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Cellular migration plays a crucial role in many aspects of life and development. In this

paper, we propose a computational model of 3D migration that is solved by means of

the tau-leaping algorithm and whose parameters have been calibrated using Bayesian

optimization. Our main focus is two-fold: to optimize the numerical performance of the

mechano-chemical model as well as to automate the calibration process of in silico

models using Bayesian optimization. The presented mechano-chemical model allows us

to simulate the stochastic behavior of our chemically reacting system in combination with

mechanical constraints due to the surrounding collagen-based matrix. This numerical

model has been used to simulate fibroblast migration. Moreover, we have performed

in vitro analysis of migrating fibroblasts embedded in 3D collagen-based fibrous matrices

(2 mg/ml). These in vitro experiments have been performed with the main objective of

calibrating our model. Nine model parameters have been calibrated testing 300 different

parametrizations using a completely automatic approach. Two competing evaluation

metrics based on the Bhattacharyya coefficient have been defined in order to fit themodel

parameters. These metrics evaluate how accurately the in silico model is replicating

in vitro measurements regarding the two main variables quantified in the experimental

data (number of protrusions and the length of the longest protrusion). The selection of an

optimal parametrization is based on the balance between the defined evaluation metrics.

Results show how the calibrated model is able to predict the main features observed in

the in vitro experiments.

Keywords: 3D mesenchymal migration, fibroblast, chemotaxis, platelet derived growth factor, phosphoinositide

3-kinase, tau-leaping algorithm, Bayesian optimization, in-vitro in-silico integration
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INTRODUCTION

Cell migration is a fundamental event in a wide variety of
physiological processes, spanning from embryogenesis (Knecht
and Bronner-Fraser, 2002; Martin and Parkhurst, 2004),
angiogenesis (Lamalice et al., 2007; Spill et al., 2015), osteogenesis
(Reina-Romo et al., 2012), inflammatory response (Luster et al.,
2005), immune response (Bogle and Dunbar, 2010), and wound
healing (Shaw and Martin, 2009; Valero et al., 2014a), to develop
diseases such as cancer and metastasis formation (Franz et al.,
2002; Condeelis et al., 2005; Condeelis and Pollard, 2006).

Cell migration can present different characteristics according
to the dimensionality in which it is produced. Thus, cell
migration on 2D surfaces has been widely studied and is typically
characterized by a balance between counteracting traction and
adhesion forces (Sunyer et al., 2016; Escribano et al., 2018).
However, cells generally migrate in a 3D extracellular matrix
(ECM) adopting different migration strategies regulated by
several factors such as the cell type and the properties of the
ECM. In these 3D environments, the mechanisms governing
cell migration are far less understood due to both the technical
challenges and the complexity of migratory behaviors (Zhu and
Mogilner, 2016).

Based on the cell type and the cellular microenvironment (Te
Boekhorst et al., 2016; Talkenberger et al., 2017)—in particular
ECM parameters such as density, porosity and stiffness—,
individual cells migrate using two distinct mechanisms (Friedl
and Wolf, 2010; Swaney et al., 2010; Bear and Haugh, 2014).
When cells are unable to adhere to the ECM, they modify their
shape and squeeze through the ECMpores by using the amoeboid
migration, which is very efficient—rapid cell locomotion (cell
speed ∼10 µm/min)—and it is observed in cells such as
neutrophils and T cells (immune system) (Beauchemin et al.,
2007; Lämmermann et al., 2008; Swaney et al., 2010). In contrast,
whenever cells adhesion to the ECM is high, they degrade the
ECM to pass through by using themesenchymalmigrationmode,
which is very inefficient—cell displacement is very slow (cell
speed < 1 µm/min)—and it is observed in cells such as fibroblast
(wound healing) and osteoblasts (bone formation) (Friedl and
Wolf, 2010). This mesenchymal migration mode is investigated
in this paper.

