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Logical models are well-suited to capture salient dynamical properties of regulatory

networks. For networks controlling cell fate decisions, cell fates are associated

with model attractors (stable states or cyclic attractors) whose identification and

reachability properties are particularly relevant. While synchronous updates assume

unlikely instantaneous or identical rates associated with component changes, the

consideration of asynchronous updates is more realistic but, for large models, may hinder

the analysis of the resulting non-deterministic concurrent dynamics. This complexity

hampers the study of asymptotical behaviors, and most existing approaches suffer

from efficiency bottlenecks, being generally unable to handle cyclical attractors and

quantify attractor reachability. Here, we propose two algorithms providing probability

estimates of attractor reachability in asynchronous dynamics. The first algorithm, named

Firefront, exhaustively explores the state space from an initial state, and provides quasi-

exact evaluations of the reachability probabilities of model attractors. The algorithm

progresses in breadth, propagating the probabilities of each encountered state to its

successors. Second, Avatar is an adapted Monte Carlo approach, better suited for

models with large and intertwined transient and terminal cycles. Avatar iteratively explores

the state space by randomly selecting trajectories and by using these random walks to

estimate the likelihood of reaching an attractor. Unlike Monte Carlo simulations, Avatar

is equipped to avoid getting trapped in transient cycles and to identify cyclic attractors.

Firefront and Avatar are validated and compared to related methods, using as test cases

logical models of synthetic and biological networks. Both algorithms are implemented as

new functionalities of GINsim 3.0, a well-established software tool for logical modeling,

providing executable GUI, Java API, and scripting facilities.

Keywords: regulatory network, logical modeling, discrete asynchronous dynamics, attractors, reachability

1. INTRODUCTION

Logical modeling has been widely used to study gene regulatory and signalling networks (see e.g.,
Glass and Siegelmann, 2010; Saadatpour and Albert, 2012; Abou-Jaoudé et al., 2016). Briefly, in
a logical model, the evolution of the discretised level of each component depends on the current
values of its regulators whose influences are dictated by logical functions. Here, we rely on the
generalized framework initially introduced by Thomas and d’Ari (1990) and implemented in our
software tool GINSIM (Chaouiya et al., 2012; Naldi et al., 2018). Because precise knowledge of the
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durations of underlying mechanisms is often lacking, one
assumes that, when multiple components are called to change
their levels, all update orders have to be considered. This
corresponds to the asynchronous updating scheme (Thomas and
d’Ari, 1990; Thomas, 1991). The dynamics of these models are
classically represented by State Transition Graphs (STGs) where
nodes embody the model states and edges represent the state
transitions; each path in this graph accounts for a potential
trajectory of the system. In contrast, synchronous updates, which
amount to consider equal or negligible delays associated to
component changes, define deterministic dynamics, easier to
analyse but less realistic.

Model attractors (stable states or cyclic attractors) represent
long term, stable equilibria. Cyclic attractors denote stable
oscillations as observed in cell cycle or circadian rythms (see
e.g., Fauré et al., 2006; Fauré and Thieffry, 2009; Chaves and
Preto, 2013), whereas stable states are associated with cell lineages
or other cellular responses to external cues or perturbations
(see e.g., Sánchez et al., 2008; Calzone et al., 2010; Naldi et al.,
2010; Collombet et al., 2017). Modeling molecular networks
involved in cancer has been focusing on attractors and their
reachability properties (see e.g., Huang et al., 2009; Flobak et al.,
2015; Remy et al., 2015; Cho et al., 2016). Indeed, attractor
likelihood may provide relevant predictions as attractors reflect
cellular responses (e.g., healthy or not). For instance, to uncover
patterns of genetic alterations in bladder tumors, Remy et al.
(2015) considered an asynchronous logical model and checked
how model perturbations modify the probabilities of reaching
attractors related to proliferative phenotypes.

Not surprisingly, the number of states of logical models
grows exponentially with the number of regulatory components.
Moreover, due to the asynchronous updating scheme, the
dynamics are non-deterministic; they possibly encompass
alternative trajectories toward a given state as well as transient
cycles. All this turns the identification and reachability analysis
of model attractors into a difficult challenge. In this context,
methods have been developed to find stable states—also referred
as point attractors—and complex, oscillatory attractors (or, at
least to circumscribe their location) (Naldi et al., 2007; Garg et al.,
2008; Zañudo and Albert, 2013; Klarner et al., 2015). Here, we
primarily aim at efficiently determining attractors reachable from
specific initial condition(s) as well as estimating the reachability
probability of each of those attractors in asynchronous dynamics.

An STG can be readily interpreted as the transition matrix
of a finite Markov Chain. Generally, STGs encompass distinct
attractors (or recurrent classes) and thus define absorbing chains
(Grinstead et al., 1997). However, most existing results relate to
recurrent (or irreducible) chains (Prum, 2012). Moreover, we
aim at avoiding the construction of the whole dynamics (or the
associated transition matrix); we thus rely on the logical rules as
implicit descriptions of state transitions. Finally, we have here a
specific interest on reachability properties.

Following a background section, we present two approaches
to assess reachable attractors. First, the FIREFRONT algorithm
is a quasi-exact method that starts from an initial state
and simultaneously follows all (concurrent) trajectories while
propagating state probabilities. This algorithm follows a principle

similar to those employed for infinite Markov chains (Munsky
and Khammash, 2006; Henzinger et al., 2009). To enable state
space sampling and tackle models with large transient cyclic
behaviors, we developed AVATAR, which is a Monte Carlo
approach adapted to cope with strongly connected components.
Both methods have been implemented as new functionalities of
the software tool GINSIM (Naldi et al., 2018). They are applied to
a range of models, illustrating their respective performances and
specificities.

