-7
https://doi.org/10.1007/978-0-387-74911-2_44
https://doi.org/10.1016/j.exger.2016.11.004
https://doi.org/10.1103/PhysRevLett.83.3952
https://doi.org/10.1016/S0378-4371(03)00279-6
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Mukli et al. Multifractal Cerebrocortical Hemodynamics and Aging

Tian, F., Chance, B., and Liu, H. (2009). Investigation of the prefrontal cortex

in response to duration-variable anagram tasks using functional near-infrared

spectroscopy. J. Biomed. Opt. 14:054016. doi: 10.1117/1.3241984

Toda, N. (2012). Age-related changes in endothelial function

and blood flow regulation. Pharmacol Ther. 133, 159–176.

doi: 10.1016/j.pharmthera.2011.10.004

Tulppo, M. P., Kiviniemi, A. M., Hautala, A. J., Kallio, M., Seppänen,

T., Mäkikallio, T. H., et al. (2005). Physiological background of

the loss of fractal heart rate dynamics. Circulation 112, 314–319.

doi: 10.1161/CIRCULATIONAHA.104.523712

Valencia, M., Artieda, J., Alegre, M., and Maza, D. (2008). Influence of filters in

the detrended fluctuation analysis of digital electroencephalographic data. J.

Neurosci. Methods 170, 310–316. doi: 10.1016/j.jneumeth.2008.01.010

Vandeput, S., Verheyden, B., Aubert, A. E., and Van Huffel, S. (2012). Nonlinear

heart rate dynamics: circadian profile and influence of age and gender. Med.

Eng. Phys. 34, 108–117. doi: 10.1016/j.medengphy.2011.07.004

Vermeij, A., Meel-van den Abeelen, A. S., Kessels, R. P., van Beek, A. H.,

and Claassen, J. A. (2014). Very-low-frequency oscillations of cerebral

hemodynamics and blood pressure are affected by aging and cognitive load.

Neuroimage 85 (Pt 1), 608–615. doi: 10.1016/j.neuroimage.2013.04.107

Wardlaw, J. M., Smith, C., and Dichgans, M. (2013). Mechanisms of sporadic

cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 12,

483–497. doi: 10.1016/s1474-4422(13)70060-7

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of “small-world”

networks. Nature 393, 440–442. doi: 10.1038/30918

West, B. J. (1991). Fractal Physiology and Chaos in Medicine.World Scientific Pub.

Co. Inc.

Wink, A. M., Bullmore, E., Barnes, A., Bernard, F., and Suckling, J. (2008).

Monofractal and multifractal dynamics of low frequency endogenous

brain oscillations in functional MRI. Hum. Brain Mapp. 29, 791–801.

doi: 10.1002/hbm.20593

Wylie, G. R., Graber, H. L., Voelbel, G. T., Kohl, A. D., DeLuca, J., Pei,

Y., et al. (2009). Using co-variations in the Hb signal to detect visual

activation: a near infrared spectroscopic imaging study. Neuroimage 47,

473–481. doi: 10.1016/j.neuroimage.2009.04.056

Yamada, T., Umeyama, S., and Matsuda, K. (2012). Separation of

fNIRS Signals into Functional and Systemic Components Based

on Differences in Hemodynamic Modalities. PLoS ONE 7:0050271.

doi: 10.1371/journal.pone.0050271

Zapperi, S., Bækgaard Lauritsen K., and Stanley, H. E. (1995). Self-organized

branching processes: mean-field theory for avalanches. Phys. Rev. Lett. 75,

4071–4074.

Zhao, L., Li, W., Fenu, A., Podobnik, B., Wang, Y., and Stanley, H.