In vitro experiments have become increasingly sophisticated
in order to reproduce as accurate as possible the natural
biological surroundings of organisms from in vivo studies.
As in vitro studies have increased their sophistication, their
requirements have also grown in complexity. Due to the
complexity and the expensive lab work of in vitro experiments,
in silico studies have a complementary role in understanding
mesenchymal cell migration. Computer-based mathematical
models allow performing a vast number of controlled and
reproducible experiments with much lower associated costs. In
fact, these computational models can be classified according to
several factors such as the numerical approach of the biological
processes: continuous (Vermolen and Javierre, 2012; Valero et al.,
2014b; Serrano-Alcalde et al., 2017), discrete (Meineke et al.,
2001; Bentley et al., 2009; Scianna et al., 2012; Scianna and
Preziosi, 2014; Van Liedekerke et al., 2015), or hybrid (Alber et al.,

2007; Bauer et al., 2009; Daub and Merks, 2013; Milde et al.,
2014; González-Valverde and García-Aznar, 2018). In addition,
they can also be classified according to the type of movement
that cells develop as individual (Schlüter et al., 2012; Trichet
et al., 2012; Ribeiro et al., 2017; Moure and Gomez, 2018), if cells
migrate independently, or collective, forming an interconnected
meshwork or cluster (Bazmara et al., 2015; González-Valverde
et al., 2016; Norton and Popel, 2016; Camley and Rappel,
2017; Escribano et al., 2018). Computational models can also be
classified as mechanical (Zaman et al., 2005; Borau et al., 2011),
biochemical (Hatakeyama et al., 2003; Provenzano et al., 2008),
or mechano-chemical (Kim et al., 2015, 2018; Moure and Gomez,
2017; Ribeiro et al., 2017).

More recently, different authors (Sun and Zaman, 2017;
Kim et al., 2018; Mark et al., 2018) have focused their works
in the combination of in vitro experiments and in silico
modeling in order to elucidate the influence of specific factors
on individual and collective cell migration. The combination
of both methodologies opens new opportunities for research,
because models allow the simulation of in vitro conditions in
order to directly obtain additional information not available
from experiments, but that can be indirectly evaluated in-vitro.
For example, recently, Sunyer et al. (2016) analyzed collective
cell durotaxis, combining experiments with numerical models
in order to understand that the difference of stiffness sensed by
cells at both edges of the cell monolayer promotes the directional
migration.

In this work, we propose to establish a new strategy
based on the Bayesian optimization (BO) technique, which
combines numerical simulations relied on a mathematical
model and in vitro experiments in order to calibrate the
model’s parameters. In particular, a mechano-chemical model of
individual mesenchymal 3D migration is presented, with a focus
on accelerating the numerical simulations that determine the 3D
migration trajectories. This strategy allows the full integration of
numerical models and experimental measurements in order to
improve knowledge of how cells regulate this mesenchymal 3D
migration.

MATERIALS AND METHODS

This section is organized in order to describe how experimental
measurements and numerical simulations can be integrated in
a consistent way. To facilitate their explanation, first, we briefly
describe the mathematical model of cell migration (Ribeiro et al.,
2017) and its numerical implementation. Next, we show the
results from in-vitro experiments and their quantification. Then,
we present how both results can be combined by means of
Bayesian optimization in order to calibrate the numerical model
with the experimental results. Finally, we test the potential of
our calibrated numerical model under different chemoattractant
concentrations and gradients.

Model Description
The selected model to simulate 3D cell migration is based
on a previous one (Ribeiro et al., 2017) (Figure 1). Here, we
describe the main aspects of this model in order to understand
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FIGURE 1 | Global model scheme. (Left) the chemosensing mechanism simulates how RTKs located in the cell membrane become activated by binding to

PDGF-BB molecules (blue circles). This RTK activation, in turn, triggers the activation of PI3K molecules inside the cell (PI3K inactivated molecules as gray triangles

and PI3K activated ones as red triangles). (Middle) protrusions (pin) grow and stabilize on those areas with high concentration of PI3K activated molecules. (Right)

the longest protrusion generates a traction force (F
lp
trac) when retracting, which exerts a reaction force (F

lp
R
) over the cell body. As a result of these reaction forces, the

ECM generates a drag force (Fdrag) over the cell body.

