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Exosomes are small nano-sized vesicles that deliver biologically active RNA molecules

and proteins to recipient cells through binding, fusion or endocytosis. There is emerging

evidence that endogenous exosomes released by cardiovascular cells and progenitor

cells impact cell survival and proliferation, thus regulating angiogenesis, cardiac

protection and repair. These cardioprotective and regenerative traits have the potential

to translate in to novel therapeutic options for post-ischaemic cardiac regeneration, thus

potentially delaying the progression to ischaemic heart failure. Cellular stressors influence

exosomes’ secretion and the molecular composition of the exosome cargo, thus

impacting on the above processes. Evidences are emerging that loading of proteins and

RNAs in the exosomes cargos can be manipulated. Similarly, manipulation of exosomes

surface proteins’ expression to target exosomes to specific cells and tissues is doable. In

addition, nature-inspired synthetic exosomes can be assembled to deliver specific clues

to the recipient cells, including proliferative and differentiation stimuli, or shed paracrine

signals enabling to reconstructing the heart homeostatic micro-environment. This

review will describe exosome biogenesis and emerging evidence of exosome-mediated

regenerative cell-to-cell communications and will conclude discussing possibilities of

using exosomes to treat ischemic heart disease.

Keywords: exosomes, microRNAs, precision medicine, stem cells, synthetic biology, ischemic disease,

angiogenesis, heart failure

INTRODUCTION

Ischemic heart disease (IHD) is the most frequent cause of heart failure (HF) (Kenchaiah et al.,
2004). The early mortality rate after a myocardial infarct (MI) mortality has declined in the
western world due the advent of clot-busting drugs and revascularization techniques including
primary percutaneous coronary intervention (PPCI) and bypass surgery. Notwithstanding,
the global burden of ischaemic HF continues to grow (Bui et al., 2011; Andersson and
Vasan, 2018). This can be attributed to longer life expectancy and the increased prevalence
of cardiovascular risk factors in young individuals (Bui et al., 2011; Andersson and Vasan,
2018). Development of proven pharmacological therapies for HF has stalled significantly in the
last 2 decades, with the exception of Angiotensin Receptor—Neprilysin Inhibitor which was
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introduced in patients 3 years ago (McMurray et al., 2014).
Mortality rate after 5 years from onset of HF symptoms remains
high, at around 50% and heart transplantation represents the
only definitive treatment currently available (Bui et al., 2011).
After Orlic and Anversa published their infamous seminal paper
reporting cardiac regeneration after bone marrow stem cell
transplant to themouse ischemic heart in 2001 (Orlic et al., 2001),
stem cells have been eagerly pursued as the Holy Grail for post-
ischemic regenerative medicine. Based on early human clinical
trials, autologous cell therapy safety has been largely proven,
although rescue function was showed minimal (Nguyen et al.,
2016). Notwithstanding, there is a consensus that adult stem cell
transplantation induces some positive effects that are mediated
by paracrine actions (Hodgkinson et al., 2016). Exosomes are
small extracellular vesicles (EVs) that have been proved to
mediate cell-to-cell communications in vitro. Exosomes have
been extracted from either conditioned cell culture media or
biological fluids and then transplanted in animal disease models,
showing to induce functional effects (Vicencio et al., 2015;
Kalluri, 2016; Beltrami et al., 2017). In more details, exosomes
released from cultured stem cells promoted angiogenesis and
cardiac protection (Sahoo et al., 2011; Ibrahim et al., 2014).
Therefore, exosomes might impersonate the leading characters in
the paracrine play of stem cells, to the point that they have been
proposed able to do “stem cells without the cells” (Hashimoto
et al., 2018). On the other hand, it has been shown that exosomes
are also involved in both beneficial and pathogenic cell-to-
cell communication within the heart. Heart cells communicate
with each other and with the blood and immune cells via
exosomes and such communications are altered in diseased
states, including MI and HF. These evidences further reinforce
the quest for therapeutic exosomes to correct dysfunctional
messengers, thus reinstating homeostatic conditions (Jung et al.,
2017; Yang, 2018).

In this review article, we will explore the current
understanding of exosome biogenesis, structure, contents
and their possible roles in cardiac disease and as new therapeutic
weapons to contrast ischemic HF. In this context, we will
additionally discuss new approaches to both engineer
endogenous exosomes and generate and design synthetic
exosomes to deliver therapeutic materials to the heart.