E. (2017). The q-dependent detrended cross-correlation analysis of

stock market. arXiv preprint arXiv:1705.01406. doi: 10.1088/1742-5468/

aa9db0

Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two

nonstationary signals. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 77(6 Pt 2),

066211. doi: 10.1103/PhysRevE.77.066211

Zhu, Y. S., Tseng, B. Y., Shibata, S., Levine, B. D., and Zhang, R. (2011). Increases

in cerebrovascular impedance in older adults. J. Appl. Physiol. 111, 376–381.

doi: 10.1152/japplphysiol.01418.2010

Zimeo Morais, G. A., Scholkmann, F., Balardin, J. B., Furucho, R. A., de

Paula, R. C. V., Biazoli, C. E. Jr., et al. (2018). Non-neuronal evoked and

spontaneous hemodynamic changes in the anterior temporal region of the

human head may lead to misinterpretations of functional near-infrared

spectroscopy signals. Neurophotonics 5:011002. doi: 10.1117/1.NPh.5.1.0

11002

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Mukli, Nagy, Racz, Herman and Eke. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Physiology | www.frontiersin.org 21 August 2018 | Volume 9 | Article 1072

https://doi.org/10.1117/1.3241984
https://doi.org/10.1016/j.pharmthera.2011.10.004
https://doi.org/10.1161/CIRCULATIONAHA.104.523712
https://doi.org/10.1016/j.jneumeth.2008.01.010
https://doi.org/10.1016/j.medengphy.2011.07.004
https://doi.org/10.1016/j.neuroimage.2013.04.107
https://doi.org/10.1016/s1474-4422(13)70060-7
https://doi.org/10.1038/30918
https://doi.org/10.1002/hbm.20593
https://doi.org/10.1016/j.neuroimage.2009.04.056
https://doi.org/10.1371/journal.pone.0050271
https://doi.org/10.1088/1742-5468/aa9db0
https://doi.org/10.1103/PhysRevE.77.066211
https://doi.org/10.1152/japplphysiol.01418.2010
https://doi.org/10.1117/1.NPh.5.1.011002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Impact of Healthy Aging on Multifractal Hemodynamic Fluctuations in the Human Prefrontal Cortex
	Introduction
	Methods
	Near Infrared Spectroscopy
	Data Collection
	Subjects
	Data Preprocessing
	Multifractal Analyses
	Multifractal Scaling Analysis
	Signal summation conversion (SSC) method
	Relationship between variance profiles of hemoglobin chromophores

	Focus-Based Scaling-Range Adaptive Analyses
	Evaluating True Multifractality
	Characterizing HbO-HbR Relationship
	Scale-wise fractal cross-correlation coefficient
	Multifractal covariance analysis


	Descriptive Statistical Analyses
	Assessing the Effect of Age and Gender
	Explaining the Variance Profiles of HbT

	Software

	Results
	The Presence of True Bimodal Multifractality
	Impact of Age-and Gender on Multifractal Endpoint Parameters
	Influence of Age and Gender on the HbO-HbR Relationship
	Scale-Wise Fractal Cross-Correlation
	Multifractal Covariance

	Significance of Fractal Scale-Wise Cross-Correlation

	Discussion
	Multifractal CBV Dynamics
	Separation of Neurogenic and Vasogenic Multifractal Dynamics: CBSI-Pretreatment
	Origin of Multifractality in Resting-State Hemodynamic Fluctuations
	Interpretation of Multifractal Endpoint Parameters
	Linear dynamics: H(2) vs. hmax
	Non-linear dynamics: ΔH15 and fwhm
	A scale-dependent measure of hemodynamic power: focus

	The Inference of Bimodality

	Healthy Aging Is Associated With Altered Complexity of Cerebral Hemodynamics
	Altered Neurogenic Component Due to Declining Neurodynamics
	Altered Vasogenic Component Due to Impaired Vascular Responses

	Implications of HbO-HbR Relationship
	Age-Related Increase in Scale-Wise Fractal Cross-Correlation
	The Significance of Non-linear Relationship Revealed by Multifractal Covariance Analysis
	The Importance of Coupled HbO-HbR Fluctuations Driving Cerebral Hemodynamics

	Limitations and Future Perspectives

	Conclusions
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


