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In this study, zebrafish were treated with Lactobacillus strains as probiotics from
hatching to puberty, and the effect of treatment with L. casei BL23 on the development
and immunity response of the host was investigated. Genes that were differentially
expressed (DEGs) in the overall body and intestine were detected at 14 days post
fertilization (dpf) and 35 dpf, respectively, using whole transcriptome sequencing
(mRNAseq). We showed that zebrafish raised by continuous immersion with L. casei
BL23 showed a higher final body weight at 14 dpf (P < 0.05), and 35 dpf (P < 0.01).
DEGs between L. casei BL23 treatment and control group at 14 dpf were involved in
myogenesis, cell adhesion, transcription regulation and DNA-binding and activator. At
35 dpf, 369 genes were DEGs in the intestine after treatment with L. casei BL23, which
were involved in such categories as signaling, secretion, motor proteins, oxidoreductase
and iron, tight junctions, lipid metabolism, growth regulation, proteases, and humoral
and cellular effectors. KEGG analysis showed DEGs to be involved in such pathways as
those associated with tight junctions and the PPAR signal pathway. RT-qPCR analysis
showed that expression of insulin-like growth factors-I (igf1), peroxisome proliferator
activated receptors-α (ppar-α) and -β (ppar-β), Vitamin D receptor-α (vdr-α), and retinoic
acid receptor-γ (rar-γ) was up-regulated in fish treated with L. casei BL23 at 35 dpf.
After 35 days of treatment, the mortality rate in L. casei BL23 treated group was lower
than the control after challenge with A. hydrophila (P < 0.05), and the pro-inflammatory
cytokine il-1β, anti-inflammatory cytokine il-10 and complement component 3a (c3a)
showed more expression in L. casei BL23 group at 8h after challenge, 24 h after
challenge, or both.. Together, these data suggest that specific Lactobacillus probiotic
strains can accelerate the development profile and enhance immunity in zebrafish, which
supports the rationale of early administration of probiotics in aquaculture.

Keywords: probiotics, mRNA sequencing, development, immunomodulation, disease resistance

INTRODUCTION

Probiotics are live microorganisms that can confer health benefits on the host when
delivered in adequate amounts (FAO/WHO, 2001). The beneficial effects of probiotics involved
in fish nutrition, dysbiosis counteraction, gut homeostasis and health, growth promotion,
immune enhancement and other effects have been well documented (Aureli et al., 2011;
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Zorriehzahra et al., 2016). In addition, probiotics have been
widely used in the aquaculture industry for disease control and
growth promotion (Michael et al., 2014).

Zebrafish have many characteristics that favor their use in
host-microbe interactions research. These include the available
of wealth genetic resources, the transparency during early
developmental stages that permits real-time observation of host
and microbial cells in vivo, and short life cycle (Lieschke
and Currie, 2007). These features, combined with extensive
homologies between the zebrafish and mammalian genomes,
made the zebrafish a useful model for basic and biological
research (Grunwald and Eisen, 2002). In addition, the zebrafish
has been proven to be a practical model for studying the probiotic
effects of Lactobacillus, such as lowering lipid levels (Falcinelli
et al., 2015), attenuating high-fat diet-related metabolic disorders
(Falcinelli et al., 2017) and anxiety-related behavior (Davis et al.,
2016), promoting growth (Avella et al., 2012), and promoting
disease resistance (Wang et al., 2015; He et al., 2017).