MYOCARDIAL INFARCTION AND THE
EMERGING ROLE OF EXOSOMES

When a MI occurs, the blood flow to the heart decreases
dramatically. The ischemic condition induces myocytes necrosis
within 15–30min with possible fatal consequences. Cells within
and surrounding the infarcted area will be progressively lost
due to necrosis and apoptosis. Cardiomyocytes, which are
hugely dependent on oxygen for their active metabolism, are
the first to display functional impairment such as contractile
alterations and eventually die. Vascular cells will also be
damaged. Later post-MI events encompass a combination of
fibrotic, geometric, and hypertrophic changes associated with
the development of HF through a combination of initially

adaptive, and subsequently maladaptive ventricular remodeling
responses (Sutton and Sharpe, 2000). Certain co-morbidities such
as diabetes mellitus further worsen the clinical outcomes after
MI, including by inducingmicroangiopathy (Iwakura et al., 2003;
Prasad et al., 2005; Jensen et al., 2012; Lehrke and Marx, 2017).
In the event of an established MI or severe angina, percutaneous
or surgical intervention may restore blood flow to the subtended
myocardium, but this does not usually improve clinical outcomes
(Hochman et al., 2006) nor induce cardiac regeneration and
reparative angiogenesis. Thus, there remains a need to find novel
therapies to regenerate the infarcted myocardial tissue, restoring
cardiac function, alleviating patients’ symptoms and reducing
mortality. Recent evidence shows that cardiac cells communicate
via exosomes and that this communication system is altered in
IHD (Arroyo et al., 2011; Chistiakov et al., 2016), particularly
in diabetic subjects (Wang et al., 2014, 2016; Yuan et al., 2016;
Ribeiro-Rodrigues et al., 2017; Li H. et al., 2018) This has
stimulated more research in the role that these tiny vesicles may
play as therapeutics (Emanueli et al., 2015; Marbán, 2018).

EXOSOMES; BIOGENESIS, STRUCTURE
AND THEIR CARGO

Originated from the endosome or plasma membrane, EVs is a
collective name of a heterogeneous family of membrane limited
vesicles and consist of apoptotic bodies (sized 500 nm to-2µm
in diameter), microvesicles (100 nm−1µm) and exosomes (30–
150 nm; Kervadec et al., 2016). EVs were first thought to be a
disposal of overabundant proteins (Trams et al., 1981). Today,
EVs are recognized to be involved in mediating intracellular
communication in normal and pathological processes (Trams
et al., 1981; Johnstone et al., 1987; Minciacchi et al., 2015).

The term “exosome” was coined by Rose Johnston in 1987
after discoveries a few years earlier that small 50–90 nm vesicles
were released to the extracellular environment after fusion of
late endosomes/multivesicular bodies (MVBs) with the plasma
membrane (Johnstone et al., 1987). An overview of exosome
biogenesis is provided in Figure 1. Exosome biogenesis starts
with invagination of the plasma membrane, transporting the
vesicle to the early endosome. Subsequently, the early endosome
will mature into the late endosome, also known as MVB, through
inward budding, generating, and accumulating intraluminal
vesicles (ILVs) in the lumen of these organelles (Minciacchi
et al., 2015). ILVs can be secreted as exosomes, but they can
also be degraded or recycled within the parent cell. During ILV
generation in MVBs, subsets of surface proteins such as D9,
CD81, Alix, TSP-1, SOD-1, and pyruvate kinase aid in selectively
sorting and loading of proteins, lipids and nucleic acids in to ILVs
(Gupta et al., 2010). In addition, cargo sorting and loading of
proteins are regulated by mechanisms such as endosomal sorting
complexes required for transport (ESCRT) with subcomplexes
0, I and III. Additional ESCRT-independent mechanism include
lipid dependent or tetraspanins with cluster of differentiation
(CD) 81, 9, and 63 (Emanueli et al., 2015). The evolutionarily
conserved late-domain (L-domain) pathway also contributes to
the loading of proteins into exosomes. L-domains are used for

Frontiers in Physiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1159

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shanmuganathan et al. Exosomes: New Heart Disease Therapeutics

FIGURE 1 | Schematic overview of exosome biogenesis and secretion. Starting at 1: Invagination of the plasma membrane, transporting intraluminal vesicles (ILVs) to

2. The early endosome fusing into multivesicular bodies (MVBs) 3. Formation of the late endosome loading exosomes with RNA cargo loading through Y-Box protein 1

(YBX1) and endosomal sorting complexes required for transport (ESCRT) and secreting 4. Through Rab GTPases into the extracellular space, homing exosome in to

the recipient cell through 5.A Binding to receptors, 5.B Fusion with plasma membrane or 5.C Endocytosis with modulators such as extracellular signal-regulated kinase

1/2 (ERK1/2) and phosphoinositide 3-kinase (PI3K) pathways, 6. Releasing cargo in the intracellular space of the recipient cell inducing paracrine signaling effect.

the recruitment of ESCRT components to cell membranes and
are required in MVB formation. As an example, the L-domain
protein syntenin was identified in the recruitment of ALIX
(an ESCRT-associated protein) and the subsequent formation
and loading of exosomes (Baietti et al., 2012). Similarly, the L-
domain-containing protein Ndfip1 has been identified in the
spontaneous loading of proteins into exosomes (Putz et al., 2008,
2012) and even exploited to force the load of specific proteins into
exosomes (Sterzenbach et al., 2017).

