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Systemic sclerosis (SSc) is a rare connective tissue disease characterized by
autoimmunity, vasculopathy, and progressive fibrosis typically affecting multiple organs
including the skin. SSc often is a lethal disorder, because effective disease-
modifying treatment still remains unavailable. Vasculopathy with endothelial dysfunction,
perivascular infiltration of mononuclear cells, vascular wall remodeling and rarefaction
of capillaries is the hallmark of the disease. Most patients present with vasospastic
attacks of the digital arteries referred to as ‘Raynaud’s phenomenon,’ which is often an
indication of an underlying widespread vasculopathy. Although autoimmune responses
and inflammation are both found to play an important role in the pathogenesis of
this vasculopathy, no definite initiating factors have been identified. Recently, several
studies have underlined the potential role of oxidative stress in the pathogenesis of SSc
vasculopathy thereby proposing a new aspect in the pathogenesis of this disease. For
instance, circulating levels of reactive oxygen species (ROS) related markers have been
found to correlate with SSc vasculopathy, the formation of fibrosis and the production
of autoantibodies. Excess ROS formation is well-known to lead to endothelial cell (EC)
injury and vascular complications. Collectively, these findings suggest a potential role of
ROS in the initiation and progression of SSc vasculopathy. In this review, we present
the background of oxidative stress related processes (e.g., EC injury, autoimmunity,
inflammation, and vascular wall remodeling) that may contribute to SSc vasculopathy.
Finally, we describe the use of oxidative stress related read-outs as clinical biomarkers
of disease activity and evaluate potential anti-oxidative strategies in SSc.
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SYSTEMIC SCLEROSIS

Systemic sclerosis (SSc) is a complex chronic autoimmune disease, characterized by vasculopathy,
low-grade chronic inflammation, and fibrosis of the skin and internal organs; the latter causes
organ dysfunction, potentially leading to severe morbidity and premature mortality. Vasculopathy
is the central feature of the majority of SSc-related complications, for which treatment options
are very limited; this has led to a largely unmet medical need. Globally, the incidence rate of

Frontiers in Physiology | www.frontiersin.org 1 August 2018 | Volume 9 | Article 1177

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01177
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fphys.2018.01177
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01177&domain=pdf&date_stamp=2018-08-24
https://www.frontiersin.org/articles/10.3389/fphys.2018.01177/full
http://loop.frontiersin.org/people/534285/overview
http://loop.frontiersin.org/people/578922/overview
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01177 August 23, 2018 Time: 10:3 # 2

Abdulle et al. Oxidative Stress in SSc Vasculopathy

SSc appears to have gradually increased over recent decades, with
approximately 7–20 million individuals being diagnosed annually
(Nikpour et al., 2010). This increase may be due, in part, to
improved diagnosis, but it may also be linked to environmental,
nutritional, or other lifestyle-related factors that contribute to
the surge in cardiometabolic diseases over the same time span.
Systemic sclerosis affects women more frequently than men, and
previous reports indicate a slightly higher susceptibility to the
disease among African Americans as compared to Caucasians
(Laing et al., 1997; Mayes et al., 2003; Ranque and Mouthon,
2010). The two known subtypes (i.e., limited cutaneous SSc and
diffuse cutaneous SSc) differ in course and prognosis. The diffuse
cutaneous subtype is often associated with the manifestation
of devastating complications early in the course of the disease,
while such complications occur more insidiously in the limited
cutaneous subtype. Although auto-immunity, inflammation, and
oxidative stress have all been implicated in the pathogenesis of
vasculopathy, the definite factors that initiate this disease remain
un-identified (Gabrielli et al., 2009).

Vasculopathy, which affects both small and large blood
vessels, is characterized by endothelial dysfunction, perivascular
infiltration of mononuclear cells, extracellular matrix remodeling
in the vascular wall, and a loss of capillaries (capillary rarefaction)
(Fleming et al., 2009; Mostmans et al., 2017). Raynaud’s
phenomenon (RP) (Figure 1), which manifests in the form of
recurrent vasospastic attacks that cause episodic discoloration
of the extremities in response to cold or emotional stress, is
the hallmark of SSc and generally the first detectable sign of
the disease (LeRoy and Medsger, 2001; Herrick, 2005; Gabrielli
et al., 2009). Following RP, patients may present with critical
ischemia and ulceration, which can result in increased morbidity
and mortality, as well as a decreased quality of life (Almeida et al.,
2015). The SSc-specific abnormalities that occur in the capillaries
(e.g., dilatation of capillaries in early stages and loss in later
phases) can easily and non-invasively be assessed using nailfold
capillaroscopy, which is routinely used in the clinical setting.

There is abundant evidence in the literature that elevated
production of reactive oxygen species (ROS)— a collective term
for oxygen-derived species with enhanced chemical reactivity—
or an unfavorable shift in oxidative/reductive tone in favor
of a pro-oxidative milieu (a condition known as “oxidative
stress”) is involved in a variety of cardiovascular risk factors and
diseases (e.g., hypertension, atherosclerosis, and heart failure)
(Laursen et al., 1997; Nakamura et al., 1998; Heinloth et al.,
2000; Barry-Lane et al., 2001; Hirotani et al., 2002; Tocchetti
et al., 2011; Wu et al., 2014). However, little is known about
the role played by oxidative stress in the development of SSc-
related vasculopathy. Following Murrell’s hypothesis (Murrell,
1993) that the pathogenesis of SSc is linked to the generation of
ROS, several studies have presented evidence of abnormal ROS
production in SSc which, if unabated, may subsequently cause
damage (Figure 2). Although chronically elevated levels of ROS
have been suspected to prolong disease, oxidative stress may also
be an initiating factor in the development of SSc vasculopathy.
Therefore, a better understanding of the role played by oxidative
stress in the development of SSc vasculopathy could help to
identify early interventions aimed at delaying the onset of overt

symptoms and/or attenuating the course of the disease. In this
review, we first describe the physiological role played by ROS in
the vascular system. Thereafter, we attempt to explain the role of
oxidative stress in the pathogenesis of SSc vasculopathy. Finally,
we evaluate the potential of free radical-scavenging therapeutic
interventions.