After the fry hatch, the gastrointestinal tract (GIT) of zebrafish
is colonized by microbes from the living environment within 12–
24 h, concurrent with the differentiation of GIT (Bates et al.,
2006; Rawls et al., 2007). At 4 days post fertilization (dpf),
within a day after the opening of the mouth, the populations
of colonized bacteria increase because of swallowing (Bates
et al., 2006). In particular, early gut colonization of microbes
plays important roles in the morphological and immunological
development of the GIT, and development of a functional
fermentative environment and neonatal pathogen resistance
(Yeoman and White, 2014). Previous studies showed that
probiotic administration during early developmental stages of
fish was more effective than during other stages and that it could
increase survival (Gatesoupe, 2008) and growth of larvae (Avella
et al., 2010, 2012). Gut adhesion (colonization) is recognized as
important parameter of a potential probiotics (Havenaar et al.,
1992; Salminen et al., 1998). However, our preliminary work
showed that both the highly adhesive gut strain L. rhamnosus
JCM 20300 (Zhou et al., 2012) and the non-adhesive strain
L. casei BL23 (Qin et al., 2014) can accelerate zebrafish growth.
This might indicate that the gut colonization seems not to be a
very important criterion for a probiotic effect. In order to acquire
more basic knowledge regarding the non/less gut adhesive strain
L. casei BL23 and its effects on the developmental profile and
immunity education in zebrafish, which favor the potential
use of the probiotic in aquaculture, the whole-transcriptome
sequencing (mRNA-seq) was performed at 14 dpf (whole body)
and 35 dpf (intestine), respectively, following exposure to the
Lactobacillus.

MATERIALS AND METHODS

Bacteria and Culture Condition
Lactobacillus rhamnosus GG, L. rhamnosus JCM 20300,
L. plantarum JCM 1149, Lactobacillus casei BL23 and
L. acidophilus JCM 1132 were from our laboratory stock,
and were cultivated in MRS (De Man, Rogosa, Sharpe) broth
at 37◦C for 24 h. Aeromonas hydrophila NJ-1 was grown in

Luria–Bertani (LB) broth for 18 h at 37◦C, 200 rpm. Lactobacilli
and A. hydrophila NJ-1 cells were collected by centrifugation
(10 min, 4000 × g, 4◦C). The pellets then washed with sterile
water three times, and resuspended in sterile water to a final
concentration of 1.0 × 1010 CFU /ml.

Animals
Adult zebrafish (Danio rerio) (TU line) were obtained from the
Center of Developmental Biology and Genetics, College of Life
Sciences, Peking University, China. The fish were kept in tanks in
a recirculation aquaculture system at 28 ± 0.5◦C, with a 14 h light,
10 h dark photoperiod. The inlet water flow was approximately
1 L/min. The fish were fed to visual satiation two times a day
with freshly hatched brine shrimp (8:30 a.m. and 5:30 p.m.). The
protocol was approved by the animal ethics committee of Feed
Research Institute, Chinese Academy of Agricultural Sciences
(2017-ZZG-ZF-002).

Administration of Potential Probiotics
and Husbandry Conditions
Four pairs of adult zebrafish (TU strain) were mated and used
to produce embryos. The embryos were collected and mixed
together, and then the eggs were washed three times with sterile
water. The embryos were randomly divided into six experimental
tanks, with 150 embryos in each tank. During the hatching
period, the dead embryos were removed and an equal number
of healthy embryos were added. After hatching, the larvae were
kept in tanks in a static water system at 28 ± 0.5◦C, with a
14-h light, 10-h dark photoperiod. From 3 dpf, the suspensions

TABLE 1 | List of primers used for real-time PCR analyses.

Genes Sequence (5′to 3′)