Exosomes contain different types of RNAmolecules, including
messenger RNA (mRNAs), circular RNA (circRNA), long non-
coding RNA (lncRNAs), and microRNAs (miRs; Coumans et al.,
2017; Li S. et al., 2018). miRNAs are small noncoding RNA
capable of posttranscriptional gene expression regulation. To do
that, each miR target a series of mRNAs, usually inducing mRNA
degradation or translational inhibition. Exosomes protect their
RNA cargos from RNase digestion (Arroyo et al., 2011; Vickers
et al., 2011; Li Y. et al., 2015).

Importantly, exosomes shuttle biologically active miRs from
their parent cell to recipient cells, thus spreading the miR

regulatory actions (reviewed in Caporali et al., 2016). In fact,
independently collected evidences suggest that upon exosome
delivery of miRs to recipient cells, the miRs regulate gene
expression in recipient cells, profoundly influencing cell behavior
(Hergenreider et al., 2012; Bang et al., 2014; Deng et al., 2015;
Beltrami et al., 2017; Mathiyalagan et al., 2017).

For understanding the mechanisms of miR loading into
exosome, Shurtleff et al. investigated if certain miRs were
specific and more abundant in exosomes instead of the host
cells (HEK293T in this case). Interestingly, this was the case
for miR-223 which was packaged by a RNA binding protein
called Y-box Protein I (YBX1) (Shurtleff et al., 2016). Further
investigation of this mechanism confirmed that YBX1 recognizes
RNA molecules and is involved in export of miRs and other
noncoding RNAs and transfer RNAs (t-RNAs; Shurtleff et al.,
2016, 2017). However, this result was measured from HEK293
exosomes and the investigators stated that multiple RNA binding
proteins could to be involved in the exosome packaging in
different cell types (Villarroya-Beltri et al., 2013; Santangelo et al.,
2016). It is thought that, similar to miRs, other RNA species such
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as circular RNA (circRNAs), messenger RNA (mRNA) and long
non-coding RNA (lncRNAs), are also packaged in exosomes via
regulated process, but these are still to be elucidated.

After cargo loading of exosomes, the MVB will fuse with the
outer membrane, releasing the exosomes into the extracellular
space through a mechanism involving Rab GTPases (Hsu et al.,
2010). The exosomal membranes retain typology of the parent
cell and contain lipid raft microdomains, aiding in recipient
cellular uptake such as raft-mediated endocytosis (Zakharova
et al., 2007). Subsequently, exosomes will reach recipient cells
affecting their gene expression programme and in several cases
also their function. Three types of internalization mechanisms
have been described to be involved in exosome taking up
by recipient cells: binding, fusion or endocytosis (Morrison
et al., 2016). When exosomes bind to a recipient cell, they
can act externally (i.e., without the need to be incorporated
within the cell) as ligands to activate receptor mediated signal
transduction. As an example, exosomes from tuberous sclerosis
complex reportedly affected cells by activating Notch1 and
mTOR, thus inhibiting differentiation of surrounding cells (Patel
et al., 2016). When exosomes directly fuse with the recipient
cell membrane the cargo is released into the cytoplasm (Parolini
et al., 2009). Endocytosis mechanisms such as phagocytosis,
micropinocytosis, clathrin-mediated, caveolin-mediated, and
lipid raft-mediated endocytosis probably depend on cell type and
their physiologic state but are not fully understood (Morelli et al.,
2004; Fitzner et al., 2011; Nanbo et al., 2013;Mulcahy et al., 2014).
Phagocytosis requires a subset of receptors depending on cell
type before invagination. The process is also dependent on actin
cytoskeleton, phosphoinositide 3-kinase (PI3K) and dynamin 2
(Feng et al., 2010). In micropinocytosis, the plasma membrane
actively engulfs particles and is dependent on sodium and PI3K
(Tian et al., 2014). Clathrin-mediated endocytosis, is aided by
adaptor protein 2 and clathrin acting as a ligand and is observed
in adrenal grand medulla tumor cells (Tian et al., 2014). In lipid
raft endocytosis observed in tumor cells, extracellular signal-
regulated kinase 1/2 (ERK1/2) signaling pathway is activated
by exosomes and deregulates microRNAs that inhibit caveolin-
1 leading to uptake of the exosome and transfer of its cargo
(Svensson et al., 2013). After invagination, exosomes can act on
signaling pathways releasing cargo through fusion, be degraded
in the lysosome or recycled back to the plasma membrane.
Interestingly, when heparin sulfate proteoglycans on the plasma
membrane from the recipient cell are blocked with heparin or by
adding scavenger receptor type B-1 removing cholesterol, there
is a decrease in exosomes uptake (Atai et al., 2013; Christianson
et al., 2013).