THE ROLE OF ROS IN NORMAL
VASCULAR PHYSIOLOGY

Production of Reactive Oxygen Species
Reactive oxygen species were first described by Fenton (1894)
and they include free-radical species derived from oxygen such
as superoxide anion (O•−2 ) and hydroxyl radical (OH•) and
also non-radical oxidants such as hydrogen peroxide (H2O2)
(Murrell, 1993; Cumpstey and Feelisch, 2017). Reactive oxygen
species can be formed non-enzymatically in reactions catalyzed
by metals (as in the Fenton reaction); however, in biology,
they are mainly generated through intracellular enzymatic
sources, and all vascular cell types (including endothelial
cells [ECs], smooth muscle cells, and fibroblasts) are able
to produce ROS. The majority of ROS are generated during
the production of ATP from molecular oxygen, a process
also known as mitochondrial respiration (Balaban et al.,
2005). During this process, dysregulated mitochondria produce
excessive amounts of ROS which can damage all cellular
components (Bolisetty and Jaimes, 2013). Mitochondrial electron
transport chains consist of four inner-membrane complexes,
with the majority of mitochondrial ROS produced by complexes
I and III (Figure 3) (Berg et al., 2002). Superoxide anion
produced by these complexes can be rapidly converted to
H2O2 by superoxide dismutase (SOD) family of enzymes,
comprised of manganese superoxide dismutase (MnSOD) and
copper- and zinc- containing superoxide dismutase (Cu,ZnSOD)
(Miriyala et al., 2012). Hydrogen peroxide is then converted to
water by glutathione peroxidase, or diffused into the cytosol
and, thereby, reduces the damaging effect of ROS to the
mitochondria (Maharjan et al., 2014). Once ROS is diffused
to the cytosol, reactive species are eliminated by the cytosolic
antioxidant systems until the cytosolic redox buffer capacity is
reached (Maharjan et al., 2014). Also, increased mitochondrial
peroxynitrite formation may lead to decreased breakdown of
ROS, due to the nitration and inactivation of MnSOD (Daiber,
2010). Furthermore, cytosolic ROS production by NADPH
oxidases may trigger mitochondrial ROS formation through
several processes. For instance, the opening of the redox sensitive
KATP channels may lead to changes in the mitochondrial
membrane potential, and thereby causing a rise in mitochondrial
ROS production (Garlid et al., 2003).

Other sources of intracellular ROS production include
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
(NOX) enzymes (Bedard and Krause, 2007) uncoupled nitric
oxide synthases (NOSs) (Landmesser et al., 2003; Taniyama and
Griendling, 2003; Turrens, 2003; Kawashima et al., 2007; Nishino
et al., 2008) xanthine oxidases and lipoxygenases (Murrell, 1993).
In most of these reactions, ROS formation is a by-product of
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FIGURE 1 | Patients with systemic sclerosis (SSc) often present with Raynaud’s phenomenon (A). Patients may subsequently develop tightening and thickening of
the skin of the fingers (sclerodactyly) (B), telangiectasia (C), calcinosis cutis (D), and digital necrosis which may lead to amputation of the digits (E). Written informed
consent was obtained from the patients for the publication of these images.

oxidative metabolism (and is often considered an undesirable
result of electron leakage), although this is clearly not the case
for NOX enzymes, whose sole purpose is the production of
superoxide for signaling purposes or (at much higher rates
of production) microbial killing. Mammals are equipped with
antioxidant systems that offer protection against the damaging
off-target effects of ROS, and several antioxidants and antioxidant
enzymes have been described. The antioxidant buffering systems
include low-molecular weight substances such as nutritional
antioxidants (e.g., vitamin C and vitamin E) (Benfeito et al.,
2013) sulfhydryl (SH)-containing compounds (e.g., thiols such
as glutathione) (Turell et al., 2013) and antioxidant enzymes
(including SOD, catalase, and glutathione peroxidases) (Matés
et al., 1999). An imbalance between the production of ROS
and their inactivation by antioxidants and reducing enzymes
that results in ROS overproduction is referred to as “oxidative
stress” (Betteridge, 2000; Grygiel-Górniak and Puszczewicz,
2014). In response to an increase in endogenous production
of ROS, an organism may adapt by increasing its antioxidant
capacity (commonly referred to as the redox-buffering capacity).
If an organism is unable to maintain the appropriate redox
homeostasis, disturbances in this balance can cause harmful
effects that can ultimately damage the structural and functional
components of a cell, leading to the oxidation of proteins, lipids,
and DNA (Harman, 1956).