how the full calibration of this model is developed. This
model assumes that cell migration can be described by three
clearly differentiated stages. During the first stage the cellular
chemosensing mechanism allows cells to probe the chemical
cues located on their surroundings through different membrane
receptors (Roca-Cusachs et al., 2013; Moreno-Arotzena et al.,
2015). In particular, the focus is on how fibroblasts detect
molecules of the chemo-attractant factor Platelet-derived Growth
Factor (PDGF from now on) through a specific cell surface
receptor, the tyrosine kinases one (also known asRTK) (Cao et al.,
2004; Poukkula et al., 2011). The second stage simulates how the
activation of these receptors triggers intracellular processes that
regulate the onset of dendritic protrusions in different directions
throughout the ECM (Weiger et al., 2010; Liou et al., 2014).
In fact, these protrusions can protrude (pushing the matrix)
and contract (pulling the matrix). Lastly, the third stage models
how the dynamics of these protrusions regulate cell migration in
3D (Campellone and Welch, 2010; Starke et al., 2013; Moreno-
Arotzena et al., 2014) by establishing a relation between the
contractile force generated by each protrusion and the cell body
translocation.

Next, these three main stages of the process of cell migration
are described in greater detail. But first, the model of 3D cell
behavior is defined.

Modeling Cell Behavior
The 3D structure of the cell is geometrically modeled as a
set of one-dimensional bars representing dendritic protrusions
(Ribeiro et al., 2017). Those bars are located in a three-
dimensional environment and diverge from a central connecting
point that represents the cell body. This central connecting
point—which can be associated to the cell nucleus or the cell
centrosome—exists solely for modeling purposes as the point
where all the bars are connected (Figure 1 right).

Modeling the Chemosensing Mechanism
This first stage models how the chemically reacting system that
allows the cell to sense the chemo-attractant factor (located in the
surrounding ECM) evolves through time (Figure 1 left).

It is assumed that the only signal pathway guiding protrusion
dynamics is the one including just a chemo-attractant factor
located in the ECM, RTKs in the cell membrane and PI3K
molecules inside the cellular body. The PDGF has been chosen
as the chemical factor to interact with the cell due to its pivotal
role in regenerative processes (Chen et al., 2007; Friedlaender
et al., 2013; Elangovan et al., 2014; Shah et al., 2014). However,
the model could be extrapolated to other growth factors.

In order to replicate the cellular chemosensing mechanism,
our model simulates the interaction between different species
through time. From a temporal perspective, the simplified
mathematical model that mimics this chemosensing mechanism
is based on a set of reactions (Equation 1) (Hatakeyama et al.,
2003; Hawkins et al., 2006) and defined by a set of differential
equations (Equation S1 of the Supplementary Material).







RTK + [F]k2 ⇋
k1 RTKF (R1 & R2)

RTKF + PI3K →k3 RTKF + PI3KA (R3)
PI3KA →k4 PI3K (R4)

(1)

From a spatial perspective, it is assumed thatmembrane receptors
such as RTKs are homogeneously distributed over the cell
surface. However, the activation density of such membrane
receptors depends on the distribution of chemoattractant
molecules (F). In particular, there are more activated RTK
receptors (RTKF) on those areas of the cell surface surrounded
by a higher concentration [F]. In contrast, on those areas of the
cell surface surrounded by a lower concentration [F], there are
less activated receptors. Thus, cells are able to sense the spatial
distribution of F.

Two sources of stochasticity in cell migration are associated
to the chemosensing mechanism: the evolution of the chemically
reacting system (defined by Equation 1 for the proposed model)
and the activation of RTKs based on the concentration of
chemoattractant molecules surrounding the cell. Therefore, the
chemical reactions defined by Equation (1) are assumed to be
stochastic processes described by a Poisson distribution (Ueda
and Shibata, 2007). This premise makes possible to consider
receptor activation over a domain with varying concentration
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FIGURE 2 | (Left) spherical coordinates (α, β) of point q. (Right) s signal distribution example over the cell membrane.

TABLE 1 | Equations associated with the chemosensing mechanism.