THE ROLE OF ENDOGENOUS CARDIAC
EXOSOMES IN CARDIOVASCULAR
DISEASE

The adult human heart is made up of billions of cells and
proximately a third of it is cardiomyocytes whilst the remainder
is made up of endothelial cells (ECs), smooth muscle cells,
neuronal cells, resident stem cells and fibroblasts (Zhou and

Pu, 2016). Intercellular communication in both healthy and
diseased states is very likely to be different and thus it is of
crucial importance to study it in detail (Zhang et al., 2008;
Barile et al., 2012; Hergenreider et al., 2012; Waldenström et al.,
2012; Yu et al., 2012; Wang et al., 2014, 2016; Chistiakov
et al., 2016; Garcia et al., 2016; Yang et al., 2016). Gupta and
Knowlton were the first to describe the release of exosomes
by cardiomyocytes from adult rats and observed that these
exosomes contain heat shock protein 60 (HSP60) which can
protect cells against injury such as myocardial infarction (Gupta
and Knowlton, 2007). Waldenstrom and colleagues went on
to show that EVs secreted by HL-1 cells (a cell model of
cardiomyocytes) transported mRNA and that they were taken
up by fibroblasts in a co-culture system, where they produced
changes in gene expression in the recipient cells (Waldenström
et al., 2012). The same group demonstrated that stimulation
with TGF-β2 and PDGF-BB changed the RNA contents of the
exosomes secreted by the HL-1 cells, thus giving credence to the
idea that exosomes reflect the physiological state of the parent
cells (Gennebäck et al., 2013). Similarly, Garcia et al. showed
that when subjected to glucose deprivation in-vitro, neonatal rat
cardiomyocytes release more exosomes. Interestingly, exosomes
carry glucose, via glucose transporters, and glycolyic enzymes
which are taken up by EC leading to increased glucose uptake,
glycolytic activity and pyruvate production (Garcia et al., 2016).
Yang et al. found that the serum exosomes of patients with
acute MI were enriched with miR-30a. They also showed that
exosomes from hypoxic cardiomyocytes release higher miR-30a
in their exosomes and that this miR regulates autophagy in
recipient cardiomyocytes (Yang et al., 2016). In another co-
culture protocol, it was demonstrated that exosomes released
by ECs were enriched with miR-143/145 and the miRs were
transferred to smooth muscle cells, controlling their gene
expression, thus to activate an atheroprotective programme
(Hergenreider et al., 2012). Wang and colleagues found that
exosomes released from cardiomyocytes impact EC proliferation,
migration and angiogenesis in vitro. Interestingly, such responses
were dramatically influenced by the origin of the cardiomyocytes:
when they were cultured from healthy rats, exosomes promoted
angiogenesis. By contrast, when the cardiomyocytes were
prepared from diabetic rats, their exosomes promoted EC
death and disrupted angiogenesis, possibly via transfer of miR-
320 (Wang et al., 2014, 2016). Additionally, exosomes from
cardiac myocytes subjected to cardiac pressure overload where
shown to deliver functional Angiotensin II Type 1 Receptors
(AT1R) to cardiomyocytes, skeletal myocytes, and mesenteric
resistance vessels and were sufficient to confer blood pressure
responsiveness to angiotensin II infusion in AT1R knockout mice
(Pironti et al., 2015). Exosomes from hypoxic cardiomyocytes
have been shown to regulate cell death in other cardiomyocytes
(Zhang et al., 2008). Moreover, there is preliminary evidence
that exosomes secreted from cardiomyocytes in acute MI
contain TNF-alpha, a mediator of inflammation (Yu et al.,
2012). Additionally, working on blood samples longitudinally
collected from patients undergoing coronary artery-bypass-
graft surgery using cardiopulmonary by-pass (“on-pump”) we
provided the first in-man example of exosome trafficking out of
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the human heart (Emanueli et al., 2016). “On-pump” surgeries
induce myocardial ischaemia/reperfusion injury. Working in
this clinical setting, we provided evidences that the plasma
concentrations of exosomes and their cargo of miRs of possible
cardiac origin (miR-1, miR-24, miR-133a/b, miR-208a/b, miR-
210) increased in the plasma on completion of surgery for up
to 48 h. Importantly, the above responses were all positively
correlated with changes in circulating high sensitive cardiac
troponin, a gold standard laboratory biomarker of myocardial
injury (Emanueli et al., 2016). These in-man data suggest the
possibility that exosomes secretion by the stressed heart cells
could play functional roles directing the heart response to
surgery. Similar responses could contribute to post-MI HF.

Although in the above acute setting, a large percentage of
circulating exosomes might have been of cardiac origin, under
steady physiological and pathological states, plasma and serum
exosomes originate are expected to originate from a variety of
different cellular sources including the endothelium, platelets,
and leucocytes. Circulating exosomes are thought to be of
biological significance (Davidson et al., 2017, 2018) and could
mediate post-MI responses (Vicencio et al., 2015).