Reactive Oxygen Species Signaling in
Vascular Tone Regulation
Reactive oxygen species serve as important signaling molecules
that regulate a variety of physiological processes in order to
maintain appropriate redox homeostasis (Jones and Sies, 2015).
In the vasculature, for example, ROS have been identified as
key signaling molecules involved in the fundamental function

of vascular smooth muscle cells (VSMCs), including the ability
of blood vessels to contract or relax (MacKay and Knock,
2015). However, the available data underline the complexity
of the effects of ROS on the vascular system, as —depending
on the conditions— both contraction and relaxation of the
vascular muscle may occur (Faraci, 2006). Superoxide anion has
a contractile effect on VSMC, and removal of the endothelium
prevents this vasoconstriction, making this process endothelium
dependent (Katusic and Vanhoutte, 1989). In line with this
finding, the toxicant benzo(a)pyrene has been found to decrease
the endothelium-dependent NO-induced vasodilation in retinal
arterioles through the production of superoxide (Kamiya et al.,
2014). Vasoconstriction, as an acute response to ROS, is caused
by the scavenging of endothelial nitric oxide (NO•), another
free radical and a potent vasodilator produced in arterial blood
vessels to regulate vascular tone and blood flow (Moncada
et al., 1991). Chronically, vasoconstriction may also be caused
by an increased expression of contractile proteins. Likewise,
ROS production has previously been associated with a twofold
increase in the expression of contractile proteins and microRNA
(miR-145), which can up-regulate transcription of contractile
protein genes (Chettimada et al., 2014). In addition, increased
contractility of VSMCs by affecting the Ca2+ signaling pathway
has previously been described (Touyz and Schiffrin, 2004).
Several studies have also reported on the vasodilatory effect of
ROS, especially in cerebral arteries. Superoxide, generated by
xanthine and xanthine oxidase, produces dilation of cerebral
arterioles, presumably mediated through potassium channel
opening (Wei et al., 1996). Moreover, overproduction of H2O2
has been suggested to lead to vasodilatation through an enhanced
endothelial response to acetylcholine (Drummond et al., 2000;
Thomas et al., 2002; Zhou et al., 2013). A current hypothesis
poses that ROS may have a biphasic response, with lower
concentrations resulting in vasodilation and higher rates of
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FIGURE 2 | Schematic presentation of the key elements in the pathogenesis of SSc. Overproduction of reactive oxygen species may induce endothelial dysfunction
and promote a pro-fibrotic and pro-inflammatory state. Moreover, interplay between these processes has been proposed to further cause damage, and various
cytokines and chemokines are thought to play an important role in this process. AECAs, anti-endothelial cell antibodies; CTGF, connective tissue growth factor; ECs,
endothelial cells; EndoMT, endothelial to mesenchymal transformation; ECM, extracellular matrix; ET-1, endothelin-1; IL, interleukin; MCP, monocyte chemotactic
protein 1; pDC, plasmacytoid dendritic cells; PDGF, platelet derived growth factor; ROS, reactive oxygen species; TGF-β, transforming growth factor beta; Th, T
helper cell.

production causing vasoconstriction (Faraci, 2006) potentially
explaining the contradictory effects of ROS on the vascular
system.

NO•, itself a free-radical reactive nitrogen species (RNS), is
also suspected of playing a critical role in vascular homeostasis.
NO• is a potent activator of soluble guanylyl cyclase, which
converts guanosine triphosphate (GTP) to the second messenger
cyclic guanosine monophosphate (cGMP), causing vasodilation
by increasing calcium handling, which stimulates the contractile
function of the VSMC (Arnold et al., 1977). NO• is synthesized
from the amino acid L-arginine by a family of isoenzymes
termed NOSs. The synthesis of NO• occurs in response to
various physicochemical stimuli, including neurotransmitters,
shear stress, and growth factors. Furthermore, O•−2 and NO• can
readily interact with each other to form peroxynitrite (ONOO−);
this reaction accounts for the vasoconstriction observed by
enhanced ROS production and explains the vasorelaxant effects
of SOD in experiments with isolated blood vessels. Prolonged
exposure of ECs to peroxynitrite can lead to oxidation of

the NOS cofactor, tetrahydrobiopterin, and protein tyrosine
nitration, which may impair NOS function following the
uncoupling of electron flow from arginine oxidation; these
events ultimately translate into a low NO bioavailability and
impaired vasodilatation (Aliev et al., 1998; Dimmeler and Zeiher,
2000). Hydrogen sulfide (H2S) — a reactive signaling molecule
belonging to the group of “gasotransmitters” (Wang, 2002) and
a reactive sulfur species (RSSs) (Cortese-Krott et al., 2017)
produced by ECs and perivascular adipose tissue—may also
promote vasodilation through the activation of endothelial NO
synthase, the inhibition of cyclic guanosine monophosphate
(cGMP) degradation, and by activating potassium channels
in VSMCs (Bełtowski and Jamroz-Wis̈niewska, 2014). Because
of the propensity of ROS, NO, and H2S to chemically and
functionally interact with each other at multiple levels, Cortese-
Krott et al. (2017) have underscored the importance of viewing
these reactive species as a unified entity (defined as the
“reactive species interactome”), rather than as separate signaling
entities.
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FIGURE 3 | A simplified schematic overview of intracellular production of reactive oxygen species (ROS) and the intracellular antioxidant systems. Cytosolic ROS
production can be evoked as a response to several stress signals, including hypoxia (A). During this process superoxide anion is mainly produced by oxidases,
including NADPH oxidase, xanthine oxidase, and lipooxygenase. After its production, superoxide is rapidly converted by the antioxidant system to, the less
damaging radical, hydrogen peroxide and water. Furthermore, cytosolic ROS production can promote mitochondrial ROS production (B). Superoxide anion
produced by the different complexes of the electron transport chain can easily react with nitric oxide to form peroxy nitrite species. Alternatively, superoxide can also
be converted by manganese superoxide dismutase (SOD) to hydrogen peroxide. Hydrogen peroxide can be either converted to water by glutathione peroxidase, or
diffused to the cytosol. If the production of free radicals exceeds the antioxidants buffering capacity, damage to all component of the cell may occur (C). ATP,
adenosine triphosphate; ADP, adenosine diphosphate; FAD/FADH2, flavin adenine dinucleotide; Fe2+, iron; H2O2, hydrogen peroxide; H2O, water; NF-κB, nuclear
factor kappa-light-chain-enhancer of activated B cells; iNOS, inducible nitric oxide synthase; NAD+/NADH, nicotinamide adenine dinucleotide; NO•, nitric oxide;
mnSOD, manganese superoxide dismutase; mtNOS, mitochondrial nitric oxide synthase; O•−2 , superoxide; OH•, hydroxyl radical; ONOO−, peroxynitrite; Cu,ZnSOD,
copper- and zinc-containing superoxide dismutase; GPx, glutathione peroxidase.