2. METHODS

In this section, we first briefly introduce the basics on Logical
Regulatory Graphs (LRGs), their state transition graphs (STGs),
attractors as well as absorbing Markov chains. We then present
the algorithm FIREFRONT. The rest of the section focuses on
AVATAR, an adaptation of the classical Monte Carlo simulation
to cope with cyclical behaviors. It is worth noting that for small
enough models it is possible to explicitly construct the STGs
and identify reachable attractors, but it is not straightforward to
evaluate their reachability probabilities.

2.1. Background
2.1.1. Basics on Logical Models and Their Dynamics
Definition 1. A Logical Regulatory Graph (LRG) is a pair (G,K),
where:

• G =
{

gi
}

i=0,...n
is the set of regulatory components. Each

gi ∈ G is associated to a variable vi denoting its level, which
takes values in Di = {0, . . .Mi} ( N; v = (vi)i=0,...n is a state
of the system, and S =

∏

i=0,...n Di denotes the state space.
• (Ki)i=0,...n denotes the logical regulatory functions (or logical

rules); Ki : S → Di is the function that specifies the evolution
of gi; ∀v ∈ S, Ki(v) is the target value of gi that depends on the
state v.

The asynchronous dynamics of an LRG is represented by a graph
as follows.

Definition 2. Given a logical regulatory graph (G,K), its
asynchronous State Transition Graph (STG) is denoted (S,T),
where:

• S is the state space,
• T =

{

(v, v′) ∈ S2 | v′ ∈ Succ(v)
}

, where for each state v,
Succ(v) : S → 2S is the set of successor states w, satisfying the
asynchronous property (one component is updated at a time):

∃gi ∈ Gwith

{

Ki(v) 6= vi and wi = vi + Ki(v)−v
i

|Ki(v)−vi|
,

∀gj ∈ G \ {gi}, wj = vj.

Note that, from the STG defined above, one can consider the
sub-graph reachable from a specific initial state v0 or from a set
of states {vi}i∈{0,...m} ⊆ S.

We further introduce some notation and classical notions.
Given an STG (S,T), we write v −→ v′ if and only if there

exists a path between the states v and v′. In other words, there
is a sequence of states of S such as: v0 = v, v1, . . . vk−1, vk = v′,
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and for all j ∈ {1, . . . k}, (vj−1, vj) ∈ T. Furthermore, we denote

v
k
−→ v′ such a path of length k.
A Strongly Connected Component (SCC) is a maximal set of

states A ⊆ S such that ∀v, v′ ∈ A with v 6= v′ , v −→ v′. This is to
say, there is a path between any two states in A, and this property
cannot be preserved adding any other state to A.

Attractors of an LRG are defined as the terminal SCCs of its
STG (i.e., there is no transitions leaving the SCC). If a terminal
SCC is a single state we call it a stable state, otherwise it is a
complex attractor.

2.1.2. Markov Chains and Absorption
The incidence matrix of an STG (S,T) naturally translates into an
|S| × |S|-transition matrix 5, which is a stochastic matrix (for all
v ∈ S,

∑

u∈S 5(v, u) = 1):

∀v, v′ ∈ S 5(v, v′) > 0⇔ (v, v′) ∈ T,

∀v ∈ S 5(v, v) = 1⇔ Succ(v) = ∅,

5(v, v) = 0 otherwise.

We assume that probabilities of concurrent transitions
are uniformly distributed: ∀v ∈ S,∀v′ ∈ Succ(v), 5(v, v′) =
1/|Succ(v)|. Extension to other distributions would be rather
straightforward.

A Markov chain (µ0,5) is defined by the finite set S, the
transition matrix 5, and the initial law µ0 (that depends on the
selection – or not – of an initial condition). We want to define the
chain stopped when it reaches an attractor. For that, we consider
the quotient graph of (S,T) with respect to the equivalence
relation: u ∼ v ⇔ u −→ v and v −→ u . In this quotient
graph, each node gathers a set of states and corresponds to a class
of the Markov chain. The absorbing nodes of the quotient graph
( i.e., nodes with no output arcs) form the absorbing classes of
the chain (µ0,5), all the other classes being transient. Note that
the number of absorbing classes is the number of attractors of
the corresponding STG. Let θ be this number and a1, . . . aθ the
absorbing classes.

Now, let us stop the chain (µ0,5) when it reaches an
absorbing class: we thus define the Markov chain X on the set
S̃ = T ∪ A, where T ⊂ S is the set of all the transient states,
and A = {{ai}, i = 1, . . . θ} (each element ai being an absorbing
class). The transition matrix π of X is:

π(u, ai) =
∑

v∈ai

5(u, v) ∀u ∈ T ,∀ai ∈ A ,

π(ai, u) = 0 ∀u ∈ T ,∀ai ∈ A ,

π(ai, ai) = 1 ∀ai ∈ A ,

π(ai, aj) = 0 ∀ai ∈ A ,∀aj ∈ A , i 6= j,

π(u, v) = 5(u, v) ∀u, v ∈ T .

Reordering the states by considering first the transient ones, (i.e.,
those belonging to T ) and then the absorbing classes (i.e., the
elements of A), the transition matrix π is under its canonical
form:

π =

(

Q L
0 I

)

,

whereQ(u, v) = π(u, v) for u, v ∈ T , L(u, a) = π(u, a) for u ∈ T

and a ∈ A, 0 is the null matrix (no transition from an absorbing
class to a transient state), and I the identity matrix. One can easily
verify that:

πk =

(

Qk (
∑k−1

j=0 Qj) L

0 I

)

,

πk(u, v) denotes the probability that, started in
state u, the chain is in state v after k steps:

πk(u, v) = Pu(Xk = v)
1
= P(Xk = v |X0 = u) . Proofs of the

next, well-known results can be found in [e.g., (Grinstead et al.,
1997), chap. 11].