The pericardial fluid, which is a plasma ultra-filtrate and
surrounds the heart embedded in its pericardial sac, also contains
exosomes, with a more probable cardiac origin, in comparison to
peripheral plasma and serum (Beltrami et al., 2017). Exosomes
from pericardial fluid contain clusterin, a glycoprotein able to
improve myocardial performance through mediating epicardial
activation, arteriogenesis and cardiomyocyte proliferation
(Foglio et al., 2015). Additionally, pericardial fluid exosomes
contain a highly proangiogenic miRNA: let-7b-5p and induce
therapeutic angiogenesis in vitro and in vivo (Beltrami et al.,
2017). It is legitimate to speculate that exosomes, via miRNAs
and other mediators, play a role in cardiovascular cell-cell
(paracrine) and distant (autocrine like) communication and this
is affected by disease states (van Rooij and Olson, 2012).

EXOSOMES AS THE MEDIATORS OF STEM
CELL THERAPY IN ISCHAEMIC HEART
DISEASE

Different types of stem cells (SC) and progenitor cells, such as
mesenchymal SC (MSCs), embryonic SC (ESCs), hematopoietic
SC and cardiac progenitors have shown the capability to
differentiate toward cardiomyocytes (or at least cardiomyocyte-
like cells) and vascular cells, at least in vitro (Cohn et al., 2000;
Dixit and Katare, 2015; Noseda et al., 2015a). Moreover, as
mentioned above, stem and progenitor cells support the survival
of cardiovascular cells and angiogenesis responses by paracrine
actions (Donndorf et al., 2013). In a quest for novel therapeutic
solutions providing for cardioprotection, cardiomyogenesis and
reparative angiogenesis, different types of stem and progenitor
cells have been tested in animal models of MI, followed by first-
in-man clinical trials, often on a small scale. Stem cell “therapies”
have shown promises in the animal studies (Orlic et al., 2001;
Miyahara et al., 2006; Chong et al., 2014; Noseda et al., 2015a).
However, the results of the early clinical trials have been less

exciting and they have rather stimulated a healthy scientific
debate, which will be fundamental to the future advancements
of this area of research. From several human and animal studies,
it has become evident that, with few exceptions, the majority
of the injected stem cells engrafted very poorly in the recipient
heart and the rate of differentiation into myocytes and ECs was
also limited in vivo (Balsam et al., 2004; Murry et al., 2004;
Vrtovec et al., 2013; Kim et al., 2015; Noseda et al., 2015b).
These evidences suggest that SC and progenitor cells exerted
their benefit through hitherto unknown paracrine mechanisms
(reviewed in Glembotski, 2017). In line with that, multiple
scientific reports evidenced thatMSCs, ESCs, CPSCs and induced
pluripotent SCs (iPSC) mediated cardiac remodeling through
paracrine signals (Lai et al., 2010; Chen et al., 2013; Khan
et al., 2015; Noseda et al., 2015a; Wang et al., 2015; Kervadec
et al., 2016). Intercellular communication between SCs and
neighboring cells have been reported to induce angiogenesis and
prevent apoptosis in cardiomyocytes by paracrine mechanisms
(Lui et al., 2013; Xiao et al., 2016). Not all paracrine signals are
soluble factors that can easily move through the extracellular
environment to reach their targeted recipient cells before being
degraded. However, a series of other messengers can be shuttled
by exosomes and other EVs (Santangelo et al., 2016). As part of
the paracrine activities of SC and other cells, EVs work as shuttle
of miRs and other molecular form, conferring protection from
degradation and helping their homing toward recipient cells.
Multiple studies have shown that stem cell-derived exosomes
induced protective and regenerative capabilities (Emanueli et al.,
2015; Xu et al., 2017). Kang et al. reported that exosomes
derived from CXCR4-overexpressing MSCs activated the Akt
signaling pathway in vitro and in a murine MI-model (Kang
et al., 2015). The in vitro results showed cytoprotective effects of
exosomes on cardiomyoctes, inducing overexpression of VEGF
and subsequently increasing vessel formation. in vivo, MSC
sheets were pre-treated with exosomes and transferred on the
infarcted area of the myocardium resulting in reduced infarct
size by stimulation cell survival, improved cardiac remodeling
and increased angiogenesis (Kang et al., 2015). Moreover,
MSC-derived exosomes induced angiogenesis and aided athero-
protective communications through miR-126 and miR-294,
respectively (Vickers et al., 2011; Gonzalez-King et al., 2017).
Additionally, Lai et al. identified the cardio protective effect
of exosomes secreted from human ESCs-derived MSCs in an
ischemia/reperfusion mouse model (Lai et al., 2010). Shao et al.
identified exosomes derived from ESCs contain miR-24 and -
29, aiding cardiac repair (Shao et al., 2017). miR-146-containing
exosomes harvested from cardiospheres and injected in injured
mouse hearts, inhibited apoptosis, promoted angiogenesis and
cardiomyocyte proliferation, thus acting as critical steps for
efficient cardiac protection and regeneration (Ibrahim et al.,
2014). Sahoo et al. demonstrated fundamental evidence that
exosomes secreted by bone marrow CD34(+) SCs promoted
pro-angiogenic effects when tested in vitro and in a mouse
model of ischemia and that their therapeutic effect was at least
comparable with the one derived from transplantation of their
parent cells (Sahoo et al., 2011; Bang et al., 2014). Later studies
demonstrated that cardiac progenitor cells-derived exosomes
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FIGURE 2 | An overview of six different cell types secreting exosomes with therapeutic potential in ischemic heart disease. Exosomes represented as spherical

geometries containing heatshock proteins (HSP), microRNAs (miRs), growth factors such as transforming growth factor beta 2 (TGF-β2). The impact of exosomes in

inducing (↑) or decreasing (↓) is also indicated with the arrows.