In addition to the direct regulation of vascular tone, ROS
are also essential for maintaining O2 hemostasis by stimulating
several transcription factors, such as hypoxia-inducible factor-1

(HIF-1) (Chandel et al., 1998, 2000; Brocato et al., 2014; Friedman
et al., 2014). Hypoxia increases ROS production by a variety
of mechanisms, triggering marked alterations in redox signaling
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(Smith et al., 2017). Furthermore, ROS upregulate vascular
endothelial growth factor (VEGF) expression via activation of
HIF-1, subsequently leading to angiogenesis (Arbiser et al., 2002;
Xia et al., 2007). Although these studies shed light on the
possible role of ROS in O2 sensing, their exact role in these
and other mechanisms often remains unclear and awaits further
clarification. Of note, H2S is also suspected of being involved in
O2 sensing (Olson, 2015) and the availability of both H2S and
ROS is modulated by their interaction with NO (Cortese-Krott
et al., 2017) as mentioned above.

Reactive Oxygen Species Signaling in
Other Cellular Processes and Immunity
Increasing evidence suggests that ROS also play an important
role in a variety of cellular activities through several signaling
pathways (e.g., the NF-κB signaling pathway and the
MAPKs signaling pathway) (Zhang et al., 2016). Several
experimental studies have demonstrated that a biphasic effect
(i.e., low concentrations increasing the cell number and high
concentrations decreasing the cell number) of ROS occur
in fibroblasts, cultured smooth muscle cells, cultured ECs,
and immortalized lung epithelial cells (Burdon, 1995; Arnold
et al., 2001; Day and Suzuki, 2005). Additionally, human
embryonic stem cells have previously been found to engage
in spontaneous differentiation when they were cultured under
normoxic conditions (21% O2); however, reduction of the
oxygen saturation to 1% O2 inhibits cell proliferation (Ezashi
et al., 2005). Hypoxia-driven ROS production could partially
explain the described observations. Furthermore, both the innate
and adaptive immune systems are thought to be affected by ROS
production. For example, it has been reported that ROS play a
crucial role in T-cell activation, a process that is also associated
with an increase in cell ROS production (Devadas et al., 2002).
These findings highlight the importance of ROS in the regulation
of several cellular processes.

THE ROLE OF OXIDATIVE STRESS IN
SSc VASCULOPATHY

Link Between Oxidative and Endothelial
Cell Dysfunction/Injury
The EC is believed to be a main target for pathological
processes in SSc (Mostmans et al., 2017) and ROS have been
implicated as having an important role in this process. In
SSc, oxidative stress may cause the activation and damage of
ECs (Grygiel-Górniak and Puszczewicz, 2014) leading to EC
apoptosis and impairment of cell–cell adhesion (Sgonc et al.,
1996). This impairment ultimately increases vascular endothelial
permeability, subsequently leading to alterations in EC signal
transduction (Fleischmajer and Perlish, 1980). When damaged,
vascular ECs produce increased levels of vasoconstrictive
mediators (e.g., endothelin-1 [ET-1]) and show an impaired
release of NO and prostacyclin (Freedman et al., 1999; Romero
et al., 2000; Matucci Cerinic and Kahaleh, 2002). This imbalance

in mediators, in addition to several other oxidative and non-
oxidative pathways (e.g., the adrenergic mechanism), results in
altered vascular tone in favor of vasoconstriction. Consistent
with our hypothesis that oxidative stress plays a crucial
role in the development of SSc vasculopathy, ECs from SSc
patients were previously reported to have the ability to produce
H2O2 (Servettaz et al., 2007) which may inhibit endothelial
differentiation due to a reduced octamer-binding transcription
factor 4 (Oct-4) expression (Xiao et al., 2014). Furthermore,
endothelin-1 and angiotensin II (a bioactive peptide of the
renin–angiotensin system), which are often elevated in SSc, may
upregulate mitochondrial ROS generation through the activation
of NADPH oxidase (Nozoe et al., 2008; Wosniak et al., 2009;
Wen et al., 2012). In addition to this ability to produce ROS,
ECs are also more prone to ROS injury due to a deficiency
in catalase synthesis (Jornot and Junod, 1992). This deficiency
may initiate a self-perpetuating cycle of recurrent RP attacks,
increased ROS production (generated during the conversion of
xanthine dehydrogenase to xanthine oxidase), more injured ECs,
and an inability to defend against oxidative stress (Herrick and
Matucci Cerinic, 2001; Chung et al., 2006; Ogawa et al., 2006;
Servettaz et al., 2009). In line with these observations, increased
levels of isoprostanes (oxidized lipids and markers of oxidative
stress) have been found to correlate with the extent of vascular
damage in SSc (Ogawa et al., 2006, 2010).