Spatial persistence of PI3KA (2D convolution over the cell surface) st (α, β) =

+∞
∫

−∞

+∞
∫

−∞

dPI3KA (u, v) · g (α − u,β − v)dudv (Equation 2)

Tempo-Spatial variation of PI3KA s = s
(

α, β, tk
)

=

tk
∑

t=t0

st (α, β) (Equation 3)

st (α, β): amount of activated PI3K (PI3KA) across the cell membrane surface at a time t.

dPI3KA (α, β): distribution of PI3KA molecules across the membrane.

g(α, β): a convolution window roughly the size of a protrusion.

t0, tk : time period through which st (α, β) is sampled at 1Hz and evaluated at 5-min intervals.

s (α, β, tk): the cumulative signal of PI3KA (s from now on) at time tk .

of factor F to be a multivariate non-homogeneous Poisson’s
distribution. Therefore, it is possible to model this activation of
RTKs by means of the Inverse Method described by Saltzman
et al. (2012).

By computing an approximate solution of this problem, it is
possible to evaluate at any given time (tk) the variation of PI3KA

in any specific location of the cell surface. In order to estimate
this spatio-temporal variation we defined the variable s(α, β , tk)
which stores the spatial persistence of PI3KA activation across
time (tk), in a space location of the cell surface defined by
coordinates (α, β) (Figure 2)—since we are dealing with a 3D
model of a cell, we represent the cell membrane as a flat surface
defined by the polar coordinates α and β . Therefore, the signal
s = s(α, β , tk) is evaluated at a fixed time tk by means
of the convolution function, taking into account the temporal
evolution of the chemical signal in this surface location and its
surroundings—roughly an area the size of a protrusion section.
The model equations guiding the chemosensing mechanism are
summarized in Table 1.

We assume that cell’s consumption of chemoattractants is
negligible. Thus, the chemoattractant chemical profile does not
change with time.

Modeling Protrusion Dynamics
Once the tempo-spatial variation of activated PI3K (PI3KA, s)
is estimated, it is possible to determine protrusions location

by means of a set of thresholds (sbirth, sexp, and sret) that act
as a signal filter. In particular, sbirth represents the minimal
amount of signal s that cells need to develop new protrusions,
as suggested by many authors (Ueda and Shibata, 2007; Weiger
et al., 2010; Jilkine and Edelstein-Keshet, 2011; Chen et al., 2017);
those points inside the cellular body where s is higher than
sbirth are considered locations where novel protrusions sprout.
Furthermore, any pre-existing protrusion becomes reinforced if,
in its location, s is higher than sexp. However, if there is not
enough signal s for the protrusion to remain active, it becomes
unstable; in those points where s is lower than sret pre-existing
protrusions retract and disappear (Table 2). Besides, in order to
simplify the search of signal s peaks where protrusions centroids
are localized, an internal model parameter (sbinary) is used to
transform s into a binary signal. This means that only during the
protrusions localization, any surface point where s is lower than
sbinary becomes 0 whereas every surface point with s greater or
equal to sbinary becomes 1.

In addition, it is assumed that this signal variation δs also
regulates, in conjunction with the ECM mechanical properties,
the protrusive stretch characteristics due to the cytoskeleton
activity.

Therefore, protrusions generate forces against the ECM.
Consequently, the mechanical properties of the ECM act as
a regulator for the extension or retraction of protrusions, as
suggested by Liou et al. (2014) (Figure 3). This behavior is
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TABLE 2 | Equations associated with the protrusions dynamics.

Protrusion i pin =
∥

∥pin
∥

∥ei (Equation 4)

Free exp./ret. (ECM does not restrict protrusions

deformation)

εfk =















1
∥

∥pi
∥

∥

αexp δs
(

βexp + δs
) , δs ≥ 0 (expansion)

1
∥

∥pi
∥

∥

αretδs

(βret + δs)
, δs < 0 (retraction)

(Equation 5)

Free exp./ret. Cauchy’s strain tensor ε
f
k
= εf

k
ei

⊗

ei (Equation 6)

Constrained exp./ret. by the ECM ε̃
c
k
= S

[(

CI − CM
)

S+ CM
]−1

CI ε̃
f
k

(

Eshelby′s theory
)

(Equation 7)

Constrained exp./ret. (ECM does restrict protrusions

deformation)

εEXP =







































εcexp,
(

∥

∥pin
∥

∥ = 0
)

and (sbirth < s)

0,
(

∥

∥pin
∥

∥ = 0
)

and (sbirth ≥ s)

εcexp,
(

∥

∥pin
∥

∥ > 0
)

and (sexp < s)

0,
(

∥

∥pin
∥

∥ > 0
)

and (sexp ≥ s)

εRET =







εcret, sret ≤ s

−1, sret > s

Where εc
k
comes from the inverse of Equation 6 after

computing the constrained exp./ret. of Equation 7.