c3aF ATGAGCTCCTGCAGAGGTGT

c3aR AGTGGTTGTTGGAGGTCTGG

IGF-1aF GGCAAATCTCCACGATCTCTAC

IGF-1aR CAGTTCATTCCTCCCGCTGT

PPAR-α F TCCACATGAACAAAGCCAAA

PPAR-α R AGCGTACTGGCAGAAAAGGA

PPAR-β F CAGGTGACGCTGCTGAAATA

PPAR-β R CGGAGGAACTCTCTCGTCAC

VDR-α F CTCCAGTGAGGAGGATCAGC

VDR-α R TCTTCAGCCGTCAGGTCTCT

RAR-γ F ATTCCGCCAGAGAGCTATGA

RAR-γ R TAGGCCCAGGTCTAGCTGAA

IL-1β F GAGACAGACGGTGCTGTTTA

IL-1β R GTAAGACGGCACTGAATCCA

rps11 F ACAGAAATGCCCCTTCACTG

rps11 R GCCTCTTCTCAAAACGGTTG

rpl13 F TCTGGAGGACTGTAAGAGGTATGC

rpl13 R TCAGACGCACAATCTTGAGAGCAG

TNF-α F CAGAGTTGTATCCACCTGTTA

TNF-α R TTCACGCTCCATAAGACCCA

IL-10 F ATTTGTGGAGGGCTTTCCTT

IL-10 R AGAGCTGTTGGCAGAATGGT
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FIGURE 1 | Effects of potential probiotics on growth promotion in larval zebrafish. The body weight (mg/individual) of zebrafish larvae at 21 (A) dpf and 35 (B) dpf
were showed following treated with different potential probiotics. The data are shown as mean ± SEM (n = 35). Data were analyzed using ANOVA test followed by
Bonferroni analysis. P-value of ≤0.05 is considered significant difference. One asterisk indicate P < 0.05.

of L. rhamnosus GG, L. rhamnosus 20300, L. plantarum JCM
1149, Lactobacillus casei BL23, and L. acidophilus JCM 1132 were
added to the water containing the zebrafish larvae at a final
concentration of 106 CFU/ml, respectively. The frequency of
probiotics administration was every 48 h after water renewal to
maintain survival of the probiotics in the water (Supplementary
Figure S1). In the control group, the same volume of water was
added. Larvae were fed Paramecium at 5 dpf at early stages (5–
14 dpf), and were fed brine shrimp nauplii from 15 dpf onward.
The larvae and juveniles were sacrificed and weighed at 14 and
35 dpf for analysis of growth performance. This experiment was
used to select the best probiotic that promotes zebrafish growth
and use the probiotic strain for further analysis at later study.

Lactobacillus casei BL23 Administration
The first experiment showed that both L. casei BL23 and
L. rhamnosus 20300 can accelerate the growth of zebrafish.
In addition, our previous study found that L. casei BL23
administration could stimulate follicle maturation, enhance
fecundity and improve egg quality in zebrafish (Qin et al.,
2014), and we were very interested in why this non/less adhesive
stain was able to confer these beneficial effects on the host.
Accordingly, we used L. casei BL23 for further analysis in
zebrafish growth performance and immunity education. After
hatching, the larvae were administrated live or dead (98◦C,
20 min) cells of L. casei BL23 at a final concentration of 106

CFU/ml in the water. These live and dead cells were added
every 48 h after water renewal. In the control group, the same
volume of water was added. Larvae were fed with equal amount
of Paramecium from 5 dpf to 14 dpf, and brine shrimp nauplii
from 15 dpf onward. The amount of feed was increased by 3–5%
every 5 days.

The larvae and juveniles were sacrificed and weighed at the
indicated points in time for sample collection. At 14 dpf, 30 larvae

were randomly selected from each tank (n = 4) from different
treatment groups sacrificed, and weighed, then collected in the
frozen RNase-free tubes at −20◦C directly upon sampling and
stored at −80◦C. At 35 dpf, 15 juveniles (were randomly) selected
from each tank (n = 4) from different treatment groups sacrificed,
and weighed, then dissected on ice. The intestines were collected
and stored at −80◦C.

Intestinal Retention of Lactobacillus
After 35 days of BL23 administration, the fish was fasted for 12 h
and three fish from each tank from each treatment were sacrificed
(n = 12) and their guts were sampled. Each gut was homogenized
with 1 mL PBS, respectively, and the homogenate was serially
diluted with PBS. Specific dilutions were cultured on MRS plates
at 37◦C for 48 h. The CFUs on the MRS plates were calculated as
Lactobacillus counts.