Although inhibition of EC growth has previously been found
to be associated with NO overproduction, in SSc, a paradoxical
decrease in NO bioavailability has been observed (Matucci
Cerinic and Kahaleh, 2002). This can partially be explained
by the rapid reaction of NO• with the superoxide anion
O•−2 , forming peroxynitrite (Sambo et al., 2001b). With disease
progression, the production of eNOS is further downregulated
(Bruckdorfer, 2005). As a result of EC injury and subsequent
vascular remodeling, SSc patients show specific capillaroscopic
patterns consisting of micro-hemorrhages, as well as dilated,
giant, and malformed capillaries (Maricq et al., 1980). These
nailfold patterns are positively associated with the degree of
vasospasm and ischemia, further indicating that ROS plays a role
in the occurrence of microvascular injury (van Roon et al., 2016).

Link Between Oxidative Stress and
Auto-immunity
Several SSc-specific auto-antibodies (e.g., anti-topoisomerase
1, anti-centromere antibodies, anti-RNA polymerase III, anti-
U3-RNP, TH/To RNP, U1-RNP, and PM-Scl) have previously
been identified, and ROS are thought to be involved in the
process leading to autoimmunity. More recently, subcutaneous
injections of agents generating OH• or HOCl (another ROS)
in mice induced cutaneous and lung fibrosis, as well as the
production of serum anti-DNA topoisomerase 1 antibodies
(Servettaz et al., 2009). Furthermore, it has been shown that
injections of ONOO−−generating agents induce the production
of anti-centromere B antibodies in the absence of serum anti-
DNA topoisomerase 1 antibodies. These findings support the
hypothesis that bursts of ROS may cause the oxidation of DNA-
topoisomerase-1, which may lead to immunological intolerance
to this nuclear antigen. In line with these findings, mice exposed
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to HOCl developed anti-DNA topoisomerase I antibodies and
diffuse cutaneous SSc with pulmonary fibrosis (Kavian et al.,
2010).

Autoimmunity may occur through the impairment of
DNA repair mechanisms (Figure 2) (Birben et al., 2012).
For example, it has previously been established that 8-oxo-
7 hydrodeoxyguanosine levels in lymphocytes were increased
in several rheumatic diseases, as compared to healthy controls
(Bashir et al., 1993). More recently, autoantibodies against
methionine sulfoxide reductase A, one of the antioxidant repair
enzymes, have been detected in 33% of SSc patients (Ogawa
et al., 2010). This finding supports the hypothesis that an
altered defense mechanism may contribute to the development
of vasculopathy. In addition, this finding is also indicative of
a promutagenic DNA lesion, presumably induced by ROS and
defective DNA repair mechanisms (Bashir et al., 1993).

Recently, several studies have investigated the role of a
new class of antibodies that may be directly linked to the
pathological processes that occur even in the early stages of
SSc. For instance, antiendothelial cell antibodies (AECAs) are
thought to play an important role in EC injury promoting the
development of vasculopathy (Hill et al., 1996; Bordron et al.,
1998; Boin and Rosen, 2007; Mihai and Tervaert, 2010). Anti-
endothelial cell antibodies may induce endothelial perturbation,
an increase in adhesion molecule expression (ICAM-1, VCAM-1,
and E-selectin) and stimulate the secretion of pro-inflammatory
cytokines and chemokines (Corallo et al., 2015). The formation of
AECAs is thought to be initiated by the exposure of the nuclear
contents of damaged ECs (Praprotnik et al., 2001) which may very
well be induced by excessive ROS production. Moreover, some
evidence provided using a molecular cloning strategy suggests
that these antibodies (e.g., AECAs) cause oxidative imbalance
and subsequently lead to endothelial apoptosis, suggesting causal
involvement in the disease process (Margutti et al., 2012).

Some evidence supports the hypothesis that heat shock
proteins (HSP) play an important role in the pathogenesis
of SSc (Danieli et al., 1992; Ogawa et al., 2008). Heat shock
proteins are a family of immunogenic proteins that are found
in all organism cells, and are essential for various cellular
function. These proteins have chaperon properties and facilitate
in protein folding, assembly, and intracellular transport (Brenu
et al., 2013). The synthesis of HSP is increased in response to
a variety of stressful stimuli, such as hyperthermia, hypoxia,
inflammation, and auto-immunity (Kiang and Tsokos, 1998;
Fujimoto et al., 2004). Heat shock proteins have previously been
found to stimulate antigen presenting cells, which then activate
the adaptive immune cells, suggesting a critical role of HSPs in
the immune system (Brenu et al., 2013). Furthermore, increased
levels of antibodies to HSP have previously been demonstrated
in several immune diseases, including atherosclerosis, type 1
diabetes mellitus and various auto-immune rheumatic diseases
(Raska and Weigl, 2005; Shukla and Pitha, 2012). Moreover, the
60-kDa heat shock protein (HSP60) was previously found to be
a target antigen for AECAs, and thereby induce apoptosis of ECs
in variety of rheumatic diseases, including SSc. In support, serum
HSP70 levels are also found to be increased in SSc patients, and
are associated with the occurrence of fibrosis, oxidative stress,

and inflammation (Ogawa et al., 2008). Moreover, expression of
HSP47 was found to be linked to the overproduction of type I
collagen in cultured SSc fibroblast (Kuroda et al., 1998). These
results shed light on the potential of these markers as serological
biomarkers of cellular stress. Conversely, there is some evidence
supporting the postulation that HSPs also have a beneficial
effect following oxidation (Kalmar and Greensmith, 2009). These
effects are likely linked to the sensor ability of redox changes
and cytoprotective effects of HSPs. However, the exact role in the
pathogenesis of SSc has to be elucidated further.