(Equation 8)

Protrusion length pi
n+1 =

(

1+ εEXP + εRET
)

∥

∥pin
∥

∥ei (Equation 9)

pin: protrusion i at time interval n.
∥

∥pin
∥

∥: length of protrusion i at time interval n.

ei : unit vector of the protrusion longitudinal axis.

k: exp (expansion), ret (retraction).

εfk : free expansion/retraction stretch rate field (see Figure 3).

αexp, βexp, αret, βret: parameters that regulate protrusion expansion/retraction.

δs: increment in signal s between two time instants.

S: ellipsoid shape tensor.

CI: elasticity tensor of the protrusion.

CM: elasticity tensor of the surrounding ECM.

ε̃
f
k : Cauchy’s strain tensor of protrusion free expansion or retraction (see Figure 3).

εck : constrained expansion/retraction stretch rate field.

εEXP: longitudinal stretch rate due to the dendritic expansion.

Both ε̃
c
k and ε̃

f
k are in Voigt notation and represent the second-order stretch tensors εck and εfk respectively. For this approach, it is considered a linear elastic behavior for the ECM.

simulated by considering protrusions analogous to an elastic
inclusion (ellipsoid) embedded in the ECM, applying Eshelby’s
analytical solution of ellipsoidal elastic inclusions in an elastic
infinite body (Eshelby, 1957). We consider that during this
second stage protrusions grow inside a collagen-based fibrous
matrix and they adhere to ECM fibers. Thus, we consider the
ECM behaves as a linear elastic material that constrains the
growth of protrusions. In fact, during this growth, protrusions
push to the ECM deforming it and the elastic properties of the
ECM regulate this deformation. In this case we quantify the
growth of the protrusion and the deformation of the ECM by
means of the Eshelby’s theory, assuming the protrusion as an
inclusion that is embedded in the ECM.Moreover, in all the cases
we assume infinitesimal deformation.

Equations guiding protrusions dynamics are summarized in
Table 2.

Modeling Cell Body Translocation
Finally, based on the experimental observations of how
protrusions determine cell body translocation (Moreno-
Arotzena et al., 2015; Del Amo et al., 2017; Movilla et al., 2018),

it is assumed that the longest protrusion determines cell motion
directly. The longest protrusion presents a larger adhesion
surface and, consequently, adhesion proteins have higher
probability to connect with the ECM. Every cell protrusion,
except the leading one, becomes non-adherent and, as a result,
they are all dragged by the cell during cell motion. The retraction

of the leading protrusion generates a reaction force (F
lp
R )

supported by the cell body. Thus, by focusing just on the reaction

force generated by the longest protrusion (F
lp
R ), it is possible to

estimate the exerted drag force (Fdrag) by the ECM on the cell
body (Figure 1 right). As a result, both cell speed and position
can be estimated at any given time t following the definition
proposed by Borau et al. (2011), which takes into account the
ECM viscosity. During the third stage we model the cell body
translocation and, as the position of the cell center is modified,
we assume the cell body is on the fluid component of the ECM.
Thus, we consider that the cell is moving through a fluid. As a
result, and in order to compute the drag force exerted by the
ECM on the cell body, we take into account the viscosity of
the ECM. The equations guiding cell body translocation are
summarized in Table 3.
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FIGURE 3 | Scheme of the three different configurations in protrusion dynamics. ε
f
k
represents the free expansion/retraction (ECM does not restrict protrusions

deformation) Cauchy’s strain tensor. εo* is the compatibility Cauchy’s strain tensor. ε
c
k
represents the total deformation Cauchy’s strain tensor. We assume infinitesimal

deformation.

TABLE 3 | Equations associated with the body translocation.

Force equilibrium

equation

Fdrag + F
lp
R

= 0 (Equation 10)

Drag force exerted by

the ECM on the cell

body

Fdrag = −6π rηv (Equation 11)

Contractile force

generated by each

protrusion

F itrac = −αadhesion · pi = −F i
R

(Equation 12)

Final force equilibrium

equation

−6π rηv + αadhesion · plp = 0 (Equation 13)

Fdrag: drag force exerted by the ECM on the cell body.