Challenge Test and Cytokine Expression
Analysis
After 35 days of BL23 administration, the fish (40 fish per tank)
were challenged with A. hydrophila NJ-1 at 5 × 108 CFU/mL.
Mortality was recorded for 26 days. At 0, 8, 24, and 48 h post-
infection, three fish of each tank (n = 4) from each treatment
were randomly collected and sacrificed. The intestinal tissues of
each tank were collected and pooled and then immediately frozen
in liquid nitrogen and stored at −80◦C for cytokine expression
analysis. The total RNA was isolated from the pooled intestine
samples with TRIzol (Tian Gen, Beijing, China) in accordance
with the manufacturer’s specifications. The protocol of RT-qPCR
is described below.

mRNAseq: Total RNA Isolation
Total RNA was isolated from pooled samples of larvae whole
body or juvenile’s intestines with TRIzol (Tian Gen, Beijing,
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China)in accordance with the manufacturer’s specifications.
The RNA was treated with amplification-grade DNase I
(1 U/µg RNA; Invitrogen, United States). RNA concentration
was measured using Qubit R© RNA Assay Kit in Qubit R© 2.0
Fluorometer (Life Technologies, CA, United States). RNA
integrity was assessed using the RNA Nano 6000 Assay Kit
of the Bioanalyzer 2100 system (Agilent Technologies, CA,
United States) (Liu et al., 2015). All the RNA RIN values were
bigger than 9.5 as analyzed by Bioanalyzer 2100 system. For
mRNAseq, equal volume and amount (1 µg) of total RNA
from 4 sample pools of each treatment group were mixed
as a sequencing sample. However, for qPCR analysis, four
replicated sample pools from each treatment group were used
independently.

FIGURE 2 | Retention of L. casei BL23 in the intestine of zebrafish juveniles.
The data are shown as mean ± SEM (n = 8). Data were analyzed using
ANOVA test followed by Bonferroni analysis. P-value of ≤0.05 is considered
significant difference. Trible asterisk indicate P < 0.001.

mRNA-Seq: Library Preparation and
Sequencing
For RNA-seq, 1 µg of total RNA of each sample was used
for library preparation, and the NEBNext R© UltraTM RNA
Library Prep Kit for Illumina R© (NEB, United States) was
used in accordance with the manufacturer’s specifications and
index codes were added to distinguish sequences from each
sample. Libraries concentration was quantitated by qPCR with
Illumina Library Quantification kit (KAPA BioSystems, Cape
Town, South Africa). Sequencing was performed by Novogene
Bioinformatics Technology Co., Ltd., Beijing, China on an
Illumina Hiseq 2000 platform and 100 bp single-end reads were
generated. For each library, approximately 25 to 30 million reads
were obtained.

mRNAseq: Data Analysis
Raw data were first processed through in-house Perl scripts.
Clean reads were obtained by removing reads containing adapter

TABLE 2 | The total mapping reads and percentage to genome of each sample
analyzed.

Sample name Control-14d BL23-14d Control-35d BL23-35d

Total reads 25161888 29347458 31755534 27986406

Total mapped 21582221
(85.77%)

25183290
(85.81%)

26767878
(84.29%)

23954875
(85.59%)

Multiple mapped 909053
(3.61%)

944937
(3.22%)

735319
(2.32%)

671108
(2.4%)

Uniquely mapped 20673168
(82.16%)

24238353
(82.59%)

26032559
(81.98%)

23283767
(83.2%)

Non-splice reads 10400282
(41.33%)

11945903
(40.71%)

13404075
(42.21%)

11403612
(40.75%)

Splice reads 10272886
(40.83%)

12292450
(41.89%)

12628484
(39.77%)

11880155
(42.45%)

FIGURE 3 | Growth promotion of L. casei BL23 depends on the viability the bacteria cells. The body weight (mg/individual) of zebrafish larvae at 21 (A) dpf and 35
(B) dpf were showed following treated with live or dead cells of L. casei BL23, respectively. The data are shown as mean ± SEM (n = 30 at 14 dpf and n = 15 at
35 dpf, respectively). Data were analyzed using ANOVA test followed by Bonferroni analysis. P-value of ≤0.05 is considered significant difference. One asterisk
indicate P < 0.05. Double asterisk indicates P < 0.01.
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FIGURE 4 | Differentially expressed genes of whole body of zebrafish at 14 dpf (A) and intestine of zebrafish 35 dpf (B) respectively, following treated with L. casei
BL23 vs. control. Log2 (Fold change) ≥1 were set as the threshold for significantly differential expression.