Age related auto-immunity is also thought to play an
important role in SSc. Approximately, 21% of all SSc patients
are aged 65 years or older at diagnosis (Pérez-Bocanegra et al.,
2010). This observation has instigated great interest in the role
of key determinants of biological aging (e.g., telomere attrition,
senescent cells) in the pathogenesis of SSc. Autoimmunity in the
elderly population is also believed to be promoted by accelerated
cellular senescence (Piera-Velazquez and Jimenez, 2014) and
through the increased affinity of T-cells to self-antigens (Goronzy
and Weyand, 2012). It was previously demonstrated that the
age of disease onset strongly influences clinical signs of SSc, the
presence organ involvement and outcome. Moreover, the elderly
SSc patients, compared to their younger counterparts, were more
frequently diagnosed with cardiopulmonary organ involvement
(Alba et al., 2014). A study conducted by Shiels et al. (2011)
demonstrated that patients diagnosed with dcSSc exhibit features
consistent with accelerated biological aging, and this was found
to be independent of increasing age. This study concluded that
abnormal telomere biology may induce the development clinical
signs in SSc patients. Supporting this hypothesis, a previously
conducted study found that the telomere length of SSc patients,
and their family members, were on average 3 Kb shorter than
age-matched controls. In addition, they stated that the telomeric
length in SSc patients did not decrease significantly with age
(Artlett et al., 1996). This reduction in telomere length can
partially be explained by the elevated oxidative stress levels in
these patients, which may accelerate telomere erosion (MacIntyre
et al., 2008). Moreover, this observation may also be explained
by the presence of autoantibodies against telomere binding
proteins.

Link Between Oxidative Stress and
Inflammation
Chronic ROS overproduction may stimulate a pro-inflammatory
state in SSc (Yamagishi et al., 1994; Suzuki et al., 1999). The
early phase of SSc is characterized by perivascular mononuclear
cell infiltration (Mostmans et al., 2017) and the activation
of the innate and adaptive immune system, which results in
B-cell and T-cell activation (Amico et al., 2015). These cells
secrete pro-inflammatory cytokines (including IL-1, IL-6, and
IL-8) and chemokines that further stimulate ROS production
(Murrell, 1993; Hua-Huy and Dinh-Xuan, 2015). However,
ROS have been reported to promote activation of a variety
of inflammation-associated transcription factors (e.g., nuclear
factor-kappa B [NF-κB], activator protein-1 [AP-1], p53, signal
transducer and activator of transcriptions 3 [STAT3], HIF-1α,
and NF-E2 related factor-2 [Nrf2]). This process can further
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aggravate the inflammatory response through the production
of a variety of inflammatory mediators (Hussain and Harris,
2007). Although these findings emphasize that the development
of SSc vasculopathy is due to interconnected pathways of both
inflammatory processes, as well as oxidative stress, the level
of oxidative stress in SSc seems to exceed that which can be
explained solely by the inflammatory process. Therefore, our
hypothesis that oxidative stress initiates the development of
vasculopathy appears to be reasonable.

Link Between Oxidative Stress and
Vascular Wall Remodeling
Vascular remodeling affects a variety of sites, including the lungs,
the heart, the skin and the kidneys, resulting in critical luminal
narrowing of the vessel (Figures 4, 5). Severe complications,
such as pulmonary arterial hypertension (PAH) and scleroderma
renal crisis (SRC), are accompanied by this luminal narrowing.
The occlusion of the microvasculature due to intimal and
media proliferation may result in an impaired tissue supply of
oxygen and nutrients, leading to increased ROS production and,
eventually, to a loss of vasculature (Fleming et al., 2009). In
addition, several signals involved in SSc pathogenesis, including
transforming growth factor-beta (TGF-β), PDGF, and ET-1
modulate the expression of NOX, which may lead to the
formation of fibrosis by up-regulating ROS production (Eckes
et al., 2014).

Reactive oxygen species have been implicated in several SSc-
related processes, including the stimulation of fibroblast
proliferation, collagen-gene expression, and phenotype
conversion of myofibroblast (Sambo et al., 2001b). An
imbalance between collagen and elastin and the infiltration
of the vessel wall by VSMCs, mononuclear cells, and other
inflammatory cells, as well as an increased production of
cytokines, MMP, chemokines (MCP-1), cell adhesion molecules,
and growth factors (TGF-β, CTGF, PDGF), all contribute to
vascular wall thickening. Accordingly, it has been observed that
extracellular matrix deposition into the vessel wall results from
disproportionate fibroblast activity with increased serum levels
of hyaluronan, matrix metalloproteinases (MMPs), and tissue
inhibitors of metalloproteinases (TIMPs) (Montagnana et al.,
2007). TGF-β, in particular, promotes the synthesis of collagen,
glycosaminoglycans, and fibronectin by fibroblast, and reduces
the collagenase-synthesizing capacity of fibroblasts (Smith and
LeRoy, 1990).

Perivascular cells including, but not limited to, smooth muscle
cells (SMC), and in particular VSMCs, are thought to play a
key role in maintaining vascular integrity. During physiological
processes, these cells have a contractile function, and thereby
regulate blood flow. Current literature suggest that intimal
hyperplasia may be formed by migration and proliferation of
medial SMC and adventitial fibroblast (Fleming et al., 2009)
as a response to various stimuli including oxidative stress.
Subsequently, VSMCs produce excessive amount of ECM to
form a fibrotic vascular lesion. Moreover, following the initial
vascular injury, endothelial progenitor cells are mobilized from
the bone marrow, recruited to the site of the vascular lesion

and differentiate into a variety of cells, including VSMCs
(Dimmeler et al., 2005). Proliferation of VSMCs is usually
regulated by NO, which inhibits cell proliferation through
upregulation of cGMP. However, due to the impaired NO
production in SSc, processes related to the inhibition of cell
proliferation may be altered, and ECM production may be
promoted further. In addition to the decreased production of
NO, cell proliferation is also promoted by upregulation of ETB
receptor on SMCs (Shetty et al., 1993). In addition, migration
and proliferation of VSMCs is also likely due to the impaired
interaction between ECs and VSMCs. This impaired interaction,
which is characterized by a decreased expression of α-SMA
in VSMCs, is thought to induce phenotypic modulation in
VSMC. This phenotypic modulation induces VSMCs to act in a
more in more migratory and proliferative manner (Asano et al.,
2010).