F
lp
R : reaction force supported by the cell body due to the retraction force of the longest

protrusion (lp).

r: cell radius.

η: ECM viscosity.

v: cell speed.

F itrac: contractile force of protrusion i.

αadhesion: constant that defines adhesion.

pi : vector representing the protrusion i.

plp: vector representing the longest protrusion.

Traction forces F itrac are assumed identical in magnitude to their corresponding reaction

forces F iR.

We assume that there is a mechanical balance between the
traction force of the adherent protrusion (F

lp
trac), the longest

one, and its corresponding reaction force (F
lp
R ) supported

by the cell body due to F
lp
trac (Figure 1 right). Equation

(12) defines a relationship between the contractile force

magnitude (F
lp
trac), due to actomyosin activity, and the protrusion

length.

Numerical Implementation
Our computational model has been designed using a
scheme based on the three fundamental mechanisms:
chemosensing mechanism, protrusions dynamics, and the
cell body translocation (Figure 4). These three stages have been
implemented in Python using powerful packages and libraries
for scientific computing such as Numpy (van der Walt et al.,
2011) and SciPy (Jones et al., 2001) to maximize the model’s
performance.

The stochastic time evolution of the given set of reactions
(R1, R2, R3, and R4) had been numerically simulated by using,
originally, the Stochastic Simulation Algorithm (SSA; also known
as the Gillespie Algorithm) (Gillespie, 1976, 1977) in the first
version of this work (Ribeiro et al., 2017). However, the SSA is
considered too slow for our purposes and a faster alternative is
proposed, the tau-leaping algorithm (Gillespie, 2001; Cao et al.,
2006). The SSA computes an exact solution of the time evolution
of a chemically reacting system. In contrast, the tau-leaping
algorithm estimates a good enough1 approximation (Lok, 2004;
Cazzaniga et al., 2006) by leaping over many reactions at once
using Poisson random numbers.

The tau-leaping method tries to accelerate stochastic
simulations by approximating the frequency of each reaction
being fired in the next specified time interval [t, t+ τ ].
By comparison, the SSA focuses only on one reaction per time
interval whichmay be prohibitively small (Anderson et al., 2011).

1The “good-enough” expression used here to describe the accuracy of the tau-

leaping algorithm comes from previous works such as Lok (2004) where he states

that “One acceleration strategy is to abandon absolute mathematical precision in

favor of a good-enough approximation. Gillespie has also been a pioneer in this

effort. One of his strategies is called ‘tau-leaping’.” This statement is considered

valid as long as the leap condition is satisfied, i.e., as long as the probability of each

reaction taking place does not change significantly over the time leap.
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FIGURE 4 | Global algorithm scheme. First, the chemosensing mechanism is simulated using the tau leaping algorithm. In this first stage, the concentration and

gradient of the PDGF-BB is the main influence factor. During the second stage of the process, it is taken into account both ECM mechanical properties and cell

mechanics in order to simulate protrusions development. Finally, the modeling of the cell body translocation is also influenced by the ECM mechanical properties (in

particular, ECM viscosity) as well as cell mechanics. The blue boxes are associated with the chemical factor, the red ones with cell mechanics and the yellow ones with

the ECM mechanical properties.

As long as the value of τ is small enough so the leap condition2

is satisfied, it is possible to compute a good approximation of the
evolution of a given chemically reacting system.

It is worth to mention that neither the SSA nor the tau-
leaping algorithm use a fixed time step to simulate the evolution
of biologically reacting systems like the one presented in this
work. Instead, they compute a new value τ in each iteration
based on the current state of the system and a random
variable.

The initial amounts of each reactant as well as the reaction
rates (k1, k2, k3, and k4) used are included in Table 4.

Based on the spatial distribution of PI3KA molecules as well
as their concentration on those locations, protrusion growth
is then set. Protrusion final length is computed by applying
Eshelby’s solution of ellipsoidal elastic inclusions in an infinite
elastic body. Mechanical equations are analytically solved using
a computational algorithm. An elastic modulus of 104 Pa is
assumed for the ECM based on previous experimental works of
gels with a concentration of 2 mg/ml collagen type I (Movilla
et al., 2018; Valero et al., 2018).