FIGURE 5 | Pathway classification based on KEGG enrichment analysis of differentially transcribed genes in the intestine of zebrafish following BL23 treatment.
Genes with mRNA showing at least 2-fold change are shown; adjusted p ≤ 0.05 for all data selected.

or reads containing ploy-N, and low-quality reads from raw
reads. Single-end clean reads were aligned to the reference
genome (ZV9 zebrafish genome) using TopHat v2.0.9 with two
mismatches. HTSeq v0.6.1 was used to count the reads numbers
mapped to each gene. Differential expression analysis of two

conditions was performed using the DEGSeq R package (1.12.0).
The P-values were adjusted using the Benjamini and Hochberg
method. Corrected P-value of 0.05 and log2 (fold change) of one
were set as the threshold for significantly differential expression.
The differentially expressed genes (DEGs) were functionally
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FIGURE 6 | The mRNA levels of igf1a (A), ppar-α (B), ppar-β (C), rar-γ (D), and vdr-α (E) in the intestine of zebrafish treated with L. casei BL23 and control at
35 dpf. The independent triplicates of total RNA extraction and corresponding cDNA synthesis were carried out with the treated fish from different tanks (n = 4) and
the results are given as mean ± SEM. Asterisk denotes a significant difference (P < 0.05) as analyzed using ANOVA test followed by Bonferroni analysis.

classified and characterized by using DAVID 6.8. The raw data
are available from BioProject PRJNA428924.

Real-Time PCR
The qPCR protocol is described in our previous work (Qin
et al., 2014). In brief, 1 µg of total RNA was used for cDNA
synthesis with a TransScript One-Step gDNA Removal and cDNA
Synthesis SuperMix (TransGen, China) in a 20-µL volume. Two
microliter portions of diluted (1/10) cDNA were used to perform
qPCR by SYBR Green Supermix (TianGen, China) in an CFX
iCycler thermal cycler (Bio-Rad) in a 20-µL volume, with final
concentrations of forward and reverse primers as 0.5 µM. The
reaction mixtures were incubated for 5 min at 95◦C, followed by
40 cycles of 20 s at 95◦C, 20 s at 60◦C and 20 s at 72◦C, and finally
the melt curve was graphed from 65◦C to 95◦C with a 0.5◦C
increment for 10 s. Housekeeping genes of rpl13 and rps11 were
used as references. For each cDNA sample, three wells were used
for qPCR amplification as the technical replicates. 2−11Ct was
used to quantify and normalize gene expression. The sequences
of specific primers are presented in Table 1.

Statistical Analysis
The data of growth phenotypes, qPCR and mortality data
are presented as mean ± SEM. For growth phenotypes data,
one-way analysis of variance (ANOVA) was performed after
Bonferroni’s test with GraphPad Prism version 5.0 software. In
addition, for qPCR and mortality data analysis, unpaired t-test

was performed. Wherever applicable, P-values are reported, and
a P-value of ≤ 0.05 is considered significant.

RESULTS

Growth Promotion Effect of Different
Lactobacillus Strains Used as Probiotics
Larvae treated with L. casei BL23 and L. rhamnosus 20300 showed
a higher body weight at 21 dpf and 35 dpf than the control
(Figure 1, P < 0.05). However, no significant difference was
detected in the body weight of zebrafish receiving L. rhamnosus
LGG, L. plantarum JCM 1149, or L. acidophilus JCM 1132 relative
to control at both 21 dpf and 35 dpf (Figure 1).

Retention of Lactobacillus in Zebrafish
Juveniles
No Lactobacillus was detected in the intestines of fish in the
control or dead L. casei treatment groups (Figure 2). However,
in the live L. casei treatment group, the amount of L. casei BL23
recovered from the intestine of zebrafish was 1.24 × 103 CFU/fish
(Figure 2).