Vascular remodeling is also promoted by the ability of ECs
to convert into myofibroblast under hypoxic and pro-oxidative
milieu, a process known as “endothelial to mesenchymal
transition” (Jimenez, 2013). On the other hand, NO has
been reported to have an antifibrotic effect in experimental
animal models (Yoshimura et al., 2006). NO can directly
activate several transcription factors (such as nuclear factor-
κB, specificity protein-1, and activator protein) to inhibit
collagen gene expression (Bogdan, 2001). In addition, NO
mediates prolyl hydroxylase expression, which is important in
the post-translational processing of collagen (Dooley et al., 2012).
Therefore, the formation of fibrosis may be stimulated by the
decreased bioavailability of NO in SSc patients.

HIF-1α is generally increased substantially as a response
to low oxygen concentrations, which generally promotes ROS
production. This upregulation of HIF-1 controls the expression
of several genes involved in processes such as erythropoiesis,
angiogenesis, glucose metabolism, cell proliferation, and cell
apoptosis (Maxwell and Ratcliffe, 2002; Beyer et al., 2009).
Tissue hypoxia usually triggers angiogenesis in order to improve
oxygenation of hypoxic tissue. As a response to chronic
hypoxia due to progressive loss of vasculature, levels of VEGF
often increase. Accordingly, both receptors for VEGF (e.g.,
VEGF receptors 1 and 2) have previously been found to be
overexpressed in the skin and serum of SSc patients (Chora
et al., 2017). Reactive oxygen species have been implicated to
stimulate the induction of VEGF expression in variety of cells,
including ECs, VSMC, and macrophages (Ruef et al., 1997; Wang
et al., 2011; Kim and Byzova, 2014). Simultaneously, VEGF
further increases the production of ROS through the activation
of NADPH oxidase in ECs (Ushio-Fukai and Alexander,
2004).

BIOMARKERS OF OXIDATIVE STRESS

In the past decade, several in vitro and in vivo studies have
demonstrated the role played by the overproduction of free
radicals in the pathophysiology of SSc, and several biomarkers
of this process have been described. These biomarkers include
oxidized low-density lipoprotein, malondialdehyde (MDA),
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FIGURE 4 | Simplified representation of vascular wall remodeling, leading to critical luminal narrowing of a small vessel as can be seen in patients with SSc. The early
events in the pathogenesis of SSc are characterized by endothelial cell (EC) injury, and the lightning bolt represents the initiating factors causing this injury. Reactive
oxygen species may play an important initiating role in this process. Following EC injury, EC apoptosis and loss of integrity of the endothelial lining may consequently
occur. With the progression of the disease, basement membrane (continuous gray bold line) thickening and disruption of the internal elastic lamella are also
observed (dashed line). Concomitantly, peripheral-blood mononuclear cells (round nuclear cells) and vascular smooth muscle cells (VSMCs) (pink oval-shaped
cells) infiltrate the intimal layer. This process initiates the formation of intimal fibrosis through differentiation of the VSMCs into myofibroblasts, which produce an
increased amount of extracellular matrix proteins. Alongside this process, adventitial fibrosis is formed due to increased production of densely packed collagen
bundles (pink bold lines).

isoprostanes, and circulating total free thiols. Free thiol groups
(i.e., −SH) can be oxidized by ROS and other reactive species
and are active components of the antioxidant buffer capacity,
indicating that their extracellular level can be interpreted as
a direct reflection of the overall redox status (Banne et al.,
2003; Turell et al., 2013; Cortese-Krott et al., 2017). Lau et al.
(1992b) were the first to observe that plasma thiol concentration
was reduced in patients with SSc. More recently, we have
demonstrated that patients with SSc show decreased levels of
free thiols, indicating high oxidative stress. Interestingly, levels
of free thiols clearly increased following a cooling experiment
of the lower forearm, simulating a Raynaud’s attack (van
Roon et al., 2017). Following their initial observation, Lau
et al. (1992a) also reported increased levels of MDA, which
is a measure of lipid peroxidation. Additionally, increased
urinary levels of 8-isoprostanes were previously found in
SSc patients in the early stages of the disease (Cracowski
et al., 2001). It has also been reported that 8-isoprostane
in exhaled breath condensate of SSc patients is increased
(Tufvesson et al., 2010). Similarly, it was demonstrated that
bronchoalveolar lavage fuid from SSc patients with fibrosing
alveolitis contained increased levels of 8-isoprostanes (Montuschi
et al., 1998). Furthermore, another study showed that the level of

8-isoprostane not only correlates with the severity of pulmonary
fibrosis, but also with the extent of renal vascular damage,
and immunological abnormalities in SSc (Ogawa et al., 2006).
Collectively, these studies have generated increasing interest
in the hypothesis that oxidative stress may play a significant
role in the pathogenesis of SSc, and subsequently promote
vascular injury. However, in order to optimally use these
biomarkers, larger studies investigating the value of these markers
as predictors of disease (and disease progression) should be
performed.