play a role in post-MI cardiomyocyte survival via miR-21 and
cardio protection via miR-451 (Chen et al., 2013; Xiao et al.,
2016). Figure 2 presents an overview of SC-derived exosomes
effects on the heart.

EXOSOME-BASED THERAPIES:
HARNESSING ENDOGENOUS AND STEM
CELL EXOSOMES AND ENGINEERING OF
SYNTHETIC EXOSOMES

Exosomes’ natural function to protect, target and deliver cellular
components to recipient cells brings great interest to use them
as novel tools for regenerative medicine. Moreover, it may be
possible to artificially engineer exosomes (Arenaccio et al., 2018),

package them with protective cargo including miRs, and deliver
them to a patient with acute MI (to promote cardio-protection
and therapeutic angiogenesis) and/or HF (to promote cardiac
regeneration; Sluijter et al., 2018). It is hoped that exosomes
will be perhaps more successful than previously attempts with
stem cells (Wu et al., 2018). Using either naïve SC-derived
exosomes or exosomes primed for specific drug loading are
potential approaches to be considered. The first to show evidence
of exosome-mediated delivery of nucleic acids was MJ Wood
by injecting in mice exosomes containing small interference (si)
RNA to knock down of BACE1, a therapeutic target in the
setting of Alzheimer’s disease (Alvarez-Erviti et al., 2011). Others,
including ourselves, have published protocols to manipulate the
exosome internal cargo (El-Andaloussi et al., 2012; Ong et al.,
2014; Beltrami et al., 2017). Importantly, in clinical studies,

Frontiers in Physiology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 1159

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Shanmuganathan et al. Exosomes: New Heart Disease Therapeutics

exosomes have been already used as drug carriers promoting
tumor rejection in patients (Rountree et al., 2011). Similarly,
they were used in prostate cancer, lung cancer and in preclinical
settings as anti-inflammatory agents and to inhibit a multi-
drug resistant cancer by transporting the chemotherapeutic drug
placlitaxel in mice (Morse et al., 2005; Rountree et al., 2011;
Kim et al., 2016; Sun et al., 2016). Some promising technologies
have emerged in cardiovascular exosome research such as direct
programming of fibroblasts to cardiac myocytes. Tseliou et al.
showed that intra-myocardially injected fibroblasts which had
been primed with exosomes derived from cardiosphere-derived
cells increased global pump function and vessel density while
reducing scarmass in chronicMImicemodel (Tseliou et al., 2015;
Gallet et al., 2017). This effect could have been mediated at least
in part by miR-146a (Ibrahim et al., 2014).

In order to improve the delivery of therapeutic messages to
cardiac cells in need, exosomes can be engineered to modify their
cargo and membranes. Vandergriff et al. conjugated exosomes
with cardiac homing peptide to target cardiomyocytes in vitro
and in vivo in ischemia/reperfusion animal model (Vandergriff
et al., 2018). The promising results showed reduced infarct
scar size and increased cellular proliferation and angiogenesis.
Searching for the most suitable cardiac regenerative exosome
cargo with cell-specific homing through peptide conjugation is
still a challenge for cardiovascular disease (Kuehbacher et al.,
2007). To obtain full regeneration with functional myocardium,
the endothelial cells should be specifically targeted for blood
vessel formation, the cardiomyocytes for proliferation and
fibroblast for removing excessive scar tissue and aiding heart
contraction (Gallet et al., 2017; Vandergriff et al., 2018). In
this quest for holistic post-ischemic cardiac protection and
regeneration, improved endogenous exosomes as well as nature-
inspired synthetic exosomes could play fundamental roles.
Therapeutic exosomes could be engineered with proangiogenic
miRNAs such as miR-126 and/or let-7b-5p and with miR-146a
(Bang et al., 2014; Ibrahim et al., 2014; Beltrami et al., 2017).
In addition to miRs, the outer membrane of an exosome can be
as important for protection as the cargo content itself. A study
done by Vicencio et al. proved that plasma exosomes protect
cardiomyocytes from hypoxia/reoxygenation injury through
HSP70 located on the outer membrane of the exosome (Vicencio
et al., 2015). Interestingly HSP70 binds to a toll like receptor
on the recipient cell activating ERK p38MAPK pathway leading
to HSP27, resulting in cardio protection. A possible engineered
cardioprotective exosome could be enriched in its membrane
for HSP70 and contain miR-146. Nakase et al. showed that in
cancer cells, a pH-sensitive fusogenic peptide, GALA, together
with ribosome inactivating protein saporin enhanced fusion with
endosomal and exosomal membranes inside cells, increasing
efficiency of target delivery (Nakase and Futaki, 2015). To
translate such approach to the cardiovascular area, GALA and
saponin could be combined with proangiogenic and cardiac
protective exosomes, such as the one from bone marrow CD34+
cells and cardiospheres.