Viability of Bacterial Cells and Growth
Promotion of L. casei BL23
To further study the growth promotion effect of L. casei BL23 in
zebrafish, we tested the effect of both live and dead L. casei BL23
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cells in larval zebrafish. We found that the growth promoting
effect of L. casei BL23 was dependent on its viability (Figure 3).
Larvae treated with live L. casei BL23 showed a higher body
weight at 14 dpf and 35 dpf compared with the control (Figure 3,
P < 0.05). However, no significant difference from control was
observed in the body weight of zebrafish treated with dead cells
of L. casei BL23 (Figure 3).

mRNAseq Gene Expression Analyses
To gain insight into the mechanisms underlying the growth
promotive effect of L. casei BL23, we performed a high-
throughput gene expression analysis using mRNA-seq to
compare the transcriptomics between control and BL23-treated
zebrafish at 14 dpf (whole body) and 35 dpf (intestine),
respectively. The mapping data were shown in Table 2. The
results of heat map and PCA analysis of gene expression pattern
are shown in Supplementary Figures S2, S3. A different pattern
of genes expression was observed between control and BL23
treated fish at 35 dpf (Supplementary Figures S2, S3).

At 14 dpf, a total of 104 genes were differentially
expressed after treatment with L. casei BL23 (Figure 4A
and Supplementary Table S1). Among them, 44 genes were
up-regulated (log2 (fold change) > 1) and 60 genes were down-
regulated (log2 (fold change) < −1) compared with control
(Figure. 4A). DAVID analysis revealed that the DEGs were
involved in myogenesis, cell adhesion, transcription regulation,
and DNA-binding and activation (Supplementary Table S2).
Genes related to myogenesis, the regulation of transcription,
and DNA-binding and activation were mostly up-regulated
(Supplementary Table S2), whereas genes involved in cell
adhesion were all down-regulated (Supplementary Table S2).

At 35 dpf, a total of 369 genes were differentially expressed
in the BL23 group vs. control (Figure 4B and Supplementary
Table S3). Of these, 237 genes were up-regulated and 132 genes
were down-regulated (Figure 4B). To facilitate the presentation
and interpretation of results, DEGs were functionally categorized.
The DEGs are involved in signaling, secretion, motor protein,
oxidoreductase, and iron, tight junctions, lipid metabolism,
growth regulation, protease and humoral, and cellular effectors,
and their levels of expression were up-regulated in the most genes
except those associated with motor proteins (Supplementary
Tables S4, S5). In addition, KEGG analysis showed that DEGs
much enrich involved tight junction, ECM-receptor interaction,
and the PPAR signal pathway (Figure 5).

RT-qPCR Analysis
RNA-seq analysis showed that L. casei BL23 could regulate the
expression of genes involved in myogenesis, the regulation
of growth, and the PPAR signal pathway in zebrafish
(Supplementary Table S6). Here, the representative genes
involved in growth promotion and metabolism were analyzed
using RT-qPCR (Figure 6). At 35 dph, the levels of expression of
the genes igf-1, ppar-α, ppar-β, rar-γ, and vdr-α were significantly
higher in the L. casei BL23 administration group than among
controls (Figure 6, P < 0.05).

FIGURE 7 | Accumulated mortality rates (%) of zebrafish treated with L. casei
BL23 and control when challenged with A. hydrophila NJ-1 starting at 35 dpf
for 26 days. Each data represents the mean of four replicate tanks
(n = 28/tank), a single asterisk representation of P-value < 0.05.

L. casei BL23 and Infection of Zebrafish
by A. hydrophila
After 35 days of BL23 administration, fish were challenged with
A. hydrophila NJ-1. The cumulative mortality of fish treated with
L. casei BL23 was significantly lower than the control, indicating
that BL23 has a protective effect in zebrafish upon A. hydrophila
infection (Figure 7, P < 0.05).

Immuno-Regulatory Effect of L. casei
BL23
After challenge with A. hydrophila NJ-1, the intestinal expression
of cytokine genes was assessed at different points in time. The
levels of expression of tumor necrosis factor -α (tnf-α) showed
no significant difference between the BL23 group and control
after 0, 8, 24, 48, and 72 h of infection (Figure 8A). However,
a higher level of interleukin-1β (il-1β) expression was detected
in BL23 group than in the control group at 8 h post-infection
(Figure 8B, P < 0.05). Similarly, more expression of interleukin-
10 (il-10) was observed in the BL23 group at 8 and 24 h than in
the control group (Figure 8C, P < 0.05). In addition, the level
of expression of complement component c3a (c3a) was higher
in BL23 group than in the control group at 24 h after infection
(Figure 8D, P < 0.05).