Interventional Strategies
Clear evidence indicates the crucial role played by oxidative
stress in the occurrence of SSc vasculopathy. For instance, it
has been hypothesized that in SSc, ECs are unable to endure
prolonged oxidative stress, either through a lack of antioxidant
defense mechanisms or because these antioxidant mechanisms
are compromised (Herrick and Matucci Cerinic, 2001). As
extensively described elsewhere (Herrick and Matucci Cerinic,
2001; Grygiel-Górniak and Puszczewicz, 2014) several studies
have investigated the effect of antioxidants in SSc patients. These
studies all shared the postulation that antioxidant supplements
would decrease susceptibility to oxidative stress-induced tissue
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FIGURE 5 | Histopathological alterations of a dermal vessel. Patient, a 62-year-old female, was referred to the dermatologist due to a rash of the lower limbs. All
images were taken at 40x magnification, (A) shows Hematoxylin and eosin stained tissue, (B) shows Verhoeff stained tissue, (C) shows alpha-smooth muscle actin
stained tissue and (D) shows ERG stained tissue. The vessel displayed above shows prominent fibroproliferative alterations, leading to intima and media proliferation;
subsequently causing severe narrowing of the vessel lumen and thickening of vessel walls (A). Also, disruption of the internal elastic lamella can be observed (B),
with media cells invading the intimal layer (C). This process is accompanied by slight perivascular infiltration of inflammatory cells.

damage. Despite some promising results, larger trials have
been disappointing (Simonini et al., 2000; Herrick and Matucci
Cerinic, 2001). For instance, Niwa et al. (1985) reported that three
out of three SSc patients benefitted from liposomal-encapsulated
SOD injections. However, Correa et al. (2014) demonstrated
that, when taken orally (1800 mg/day), free radical scavenger
N-acetyl-L-cysteine (NAC) showed no vasodilator effect on the
microcirculation of the hands after 4 weeks of treatment in
SSc patients. Conversely, others have reported on the beneficial
effect of NAC in SSc patients. For example, NAC has been
found to diminish cellular ROS in fibroblast and replenish free
cellular thiols (Sambo et al., 2001a,b; Servettaz et al., 2007). In
addition, an in vitro study, conducted in SSc patients, showed that
NAC inhibits fibroblast proliferation and collagen synthesis and
reduces the formation of peroxynitrite (ONOO−) by activated
lung macrophages (Ammendola et al., 2002). Moreover, Rosato
et al. (2009) demonstrated that treatment with NAC led to a
reduction in the number of digital ulcers and decreased the
number of RP attacks.

Denton et al. (1999) conducted a randomized parallel group
study in 40 RP patients (20 SSc patients, 15 primary RP patients,
and 5 secondary RP patients). These patients were randomized
to receive either 500 mg daily of the lipid-lowering antioxidant
probucol or 20 mg daily of nifedipine. Those patients treated
with probucol were found to have a significant reduction in
the frequency and severity of Raynaud’s attacks, as well as a
rise in LDL oxidation lag time. In addition, hydrogen sulfide

(H2S), known for its strong antioxidant and vasodilator capacity,
was demonstrated to have beneficial effects on bleomycin-
induced pulmonary fibrosis in a mice model (Cao et al., 2014).
Moreover, Wang et al. (2016) demonstrtaed that H2S could
improve SSc-related organ fibrosis through the inhibition of the
inflammatory reaction and the reduction of TGF-β1 expression.
These data place H2S in the spotlight as an effective therapeutic
agent in SSc patients with organ involvement. Furthermore,
there is some evidence indicating that soluble guanylate cyclase
(sGC) may be beneficial in SSc. For instance, large randomized
controlled clinical trials conducted with riociguat, which directly
stimulates sGC in an NO-independent manner, have shown an
increase in mean 6-min walking distance and an improvement of
pulmonary vascular resistance and cardiac index (Humbert et al.,
2017).

Regarding more conventional therapeutic strategies in SSc, the
exploratory study conducted by Erre et al. (2008) suggested that
a standard course of iloprost therapy, a potent vasodilator, may
reduce oxidative stress in SSc patients. This effect appeared to
be more consistent in patients in the early phase of the disease.
Furthermore, an experimental study conducted by Rafikova
et al. (2013) showed that the ET receptor antagonist bosentan
(250 mg/kg/day; days 10–21), which is generally prescribed to
reduce the number of new DU, not only prevented an increase
in right ventricle peak systolic pressure and right ventricle
hypertrophy, but also reduced oxidative stress and protein
nitration.
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FUTURE PERSPECTIVES

Following Murrell’s hypothesis (Murrell, 1993) several studies
have investigated the role played by oxidative stress in the
pathogenesis of SSc vasculopathy. These studies have not only
substantially improved our understanding of this complex
disease, but several findings, as presented in this review, support
the hypothesis that oxidative stress contributes to, and may
even initiate, the occurrence of vasculopathy. This contrasts
with the finding that most therapeutic intervention studies
with antioxidants have been disappointing. However, some have
proposed that these non-conventional therapeutic strategies
may only be beneficial in the early stages of the disease,
when less severe damage and perhaps lower levels of ROS
occur. However, this acts as a double-edged sword. Although
universally recognized diagnostic criteria for very early diagnosis
of the disease (VEDOSS criteria) have been introduced, these
criteria include patients who already have developed EC damage,
vasculopathy, and specific antibodies. The inability to identify
patients with Raynaud’s who are at increased risk of developing
SSc is the primary challenge. Any therapy initiated later in
the course of the disease may only mitigate disease processes
and symptoms, without actually modifying the disease course
and outcome. We postulate that interventions administered

early in the course of the disease, before the occurrence of
irreversible fibrosis, may prevent irreversible changes by altering
the damaging properties of ROS and thereby changing the
disease’s course. Although we are encouraging new trials to
investigate the effect of antioxidants on SSc, which should include
patients in the early stages of the disease, we emphasize that new
trials may only be successful when the underlying pathology is
fully clarified.
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