A series of recent technological advancements that could
aid in harnessing endogenous exosomes. These include the
possibility of pseudotyping exosomes for enhanced protein

delivery in mammalian cells (Meyer et al., 2017). Viral
pseudotyping is a strategy that has been used to create
viral vectors with new tropism and trafficking properties.
Pseudotyping manipulation of capsid proteins and envelope
fusion glycoproteins are implicated in virus attachment and
interactions with cellular receptors, determining cell tropism.
Meyer et al. recently showed that a vesicular stomatitis virus
(VSVG) glycoprotein can both load protein cargo onto exosomes
and increase their delivery ability via a pseudotyping mechanism.
In their hands, exosomes produced with the pseudotyping
appeared good vehicles for the intracellular delivery of protein
cargo, imparted by enhancing their intrinsic ability to deliver
bioactive cargo to recipient cells (Meyer et al., 2017). Approaches
to improve the loading of biologically active proteins into
exosomes have also been developed. Those include exploiting
the aforementioned L-domain pathway by Sterzenbach et al.
(2017). Moreover, Yim et al. (2016), recently described a new
exosome-based tool for intracellular delivery of target proteins:
“Exosomes for protein loading via optically reversible protein–
protein interactions” (EXPLORs). EXPLORs successfully loaded
cargo proteins into newly generated exosomes by integrating
a reversible protein–protein interaction module controlled by
blue light with the endogenous process of exosome biogenesis
(Yim et al., 2016). Importantly, treatment with protein-loaded
EXPLORs increased intracellular levels of cargo proteins and
their function in recipient cells in vitro and in vivo.

In designing naturally occurring exosomes or exosomes from
modified cell populations as therapeutic tools, researchers face
many hurdles with isolation, purification and production on a
large scale and at a suitable clinical grade (Li S. P. et al., 2018).
Thus, the development of bioinspired fully synthetic exosomes

represents a new frontier in the so called “nanomedicine.”
They should be robust and storable for prolonged period
and therefore able to work as “off-the-shelf ” therapies. In
order to do this, we must first understand the (1) therapeutic
cargo (e.g., protein, nucleic acids) that needs to be delivered
to the diseased organ and (2) synthesize clinically effective
synthetic exosomes containing this cargo (García-Manrique
et al., 2018). There are multiple approaches for creating synthetic
exosomes such as bio-engineering cells as membrane fragment
precursors or through mimicking the plasma membrane by
preparing artificial bilayers (García-Manrique et al., 2018). A
novel example of the first approach was shown by Jang et al.
who produced exosome-mimetic nanovesicles from a variety of
cells with counter receptors such as LFA-1 to inhibit abnormal
angiogenesis in murine cancer models (Jang et al., 2013). Both
U937 and Raw 264.7 cells were loaded with chemotherapeutic
agents such as doxorubicin, carboplatin and 5-fluorouracil,
which were subsequently forced through 10-1µm filters prior
to centrifugation. These new particles maintained the topology
of the plasma membrane and proved able to target tumors,
reducing their size (Jang et al., 2013). An equivalent approach
was used by Jeong et al. enhancing cell proliferation of murine
skin fibroblast cells through particles produced via embryonic
stem cell filtering (Jeong et al., 2014). With cardio-regeneration
and protection in mind, this concept could be translated to
obtain particles from cardiomyocytes, CPCs and ECs to enhance
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angiogenesis (Kuehbacher et al., 2007; Santangelo et al., 2016). As
an example of the second of the aforementioned approaches, Li
et al generated an efficient cargo loading mechanism by creating
artificial biomimetic exosomes functioning as antigen presenting
carriers to dendritic cells in vivo (Li K. et al., 2015). This method
was performed by adding a water in oil micro-emulsion loaded
protein with a micelle as outer lipid, and after evaporation of
the water particles, the lipophilic group of the micelle would
cover the inner membrane acting as a bi-layered membrane. This
emulsion droplet greatly improved the capsulation efficiency of
exosomes (Li K. et al., 2015). Interestingly, Sato et al. (2016)
engineered hybrid exosomes derived from Raw 264.7 and CMS7
cells by membrane fusion with liposomes through a freeze-thaw
method (Sato et al., 2016). The exosomes derived from Raw 264.7
cells and macrophage like cells contained high expression of
HSP70 and tetraspanin and were fused in a 1:1 ratio with various
lipid compositions (such as DOPC, DOPS, and DOTAP) through
several cycles of freezing in liquid nitrogen and thawing at room
temperature, rupturing and reconstruction both membranes.
A similar approach was performed with CMS7 cells, murine
fibro-sarcoma cells expressing HER2 receptor and CD63, with
both hybrids successfully showing proof of principle through