• Qk tends to 0 when k tends to infinity, and

lim
n→+∞

n
∑

k=0

Qk = (I − Q)−1 . (1)

• The hitting time ofA is almost-surely finite.
• From any u ∈ T , the probability of X being absorbed in a ∈ A

is Pu(X∞ = a) = (Id − Q)−1 L(u, a) .

By an abuse of terminology, we will refer to Pu(X∞ = a) as the
probability to reach the attractor a from the initial state u.

2.2. Firefront
FIREFRONT is our first method to identify attractors and assess
their reachability probabilities. Although simple, it is effective for
restricted types of dynamics as demonstrated in section 4. Briefly,
the algorithm progresses in breadth from an initial state v0, which
is first assigned probability 1. It distributes and propagates the
probability of each visited state to its successors, according to the
transition matrix 5.

At any step k, the set of states being expanded and carrying
a fraction of the original probability is called firefront as it
corresponds to the front line of the breadth-first exploration of

the STG: Fk = {v ∈ S, ∃v0
k
→ v}. Basically this procedure, called

expansion, calculates at each iteration k and for each state v the
probability of the Markov chain X to be in v after k steps from
state v0: Pv0 (Xk = v) = πk(v0, v). Clearly, by the definition of the
set Fk,Pv0 (Xk ∈ Fk) = 1; the firefront will ultimately contain only
states that are stable states or members of complex attractors. In
what follows, we will simply denote the firefront set F, omitting
the index k. Actually, attractors are not kept in F, they are instead
stored in another set A (see below), hence F becomes ultimately
empty.

In practice, to tackle efficiency bottlenecks avoiding the
exploration of unlikely trajectories, we introduce a set of neglected
states N. Furthermore, to ensure that the algorithm terminates
whenever the reachable attractors are all stable states, we consider
the set of attractors A. In the course of the exploration the
firefront F is reduced as explained below:

• if the probability associated with a state v ∈ F drops below a
certain value α, then v is moved from F to N (set of neglected
states). As a consequence, the immediate successors of v will
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not be explored at this time. If a state v ∈ N is visited again
as being the successor of a state in F, its probability is properly
updated (we will say that it accumulates more probability), and
if this probability exceeds α, then v is moved from N back to F
(see Figure 1, step 7);
• if a state in F has no successors, it is moved to A (set of stable

states); if it is already in A, its probability increases according
to this new trajectory.

At each step, the sum of the probabilities of the states in F,N, and
A is 1.

Algorithm 1 FIREFRONT

Input: α,β , v0 // min prob. to stay in F, total prob. in F
under which the procedure halts, initial state

Output: A // set of reachable attractors with their
probabilities

1: F← {v0} N ← ∅ A← ∅
2: while total probability in F > β do

3: F′ ← ∅
4: while F 6= ∅ do
5: v← select and remove element of F
6: if Succ(v) = ∅ then
7: v is added to A as a stable state
8: else

9: for all v′ ∈ Succ(v) do
10: p← divide p(v) by

∣

∣Succ(v)
∣

∣

11: if v′ is in F′, N or A then

12: Add p to the probability of v′

13: else

14: Set the probability of v′ to p
15: end if

16: if probability of v′ ≥ α then

17: Add v′ to F′ if it is not in A
18: Remove v′ from N if it is there
19: else

20: Add v′ to N
21: end if

22: end for

23: end if

24: end while

25: F← F′

26: if isOscillating(F) then
27: Extract complex attractors: move their states from F and

N into A
28: end if

29: end while

Unlike forest fires, which do not revisit burnt areas, the
algorithm will, in general, revisit the same state in the presence of
a cycle. This invalidates our colorful metaphor unless imagining
uncannily rapid forest regeneration. The presence of cycles
thus poses some difficulties because the algorithm would never
terminate. To address this issue, FIREFRONT detects periodicities
of the ensemble of states entering and exiting F ( i.e., states with
a sustained oscillating probability); three sequential occurrences

of exactly the same set F are assumed to be sufficient evidence
that the simulation is locked within a complex attractor. In this
situation, all the states found in F between the second and third
occurrences are used to compose the complex attractor. To do
so efficiently, FIREFRONT uses a reversible hash-function. This
heuristic thus enables the identification of complex attractors
from oscillating behaviors throughout expansions. Nevertheless,
since FIREFRONT progression can still become locked in large
and complex cycles for a lengthy number of expansions, the
user may specify a maximum depth (number of expansions) to
guarantee its termination in useful time.

When available, the algorithm can be provided with a
description of the complex attractors, equipping FIREFRONT

with a function called oracle that indicates whether a state belongs
to a listed complex attractor. In this case, FIREFRONT halts the
exploration whenever it reaches a state recognized by the oracle,
and treats all members of the corresponding attractor as a single
element of A collectively accumulating incoming probabilities.

FIREFRONT terminates when: 1) the total probability in F
drops to zero or below some predefined threshold β , or 2) the
predefined maximum depth is reached. Given the initial state
v0, the probability associated to each attractor a ∈ A is a lower
bound of Pv0 (X∞ = a). An upper bound is obtained by adding
to this value β and the sum of probabilities accumulated inN. An
outline of FIREFRONT is presented in Algorithm 1, and Figure 1

provides an illustration on a toy example.

2.3. Avatar
AVATAR is proposed as an alternate algorithm to identify model
attractors and quantify their reachability, considering specific
initial state(s) or the whole state space. AVATAR is an adaptation
of the classical Monte Carlo simulations that aims at efficiently
coping with (transient and terminal) SCCs.