DISCUSSION

Probiotics are bacteria that provide health benefits to the host.
However, the mechanism by which these bacteria promote
growth and modulate the immune response conferred by a
potential probiotic strain is not well understood yet. In this study,
zebrafish larvae were given one of the highly adhesive strains of
L. rhamnosus LGG, L. plantarum JCM 1149 and L. rhamnosus
JCM 20300 or the non/less adhesive strains of L. casei BL23
and L. acidophilus JCM 1132 from birth to puberty. We found
that zebrafish treated with L. casei BL23 or L. rhamnosus 20300
showed improved growth. This indicated that the effects of
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FIGURE 8 | The mRNA levels of tnf-α (A), il-1β (B), il-10 (C), and c3a (D) in the intestine of zebrafish treated with L. casei BL23 and control at the indicated time
when challenged with A. hydrophila NJ-1. The independent quadruplicates of total RNA extraction and corresponding cDNA synthesis were carried out with the
treated fish from different tanks (n = 4) and the results are given as mean ± SEM. Asterisk denotes a significant difference (P < 0.05) as analyzed using ANOVA test
followed by Bonferroni analysis.

probiotics do not depend on the adhesive properties of the gut but
rather on some trait inherent in the strains. We showed that the
growth promotive effect of L. casei BL23 relies on the viability of
BL23 cells. This indicated that the metabolites of L. casei BL23, the
production of which requires the bacterial cells to remain viable,
might play important roles in zebrafish growth.

Beneficial microbes such as LAB may increase the height
of the villi in the host and thereby increase surface absorptive
area in the intestine, which contributes to more efficient use
of diet-derived energy sources (Pirarat et al., 2011). Moreover,
LAB can produce some metabolic substrates, such as vitamins
(LeBlanc et al., 2011), short chain fatty acids, organic acids,
and digestive enzymes (Bairagi et al., 2002; John et al., 2006).
These are involved in host nutrient metabolism and development.
In the current study, we used mRNA-seq to investigate the
molecular differentiation of physiological processes in larval

zebrafish as indicated by the different expression genes. At
14 dpf, 104 genes were found to be differentially expressed.
Functional classification of genes showed most to be involved
in cell adhesion, the regulation of transcription, myogenesis,
and DNA-binding, and most of them were upregulated in the
BL23 group. Genes of hsp90a and unc45b were upregulated
in the L. casei BL23 group. These are known to mediate the
folding, assembly and accumulation of thick-filament myosin
during the formation of sarcomeres, and to play a critical
role in the development of striated muscle and the stability
of sarcomere (Hawkins et al., 2008; Hu et al., 2016). Integrin
alpha (6B) has been shown to be involved in chondrogenic
cell differentiation (Segat et al., 2002). These data indicate
that L. casei BL23 mainly influenced the progress of cell
growth and differentiation during the early development of
zebrafish.
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At 35 dpf, intestinal mRNAseq showed that 369 genes were
differentially expressed after treatment with L. casei BL23; these
were involved in categories such as signaling, oxidoreductase,
and iron, tight junction, lipid metabolism, growth regulation,
protease, and humoral effectors, cellular effectors and others.
KEGG analysis showed DEGs to be involved in such pathways
as tight junction, PPAR signal pathway, and glycine, serine, and
threonine metabolism. Fish growth is a complex process, which is
positively correlated with muscle growth and is mainly regulated
by the GH/IGF system (Reinecke et al., 2005; Wood et al., 2005).
GH is a pituitary hormone that regulates numerous physiological
processes, including immune function, somatic growth, protein,
and lipid metabolism, and feeding behavior (Kawauchi and
Sower, 2006). As expected, we found that growth regulation
genes igf1, igf2, igfbp2a, igfbp2b, and igfals to be upregulated
in zebrafish treated with L. casei BL23 at 35 dpf. A higher level
of transcription of igf1 mRNA were observed by RT-qPCR in
the L. casei BL23 treatment group. Avella’s work showed that
administration of L. rhamnosus IMC 501 accelerated growth in
the false percula clownfish (Avella et al., 2010) and zebrafish
(Avella et al., 2012), and the mRNA levels of the of factors
involved in growth and development such as igf1, ppar-α, ppar-
β, vdr-α, and rar-γ were higher in the probiotic treatment group
(Avella et al., 2010, 2012).