evaluation via western blot, flow cytometry and cellular uptake
in HeLa cells with confocal laser scanning microscopy (Sato
et al., 2016). This elegant method could potentially generate
high specific exosome cargo containing a sub set of miR-
143,−122, and let-7, aiding angiogenesis and athero-protection
(Vickers et al., 2011; Emanueli et al., 2016; Sato et al., 2016;
Beltrami et al., 2017). In addition, exosome fusion maintaining
cargo from CPCs, CDCs, MSCs, ESCs, and cardiomyocytes
with specific lipid homing composition could benefit anti-
apoptosis of cardiomyocytes, reduce fibrosis, aid differentiation
and proliferation after HF or MI. See Figure 3 for an overview of
synthetic exosomes.

EXOSOME HOMING

The role of integrins have been shown to play an important
role in exosome cellular homing and indeed integrins have
been even shown to guide homing of bioinspired synthetic
exosomes (Ben-Arie et al., 2012). However, the exact mechanism
and cell specific homing is not yet understood (Clayton et al.,
2004). Using an in vitro binding assay, Denzer et al. has
observed that exosomes isolated from B cell specifically bind to

FIGURE 3 | Potential use and effect of engineered and artificial exosomes. Exosomes can be enhanced through hybrid fusion, lipid conjugation or fragment

precursors with various cargo and surface compositions for cardio-protection post myocardial infarction (MI) or cardiac regeneration in heart failure (HF). All non-cell

geometries represent exosomes, growth factors such as vascular endothelial growth factor (VEGF), receptors, heat shock proteins (HSP) or microRNAs (miRs).
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TABLE 1 | Comparison of endogenous and synthetic exosomes in ischemic heart

disease based on current understanding.

Trait Endogenous Synthetic

Exosome production

Quantity High High

Population Heterogenous Homogenous

Batch consistency Medium High

Harvest difficulty Medium Low

Exosome controllability Semi cell

specific

Highly cell specific

Cargo specificity Non-specific Cell specific

Cell homing Semi specific Highly specific

Drug loading Feasible Feasible

Therapeutic use

Regenerative potency High Excellent

Disease specific Medium/high High

Adverse effects Possible Low probability

Personalized medicine

potential

Medium Excellent

Off-the-shelves potential Low High

Production cost High High at prototype level, but Low

as exosome enter “mass

production”

follicular dendritic cells (Denzer et al., 2000). Binding occurred
through the major histocompatibillity complex class II (MHC
class II), which is also on the surface of follicular dendritic
cells. Additional homing molecules were equally as important
such as costimulatory molecule CD86 and tetraspanin proteins
CD37, CD53, and CD82, which interact with integrins and
form oligomeric complexes with other tertaspanins (Denzer
et al., 2000). Ohno et al. targeted xenograft breast cancer tissue
expressing platelet-derived growth factor receptor fused with
GE11 peptide with exosomes derived from human embryonic
kidney 293 cells (Ohno et al., 2013). The results of in vivo studies
in mice showed that the fluorescently labeled exosomes did target
the cancer affected area, however was not highly specific due
to immunogenicity. Exosomes have been engineered to target
several receptors for therapeutic applications through peptide
fusion with the N-terminus of exosome membrane proteins.
However, these complexes can be degraded or cleaved as well,
resulting in loss of homing capability (Xitong and Xiaorong,
2016). Interestingly, adding a glycosylation peptide motif and
a small tag on the N-terminus of the peptides have been
shown to protect from proteases which could be a potential

counter measurement for these risks (Arnesen, 2011; Hung and
Leonard, 2015; Xitong and Xiaorong, 2016). Table 1 summarizes
and compares the properties of endogenous and exogenous
exosomes.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Endogenous exosomes and laboratory engineered synthetic
exosomes could bring a whole new era of therapeutic approaches
for multiple diseases. The latter are particularly attractive.
Such nature-inspired nanoparticles could represent paracrine
cargo deliveries homing to their specific target location. In this
review, we have discussed the role of endogenous exosomes
in ischaemic heart disease as well as past attempts and new
possibilities to engineered exosomes by manipulating their cargo
with various types of molecules, such as miRNAs, proteins,
peptides, and synthetic drugs. When designing exosomes, careful
consideration of justifiable surface markers to express externally
on the exosome membrane and cargo components has to be
investigated to prevent possible off-target adverse effects. As
discussed above, in the ischemic heart it is important to address
the whole micro environment in a controlled matter. Hence,
precision medicine approaches should consider the parallel and
serial use of multiple exosome types to maximize the therapeutic
responses. In ischemic heart disease, engineered exosomes could
prove able to replace and surpass the first-generation stem cell
therapies that have been shown to work via paracrine actions.
Moreover, exosomes could play in concert with improved cell-
based therapies and tissue engineering to deliver transformative
therapeutic solutions.
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