2.3.1. The Algorithm
When exhaustive enumeration is not feasible, Monte Carlo
simulation is classically used to estimate the likelihood of an
outcome. Concerning attractor reachability in logical models, this
means following randompaths along the asynchronous dynamics
(the STG). Each simulation halts when either a stable state (with
no successor) or the maximal depth are reached. Performing
a large number of simulations allows estimating reachability
probabilities of stable states. The simulation does not record past
states, and thus memory requirements are minimal. However,
a major drawback is that cycles are not detected. Consequently,
without restricting the number of steps, the simulation does not
terminate when a trajectory enters a terminal SCC. Moreover, in
the presence of a transient cycle, it may re-visit the same states
an unbounded number of times before exiting. That is why we
propose an appropriate modification of this approach.

AVATAR is outlined in Algorithm 2 (further description
of AVATAR and its ancillary procedures is provided in the
Supplementary Material S1). It avoids repeatedly visiting states
by detecting that a previously visited state is reached, indicating
the presence of a cycle in the dynamics. Having detected a
cycle, the algorithm modifies the STG in order to dismantle
the cycle, linking its states to its exiting states (i.e., targets
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FIGURE 1 | Illustration of FIREFRONT operation, with α = 1
16 : (1) The exploration starts from initial state v1 in F associated with probability 1, sets A and N are empty;

(2) successors replace v1 in F, associated with their probabilities; (3–4) states in F are replaced by their successors, but the stable state v7 goes in A; (4) v3, v4, v6
stay in F with updated probabilities; (5) probability of v8 in A increases as it is visited again; (6) v5 goes to N as its probability is lower than α; (7) v5 is removed from N

and put back in F as its probability increased when visited again from v1. Transitions explored in the current iteration are in blue, their sources being labeled with their

probabilities. Red nodes are in A, and gray nodes are in N. The exploration will halt when F is empty or the maximum number of iterations is reached.

of transitions leaving the cycle). It is important, however, to
associate these new transitions with appropriate probabilities; the
probability of a transition from any cycle state to a given exit must

match the corresponding asymptotic probability, considering the
infinitely many possible trajectories. The STG is thus rewired
so as to replace all the transitions between the cycle states by
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transitions from each cycle state toward each cycle exit (see
Figure 2). Each rewiring creates a new so-called incarnation
of the dynamics. Such an incarnation—Sanskrit name of our
algorithm—is a graph with the same states as the original STG,
but with different transition probabilities. This rewiring relies on
theoretical foundations that are presented in section 2.3.2. Upon
rewiring, the simulation proceeds from the current state.

Because it is generally more efficient to rewire a large transient
than to iteratively rewire portions of it, upon encountering
a cycle, AVATAR performs an extension step controlled by
a parameter τ that is a modified Tarjan’s algorithm for
SCC identification (Tarjan, 1972)—trajectories exploration is
performed up to a depth of τ away from states of the original
cycle. The subsequent rewiring is then performed over the
(potentially) extended cycle. In the course of a single simulation,
the value of τ is doubled within each attempt to enlarge a cycle in
order to speed up the identification of large transients.

When a newly visited state v has no successor, it is a stable
state. But if v was part of a cycle in a previous incarnation,
v belongs to a complex attractor, which is computed as the
equivalence class containing all the cycles that included v in past
incarnations.

As for FIREFRONT, the algorithm can be complemented with
the previous knowledge of the attractors (oracles). This obviously
improves AVATAR’s performance. Moreover, AVATAR not only
evaluates the probability of the attractors being reached from
an initial condition, it can also be used to assess the probability
distribution of the attractors for the whole state space ( i.e.,
considering all possible initial states). AVATAR is also able to use
the knowledge regarding the identified transient SCCs within one
iteration to alleviate the cost of identifying and possibly rewiring
large cycles in upcoming iterations, thus boosting the overall
efficiency of the simulation. The knowledge regarding the sizes
of the transient SCCs and average depths of the found attractors
can provide valuable insights into the model dynamics.

2.3.2. Theoretical Foundations of Avatar Rewiring
The rewiring performed by AVATAR to force the simulation
exiting a cycle modifies the probabilities associated to transitions.
This is properly done so as to ensure a correct evaluation of
the reachability probabilities performing a (large) number of
randomwalks over ourMarkov chainX. This procedure amounts
to modify the chain. It is formalized below and illustrated in
Figure 2.

Suppose that Xt = c1, and Xt+k = c1 for t and k two
positive integers. The walk has thus traveled along the cycle C =
(c1, c2, . . . ck) (with ci ∈ S and (ci, ci+1) ∈ T, ∀i = 1, . . . k). Note
that this cycle may contain “direct shortcuts”: (ci, cj) ∈ T, j 6= i+1
(mod k). We denote by B the set of states directly reachable from
C: B = {v ∈ S \ C , (ci, v) ∈ T, ci ∈ C} . Let q be the k × k
sub-matrix of π , for states c1, . . . ck, and r the k× |B| sub-matrix
of π , defining transitions from C to B. To force the walk leaving
the cycle (rather than being trapped there for a long time), the
transition matrix is modified as follows:

• remove the transitions between the states of C; the sub-matrix
q is replaced by q1 = 0, the null matrix;

Algorithm 2 AVATAR (single simulation)

Input: v0
Output: A // attractor set
1: t← 0 // incarnation counter
2: v← v0 // initial state
3: while v has successors do
4: v′ ← successor of v chosen with probability π(v, v′) =

1/|Succ(v)|
5: if v′ was already visited in incarnation t then
6: Ct ← set of all states visited since the discovery of v′

7: Extend cycle Ct

8: B ← set of exits //successors of states in Ct that
are not in Ct

9: if B = ∅ // Ct has no exits then

10: A ← C∗ where ∀w ∈ C∗, if ∃k s.t. w ∈ Ck then
Ck ⊆ C∗

11: else

12: // Rewire the graph
13: q←

[

π(v,w)
]

v,w∈C

14: r←
[

π(v,w)
]

v∈C,w∈X

15: r1 ←
(

Id|C|×|C| − q
)−1

r
16: for all v ∈ C do

17: for all w ∈ C do

18: π(v,w)← 0
19: end for

20: for all w ∈ B do

21: π(v,w)← r1v,w
22: end for

23: end for

24: end if

25: t← t + 1
26: end if

27: v← v′

28: if v has no successors then
29: A← v //stable state
30: end if

31: end while

• add an arc from each state of C to each state of B; the sub-

matrix r is replaced by r1
1
=
∑∞

j=0 q
j r. By Equation (1), section

2.1.2, ∀ci ∈ C, ∀v ∈ B, r1(ci, v) =
[

(Id − q)−1r
]

(ci, v).