Short fatty acids and vitamins are the natural products of
Lactobacillus fermentation. They are known to activate PPARs,
which are involved in skeletal development, lipid metabolism,
and cell proliferation (Krey et al., 1997; Grimaldi, 2007; Neschen
et al., 2007). Vitamin D and retinoic acid are essential molecules
for organism morphogenesis and chondrogenesis (Rhinn and
Dolle, 2012; Eyles et al., 2013). In this study, as expected,
the nuclear receptors vdrα, rarγ, and ppars were found to be
up-regulated in BL23 group as indicated by DGE and RT-
qPCR analysis. These findings suggested that positive correlation
between these systems and the growth accelerated involved in
metabolites of BL23.

Immunomodulation is one of the most common benefits
associated with probiotics. The immunity modulation role of
probiotics in aquatic animals has been reported extensively
(Nayak, 2010; Perez et al., 2010; Dimitroglou et al., 2011;
Lazado and Caipang, 2014; Lazado et al., 2015). The protective
effects that probiotics confer on their hosts usually involve
competitive exclusion of pathogens (Vine et al., 2004; Chabrillon
et al., 2005), production of antibacterial compounds such
as antibiotics and bacteriocins (Gibson, 1999; Birri et al.,
2013), or reinforcement of the gut epithelial barrier in the
gut (Candela et al., 2008; Mennigen and Bruewer, 2009). In
addition, probiotics can interact with intestinal epithelial cells
via pattern recognition receptors (such as Toll-like receptors),
which can modulate physiological and immunological responses
in hosts, such as cytokine production, antigen presentation,
and regulatory T cell differentiation and regulation of function,
and these processes are crucial to host defense from disease
(Kawai and Akira, 2010; Lebeer et al., 2010). Previous works
have indicated that probiotics (such as lactic acid bacteria)
can effectively regulate the expression of pro-inflammatory
cytokines such as IL-1, IL-6, IL-12, TNF-α, gamma interferon

(IFN-γ), and anti-inflammatory cytokines such as IL-10 and
TGF-β in animals (Christensen et al., 2002; Niers et al.,
2005; Ashraf et al., 2014). In this study, genes of the tight
junction complex (cldn15a, cldnc, cldnd, and cldng) and humoral
effectors (c5, c3b.1, and c3b.2) were significantly up-regulated
in the intestines of zebrafish treated with L. casei BL23. The
mortality of zebrafish is a result of a long-term A. hydrophila
infection and hunger, as observed in our lab. Zebrafish treated
with BL23 showed a lower mortality rate upon challenge
with pathogen A. hydrophila. The gene expression levels of
pro-inflammatory cytokine il-1β, anti-inflammatory cytokine
il-10 and complement component c3a were higher in the
BL23 treatment group at 8 h or 24 h after challenge with
A. hydrophila. Galindo and his co-workers (Galindo-Villegas
et al., 2012) showed that colonization by commensal microbes in
newly hatched zebrafish primes neutrophils and induces several
genes encoding pro-inflammatory and antiviral mediators via
TLR/MyD88 signaling pathway, which increased the resistance
of larva to viral infection. For this reason, we here speculate
that BL23 may increase the resistance of zebrafish to infection
by regulating host intestinal barrier function and modulating
cytokine expression.

In summary, our results demonstrated that continuous
administration of probiotic strain L. casei BL23 during
zebrafish development promoted growth performance and
increased disease resistance in zebrafish. The results obtained
in this study indicate the potential use of the probiotic
strain for fish growth promotion and diseases controls in
aquaculture.
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