Lastly, the mechanical equilibrium associated to protrusion-
generated forces is solved. Then, taking into account that
the longest protrusion is the one leading cell migration, it is

2The leap condition is an accuracy-assuring restriction which states that during

the time interval [t, t + τ ] the probability of each reaction channel Rj being fired

should remain approximately constant even though all reaction channels may be

fired several times.

TABLE 4 | Initial amounts of each reactant as well as the reaction rates obtained

from literature.

Reactant Initial amount Equation References

RTK 4275 (1) Paralkar et al., 1992

RTKF 0 (1) Estimated

PI3K 75 x 103 (1) Hatakeyama et al., 2003

PI3KA 0 (1) Estimated

k1 735 nM−1 · s−1 (1) Heinecke et al., 2009

k2 0.01 s−1 (1) Heinecke et al., 2009

k3 0.0004 s−1 (1) Hatakeyama et al., 2003

k4 1 s−1 (1) Hatakeyama et al., 2003

computed both cell speed and position in the following time
increment.

We decouple the simulation of the chemosensing mechanism
from the other two stages of the model (protrusions dynamics
and cell body translocation) because we are considering two
different time scales in our model. In fact, the chemical and
mechanical events occur at different time scales. In order to
accurately simulate the proposed chemically reacting system we
are using the iterative tau leaping algorithm with a variable
associated time step τ in the range [0.5, 1.5] seconds. However,
to model protrusion dynamics and the cell body translocation we
are using a time step dt of 5min. Actually, it is because variations
in the signal s (Equation 2) between two consecutive time steps
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FIGURE 5 | Norman Human Dermal Fibroblast (NHDF) cultured in 3D

collagen-based fibrous matrix (2 mg/ml collagen). Image was captured with a

Nikon D-Eclipse Microscope with a Plan Fluor 200x magnification (20x

Objective) and phase contrast.

t and t + τ are really small whereas protrusions require more
noticeable variations of the chemical signal in order to change
their current state. As a result, it is required to keep track of the
cumulative variation δs.

Development and Quantification of in vitro

Experiments
Once we have numerically implemented the proposed model,
we have to calibrate its parameters in order to optimize the
performance of this computational model. We calibrate the
model here presented by comparing the results of its simulations
with experimental data. In particular, we focus on two different
features to fit the model’s parameters: the length of the longest
protrusion and the number of protrusions of the migrating
cell. As a result, we have performed in vitro studies to get
accurate experimental measurements of the length of the longest
protrusion and the number of protrusions.

In vitro experiments have been performed by culturing
Normal Human Dermal Fibroblasts (NHDF)—human skin
primary cells—within 2 mg/ml collagen gels at a concentration
of 2.5x105 cells/ml, and temperature and atmosphere conditions
have been maintained at 37◦C and 5% CO2. Immediately
after the seeding, cells’ evolution has been monitored with
multidimensional microscopy for 4 h (from 0 to 4 h), every 5min
and 5µm of Z axis, with 200x magnification (20x objective) and
phase contrast (Figure 5). We have chosen a 2 mg/ml collagen
concentration because it already implies a matrix pore size (<
1µm) (Fraley et al., 2010). Individual cell protrusions have been
quantified by in-house Matlab algorithms (Moreno-Arotzena
et al., 2015). For each image stack, best Z has been chosen in
order to maximize accuracy and minimize the complexity of the
manual analysis of both the cell body and its protrusions. Single
cell analysis of four different samples has been performed for the
given collagen concentration (2 mg/ml).

FGMTM-2 (Fibroblast Growth Medium-2) has been used to
support the growth of primary human fibroblasts. It contains a

supplementation of GA-1000, recombinant human insulin 0.5%,
HFGF-B GF, and 2% of Fetal Bovine Serum. Thus, these in vitro
experiments only include a very low and fixed concentration
of growth factors included in the culture medium; they do not
include any chemoattractant gradient.