Y denotes this new chain. Property 1 asserts that, starting from
any transient state u, X, and Y have the same asymptotical
behaviors.

Property 1. ∀u ∈ T , ∀a ∈ A, Pu(Y∞ = a) = Pu(X∞ = a) .

Proof: Transition matrices of X and Y are the same except
around the states of the cycle C; they behave differently only
when traveling along C: from ci, entry state of C, X runs along
C for l steps (l ≥ 0), leaving C through a state v ∈ B with
probability qlr(ci, v), whereas Y would go directly from ci to v,
with probability r1(ci, v). Hence, for all u ∈ T , a ∈ A and j ≥ 0,
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FIGURE 2 | Illustration of AVATAR operation: The transition matrix π is partitioned into the sub-matrices q for transitions between states v1, . . . v4 of the cycle to be

discovered (Top Left), and r for transitions leaving the cycle (Top Right). Exploration starts at v1 (denoted in blue as well as its leaving transitions with their

probabilities), v2 is selected for the second iteration, and v1 is indicated as being already visited in red. Exploration proceeds until revisiting v1 at the 5th step. Having

identified a cycle, the rewiring procedure is launched, removing transitions of the cycle (dotted red) and adding transitions toward exits (green). Probabilities are

computed, resulting in a new matrix π1, with q1
ij
= 0 and r1

ij
= ((Id−q)−1r)ij , i = 1, . . .4. From v1, an exit of the cycle is chosen according to these probabilities (step 6).

we have Pu(Yj = a) ≥ Pu(Xj = a) and thus,

k
∑

j=1

Pu(Yj = a) ≥

k
∑

j=1

Pu(Xj = a),

Pu(Y∞ = a) ≥ Pu(X∞ = a),

1 =
∑

a∈A

Pu(Y∞ = a) ≥
∑

a∈A

Pu(X∞ = a) = 1.

All the terms being positive, the Property is proved. Therefore,
the rewiring does not asymptotically affect the output of the
simulation.

Despite the inherent simplicity and time efficiency of the
rewiring step, its dependency on matrix inversions can lead
to a memory bottleneck for very large cycles. As such, the
current implementation of AVATAR uses a ceiling size for a cycle
to be rewired. When AVATAR finds a cycle, it still attempts
to extend it as far as possible. If the extended cycle has
some exits, it needs to be rewired. However, if the extended
cycle has more states than the specified ceiling, only a sub-
cycle (with as much states as allowed) of the detected cycle is
rewired. Furthermore, the user can also choose an approximate

strategy for rewiring that still guarantees the selection of exit
states when entering a cycle without the need to perform an
exact estimation of their likelihood. This is done by assigning
uniform probabilities from the states of a cycle to its exits.
Although this strategy is not prone to memory bottlenecks,
its approximate nature can lead to biases on the computed
reachability probabilities.

3. IMPLEMENTATION

Both FIREFRONT and AVATAR are implemented in the context
of GINSIM, which supports the definition and analysis of
logical models (Chaouiya et al., 2012; Naldi et al., 2018).
Figure 3 provides a snapshot of the desktop GUI, showing the
selection of the algorithm, specification of model modifications
(perturbation or reduction), initial conditions, and algorithm
parameters. MONTECARLO simulations are also available, as well
as a modified version of AVATAR with the approximate strategy
described above. User documentation of Firefront and Avatar is
provided in the Supplementary Material S2.

The implementations of FIREFRONT and AVATAR rely on
adequate data structures—states are easily indexable through
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FIGURE 3 | GUI for the assessment of attractor reachability within GINSIM.

meaningful and compact hash keys, and sets of states are
implemented as a map of states for highly efficient indexations,
additions and removals. Our implementation of FIREFRONT

halts the STG exploration after a predefined number of
expansions (103 by default). AVATAR implementation includes a
heuristic optimization controlled by optional parameters whose
default values were found to be appropriate for the tested models.
This optimization considers tradeoffs between costly rewirings
and simulations freely proceeding along cycles, as well as between
memory cost of keeping state transitions after rewiring and not
profiting from rewirings in previous simulations. AVATAR further
supports sampling over (portions of) the state space. In this case,
iterations within a simulation start from states randomly selected
over the unconstrained model components.

Both algorithms provide textual and visual displays of the
results: attractors and their reachability probabilities, maximal
size of encountered transient SCCs, and plots of the evolution of
the set contents for FIREFRONT and of the probability estimates
for AVATAR (see section 4).

4. RESULTS

To validate the proposed algorithms, we considered a number
of case studies including randomly generated, synthetic and
published biological models. All are briefly described below. We
analyzed how FIREFRONT and AVATAR perform on these case
studies and compared, when possible, to outcomes produced by
BOOLNET (Müssel et al., 2010) and MONTECARLO simulations.
BOOLNET is an R package not only able to generate random
Boolean models, but also to identify attractors and to perform

Markov chain simulations. We further compared AVATAR with
MABOSS, a C++ software implementing a Monte Carlo kinetic
algorithm to produce time trajectories of Boolean models (Stoll
et al., 2012), and with the probabilistic model checker PRISM
(Kwiatkowska et al., 2011, 2017). The experiments were run using
an Intel(R) i7-7500U CPU @ 2.7GHz and 8GB of RAM.

4.1. Case Studies Description
Two sets of synthetic models were generated. First, we used
BOOLNET (Müssel et al., 2010) to define random models
with 10 to 15 components, each with 2 regulators and logical
rules randomly selected (uniform distribution)1. From the
resulting set of random models, three models were selected for
exhibiting multi-stability (Table 1). Additionally, we constructed
a “synthetic” model exhibiting a large complex attractor and a
few transient cycles. To further challenge our algorithms, we
modified this last model, adding one component in such a way
that the complex attractor turned into a transient cycle with very
few transitions leaving toward a stable state (see synthetic models
1 and 2 in Table 1).

Our case studies also include published biological models.
First, a Booleanmodel of themammalian cell cycle control (Fauré
et al., 2006), which has 10 components and exhibits one stable
state (quiescent state) and one complex attractor (cell cycle
progression). These attractors arise in (two) disconnected regions
of the state space, controlled by the value of the sole input

1This process is automated in BOOLNETR2GINSIM, a small program available

at https://github.com/ptgm/BoolNetR2GINsim that accepts user-defined

parameters, calls BOOLNET and writes the resulting model to a GINML file

(the GINSIM format).
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TABLE 1 | Characteristics of the models used as case studies to challenge Firefront and Avatar: type of variables (Boolean vs. multi-valued), number of input components

(these remain constant) and internal components, number and type of attractors with number of states in the case of complex attractors, size of the state space with the

total number of model states.

Model name Boolean # Components # Attractors # States

(Y/N) Input Internal Stable states Complex attractors (size)

Random 1 Y 0 10 1 1 (4) 1 024

Random 2 Y 0 10 1 1 (4) 1 024

Random 3 Y 0 15 1 1 (4) 32 768

Synthetic 1 Y 0 15 1 1 (8192) 32 768

Synthetic 2 Y 0 16 2 0 65 536

Mammalian Cell Cycle Y 1 9 1 1 (112) 1 024

Segment Polarity (sp1, 1-cell) N 2 12 3 0 186 624

Segment Polarity (sp2, 2-cells) N 0 24 3 0 ≈ 9.7× 108

Segment Polarity (sp4, 4-cells) N 0 48 15 0 ≈ 9.4× 1017

Bladder model N 4 26 20 5 (16,16,32,512,184320) ≈ 8.5× 109

component (CycD, which stands for the presence of growth
factors).

Second, Sanchez et al.’s multi-valued model of the segment
polarity module—involved in early segmentation of the
Drosophila embryo—defines an intra-cellular regulatory
network. Instances of this network are connected through inter-
cellular signaling (Sánchez et al., 2008). Here, we consider three
cases: 1) the intra-cellular network (one cell), 2) the composition
of two instances ( i.e., two adjacent cells), and 3) the composition
of four instances. Initial conditions are specified by the action
of the pair-rule module (Wg-expressing cell for the single cell
model) that operates earlier in development (see Sánchez et al.,
2008 for details).

Third, we consider the interaction network of genes frequently
altered in bladder cancer as proposed in Remy et al. (2015).
This model includes 4 input components leading to different
responses (EGFR, FGFR3 stimuli, Growth inhibitor, DNA
damage), 23 internal components and 3 output components
representing cellular responses or phenotypes (Proliferation,
Apoptosis, Growth Arrest). Depending on the input values,
the model displays multistability or not, with a combination
of stable states and complex attractors. This case study further
demonstrates the capacity of AVATAR in assessing large complex
attractors, quantifying attractor reachability, and revealing
transient dynamics.

Finally, using a model of T helper cells differentiation (Naldi
et al., 2010) and a model of cell fate decision in response to death
receptor engagement (Calzone et al., 2010), we provide additional
illustrations in the Supplementary Materials S4, S5.

Supplementary Material S6 provides an archive containing
all the models in the GINsim format (zginml).

4.2. Firefront and Avatar in Action
Results are summarized in Table 2. Generally, FIREFRONT and
AVATAR show efficiency gains against alternatives and are further
able to surpass the drawbacks of BOOLNET (applicable to Boolean
models only) and MONTECARLO (unable to identify transient
and terminal cycles).

Considering random models 1 to 3, FIREFRONT and
AVATAR are able to efficiently find the stable states and

complex attractors of these models and to estimate their
reachability probabilities. BOOLNET is slower for these
random models. MONTECARLO is not only less efficient
but is also unable to detect the complex attractors. For
instance, in random model 2, less than 8% of the simulations
succeeded.

For synthetic model 1, FIREFRONT takes over a minute
to distribute the probability out of the large transient cycles.
For synthetic model 2, FIREFRONT could not distribute
more than 5% of the probability out of the transient SCC
(purposely constructed with 8 196 states and a dozen exits). The
presence of multiple large transient SCCs causes FIREFRONT

to accumulate a large number of states in F, leading to some
time overhead and difficulty to distribute the probabilities. States
of transient SCCs are revisited until the probabilities of their
incoming transitions drop below α, which can take long. As
such, the computational performance of FIREFRONT is greatly
influenced by the structure of the STG (e.g., state outdegrees
or sizes of transient SCCs). The Supplementary Material S3

provides illustrations of the structures of the dynamics. In
contrast, AVATAR is able to adequately identify and exit
transient SCCs. For this reason, AVATAR was able to escape
the transient SCC planted in synthetic model 2 thanks to
its rewiring procedure, and could identify and quantify the
attractors for both synthetic models. BOOLNET completed
synthetic models 1 and 2, after 7 and 5 days, respectively,
which highlights the need for the proposed methods to face
efficiency bottlenecks for models with large and complex
SCCs.

Starting in the region of the state space where themammalian

cell cycle model has a (unique) complex attractor ( i.e., with the
presence of CycD), AVATAR, FIREFRONT, and BOOLNET could
assess its reachability from the quiescent state; when sampling
the state space, both AVATAR and BOOLNET could correctly
quantify the reachability of the two attractors (FIREFRONT was
not applicable as it requires a starting initial state). Expectedly,
MONTECARLO could not retrieve the complex attractor, being
unable to exit it in all runs.

With regards to the segment polarity model, FIREFRONT

was efficient for all cases (single, two and four cells), although
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its ability to distribute all the probability decreases with the
increase of model size. Since it did not reach the allowed
maximum number of iterations, its stopping condition was
that the total probability in F dropped below β , with all the
residual probability in the neglected set, which in the end
contained approximately 140, 52 000, and 210 000 states for
the models of single, two and four cells, respectively. This
would suggest that α was not small enough with respect to
the number of concurrent trajectories toward the attractors (see
Supplementary Material S4 for illustration). Although AVATAR’s
performance is constrained by the need to assess the complex
structure of the two and four cells’ models (for instance the largest
encountered transient SCC for sp2 has over a million states), it
is adequately able to find the attractors, even those with a low
reachability probability. Given the fact that the attractors of these
models are stable states,MONTECARLO was able to retrieve them,
in particular those attractors reachable without the need to visit
large transient SCCs.

Figure 4 complements these results by showing, for two of
our case studies: with FIREFRONT, the evolution of the cardinals
of the sets F, N, and A (and their corresponding probabilities),
and with AVATAR, the convergence of the estimated reachability
probabilities of the attractors.

The application of AVATAR over the bladder tumourigenesis

model—with results illustrated in Table 3—enabled the
quantification of attractor reachability over the whole state space,
for 8 combinations of input values. Stable states were gathered
in 3 classes, corresponding to the cell phenotypes Proliferation,
Apoptosis and Growth Arrest, which are indicated by the values
of the 3 output components of the model. The model displays
several complex attractors. The reachability quantification of
the attractors is relevant in the cases of multi-stability, i.e.,
when several attractors arise for the same input condition
(compare with Table S2 in Remy et al., 2015). AVATAR discloses
structural properties of the model dynamics such as the sizes of
encountered transient SCCs and mean depths of the attractors
(not shown).

We also performed the analysis of model perturbations
to illustrate the biological relevance of assessing attractor
probabilities. To this end, we considered the case of activating
mutations of fibroblast growth factor receptor 3 (FGFR3) and of
the oncogene PI3K, one of the co-occurrent genetic perturbations
observed in bladder tumors (see Remy et al., 2015). Figure 5
illustrates how probabilities of the attractors are modified under
those perturbations. It supports the conclusions drawn in Remy
et al. (2015): mutating FGFR3 in PIK3-mutated tumors seems to
be advantageous (to increase the probability of Proliferation); a
third mutation is required for uncontrolled proliferation (i.e., the
loss of all the phenotypes but Proliferation).

For completeness, we also compared AVATAR with MABOSS
and PRISM. For this, we used GINSIM export facilities of logical
models to MABOSS and PRISM formats.

MABOSS is a related command-line tool that generalizes
Boolean models by defining stochastic rates associated with
component updates (Stoll et al., 2012). MABOSS primary goal is
to compute temporal evolutions of state probability distributions
and to estimate stationary distributions. To this end, it relies
on the Gillespie algorithm. MABOSS is thus well suited to

get a quantitative view of temporal evolutions in the form of
stochastic trajectories (see e.g., Abou-Jaoudé et al., 2016). When
running MABOSS on our case studies, it appeared that the tool
was able to provide the reachability probabilities of the stable
states of the random models 1 to 3. However, the presence
of large transient SCCs or of complex attractors hinders the
evaluation of such a measure for the synthetic models and for
the cell cycle model. Table 3 includes the results obtained with
MABOSS for the analysis of the bladder tumourigenesis model.
Reachability probabilities obtained for the stable states are close
to those provided by AVATAR. While MABOSS is clearly faster
than AVATAR, it is unable to assess complex attractors being thus
applicable only when attractors are known to be stable states.

PRISM is a model checker that supports probabilistic
reachability queries (Kwiatkowska et al., 2011, 2017). To
compare AVATAR and PRISM, we repeated the analysis of the
segment polarity model with 2 cells. Results are provided
in Table 4. Notably, PRISM is extremely efficient to evaluate
the number of reachable states, a feature not provided by
AVATAR. PRISM performs an exhaustive exploration to evaluate
exact reachability probabilities. However, as demonstrated with
AVATAR, a restricted sample of the dynamics may provide good
enough probability estimates in a much shorter time. This feature
is particularly useful for larger models. Indeed, for the sp4model,
PRISM ran out of memory and was thus unable to evaluate
the number of reachable states and conclude the analysis (even
when increasing the amount of available memory to CUDD to
8Gb).

5. DISCUSSION

For models of regulatory networks controlling cell fates, it is
of a real interest to identify the model attractors, as well as
quantify their reachability over the whole state space or from
specific initial conditions. In particular, the impact of model
perturbations (e.g., corresponding to observed mutations) on
attractors and their basins of attraction has been used to better
understand the fates of tumor cells (Huang et al., 2009; Kim
et al., 2017; Shah et al., 2018). Most studies rely on Boolean
models under a synchronous updating scheme. However, while
stable states are identical whatever the updating scheme, it is
not the case for the complex attractors, neither for the basins of
all attractors. Because the synchronous scheme stems from the
assumption that delays associated with component updates are
equal, asynchronous updates have been considered more realistic
(Thomas, 1991; Abou-Jaoudé et al., 2016). In the context of non-
deterministic asynchronous dynamics, it is then relevant to assess
the likelihood to reach an attractor and howmodel perturbations
modifies this reachability likelihood. For example, this approach
has been used to assess patterns of genetic alterations in bladder
tumourigenesis (Remy et al., 2015), or yet to highlight the
synergetic roles of Notch gain-of-function and p53 loss-of-
function in promoting metastasis (Cohen et al., 2015).

Attractor identification could be achieved by analysing the
State Transition Graph (STG) kept in memory but, due to
combinatorial explosion, this is impractical for large models.
In any case, we are still left with the problem of quantifying
attractor reachability in asynchronous dynamics. As an attempt
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FIGURE 4 | Plots computed by FIREFRONT and AVATAR throughout simulations for the random3 (Top) and the sp1 (Bottom) models (see Tables 1, 2). Left plots show

the numbers of states to be expanded (in F ), of neglected states (in N), and of attractors (in A). Middle plots show the cumulative probabilities of the 3 sets. Right plots

show the convergence of the reachability probability of each attractor.

TABLE 3 | Attractor analysis of the bladder tumourigenesis model performed with AVATAR and MABOSS.

DNA

damage

EGFR

stimulus

FGFR3

stimulus

Growth

inhibitor

AVATAR MABOSS

Time Attractors Prob. Largest SCC Time Attractors Prob.

0 0 0 0 162s GA1 1.00 163 528 15.76s GA1 1.00

0 0 0 1 284s GA2

GA3

0.882

0.118

239 994 15.81s GA2

GA3

0.885

0.115

0 0 1 0 373s Pr1 1.00 253 440 13s Pr1 1.00

0 0 1 1 258s GA4

GA5

Pr2

0.770

0.095

0.135

135 483 14.95s GA4

GA5

Pr2

0.722

0.121

0.157

0 1 0 0 382s Un1 (#184 320) 1.00 184 320 699s — —

0 1 0 1 421s GA6 (#512) 1.00 242 486 457.57s — —

0 1 1 0 212s Pr1 1.00 151 435 11.14s Pr1 1.00

0 1 1 1 176s GA4

GA5

Pr2

0.775

0.070

0.155

289 593 11.2s GA4

GA5

Pr2

0.737

0.1

0.162

The eight input configurations with DNA damage at 0 are considered. Attractors are named depending on the corresponding phenotype: Pr for Proliferation, GA for Growth Arrest,

Ap for Apoptosis, Un for Undecided (output components are oscillating). Attractor sizes are indicated for complex attractors. Attractor probabilities are estimated over the whole state

space. Avatar parameters: 103 runs, up to 106 states for expansion, up to 103 states for rewiring, and 108 maximum depth.MaBoSS parameters: time tick=1.0; max time=104; sample

count=104; discrete time=1.
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FIGURE 5 | Probabilities of the phenotypes for the bladder tumourigenesis model in the wild type and mutant contexts: probabilities for the double mutant FGRF3

overexpression (FGFR3 E1) and PI3K overexpression (PI3K E1) suggest a slight advantage in mutating FGFR3 in a PI3K-mutated context (by increasing the probability

of Proliferation); a third mutation of the tumor suppressor CDKN2A (coding for p16INKa) leads to the sole phenotype Proliferation (see Remy et al., 2015).

TABLE 4 | Assessing attractor probabilities for the sp2 model with AVATAR and

PRISM.

AVATAR PRISM

1E6 runs 1E4 runs

Stable states Time Prob. Time Prob. Time Prob.

SS1 0.8915 0.8921 0.8909

SS2 4h59 0.1084 153s 0.1078 4h25 0.1088

SS3 1.2E-4 1E-4 1.04E-4

Probabilities returned by Avatar are quite similar when considering a lower number of runs,

indicating that it is possible to quickly obtain good estimates of reachability probabilities

in a much shorter time.

to surpass efficiency bottlenecks and quantification biases of
existing methods, we have delineated two novel strategies.
FIREFRONT performs a memoryless breath-first exploration of
the STG, avoiding any further exploration of states which fall
bellow a given threshold α. AVATAR performs a modified version
of the Monte Carlo algorithm, avoiding the exploration of
states previously visited by rewiring and appropriately associating
new probabilities with state transitions. To adequately choose
the algorithm and optimal values of associated parameters,
information about the structure of the dynamics would be
needed, which is generally unachievable. Broadly, the breadth
of the explored STG and the structure of transient Strongly
Connected Components (SCCs) clearly impact FIREFRONT’s
performances. AVATAR’s performances are influenced by the
degree of connectivity of the SCCs. Ideally, AVATAR should
avoid to rewire SCCs from which it can easily exit (low

connectivity or high exit ratio). On the other hand, it should
rewire SCCs from which it is hard to escape. It is also much
more efficient to rewire a whole SCC than to iteratively rewire
portions of it. While sizes and structures of SCCs are not known
a priori, AVATAR incorporates heuristics that evolve running
parameters to the information collected in the course of the
simulation.

Results from synthetic and real biological models reveal
the ability of FIREFRONT and AVATAR to efficiently assess
attractor reachability. This type of analysis will permit further
biological insights into the dynamics of regulatory and signalling
networks. For example, as mentioned above, how model
perturbations modify the probability to reach an attractor can
reveal the role of single or combined mutations in disease
progression. Usage of both algorithms is facilitated through
their implementation in GINsim, which provides a convenient
graphical user interface.

As future work, the consideration of non-uniform transition
probabilities could be easily handled. In particular, when priority
classes can be defined by classifying component updates into e.g.,
slow and fast processes (Fauré et al., 2006), some trajectories are
discarded thus modifying the structure of the STG, and therefore
the reachability properties. Furthermore, confronting asymptotic
model dynamics against experimental time series could provide
the ground for model validation.
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