Model Calibration Using Bayesian
Optimization
During the last couple of decades, as the available computational
power has greatly increased, so has the complexity of in silico
models and the number of parameters included in those models.
As a result, the complexity of the calibration process has also
increased. However, it is still often the case that this calibration
process is performed using a very manual approach. Each
parameter must be tunedmanually despite the search space being
usually too vast to be effectively navigated. Besides, there may
be interactions or dependencies between some parameters. This
process can be very tedious, especially when dealing with in silico
simulations that require several hours of execution time.

This calibration process can be mapped to a non-linear
optimization problem where the objective is to find the
simulation parameters that best fits the in vitro experiments.
In this way, we are able to automate the process. However,
most non-linear optimization solvers require a large number of
iterations, gradient information of the fitting function or they
are sensible to local optima. In our case, the large number of
iterations could make the problem intractable as the evaluation
of the fitting function associated to our in silico model is very
costly because it requires several simulations of our stochastic
model.

More formally, we are looking for the set of optimal
experiment parameters x that satisfy:

x⋆ = argmax
x∈χ

f (x), (14)

where f is the fitting function between the in vitro and the in silico
models and X is the parameter search space as defined in Table 5.

Bayesian optimization, also called Efficient Global
Optimization (EGO) (Jones et al., 1998) is a general purpose
black-box optimization methodology that it is characterized for
requiring a very small number of iterations before reaching global
optimization. Thus, it is especially suitable for experimental
design and calibration of expensive processes (Shahriari et al.,
2016). Bayesian optimization uses a probabilistic surrogate
model of the target function combined with optimal decision
theory to drive the search toward the global optimum in less
iterations than popular non-linear optimization alternatives
like PSO (Kennedy and Eberhart, 1995), CMA-ES (Hansen
et al., 2003) or L-BFGS (Nocedal, 1980). In the case of Bayesian
optimization, the surrogate model uses machine learning to
capture previous iterations acting as a memory of the full
optimization process. Meanwhile, the decision component
carefully selects the next query at each iteration.

In the case of simulation calibration, there are many variables
that can be used for fitting, some of them might be even
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competing. Then, we can redefine the problem as one of multi-
objective, multicriteria optimization or Pareto optimization:

x⋆ = arg max
x∈χ

(f1 (x) , f2 (x) , . . . , fn (x)), (15)

In this case, the objective is not only to find a single optimal
value for the simulator parameters, but to find the whole set of
Pareto optimal points, that is, those points that dominate the rest
of the points. Although this is a completely different problem,
the seminal work of Knowles (2006) extended the Bayesian
optimization methodology to the multi-objective setup.

There are several pieces of software that implements Bayesian
optimization, like BayesOpt (Martinez-Cantin, 2014). A full
review can be found in Shahriari et al. (2016). However, many
of them do not support multi-objective optimization and those
that do support multiple criteria are very limited in terms of
other features. In this work, we have used SigOpt3 (Martinez-
Cantin et al., 2018) for its support for parallelization and multi-
objective optimization. Besides, it provides other features like the
parameter importance, which will be discussed in the Results
section.

For our experiments, we have decided to fit two competing
metrics: the length of the longest protrusion (llp) as well as the
number of protrusions (np) (Figure 1). The fitting of the in silico
values with respect to the in vitro measurements is computed
using the Bhattacharyya coefficient (also known as BC), which
has been widely used to compare the similarity or discriminate of
two continuous or discrete distributions (Comaniciu et al., 2000).
In fact, for discrimination it corresponds to the upper bound
of the Bayesian error when performing Bayesian hypothesis
testing with symmetric cost functions and uninformative priors
(Nielsen, 2014). Note that, Bayesian hypothesis testing already
includes a penalization for model complexity and priors result
in a regularization effect, being less sensitive to overfitting than
classical hypothesis testing (Kass and Raftery, 1995).

In particular, histograms of both in vitro and in silico
experiments are used as discrete distributions to compute those
metrics (Equation 16).

BC =

n
∑

i=1

√

histiin vitro · hist
i
in silico

, (16)

histi represents the value of the i-th histogram bin defined as the
probability of occurrences of values in the range (xi−1, xi].

The selection of metrics affects model calibration, so we
have carefully selected the metrics with a greater influence on
cell migration to the best of our knowledge. Moreover, these
metrics are based on experimental measurements that we are able
to accurately quantify. However, there are other measurements
based on cell motion, such as the instant cell speeds, that are
so low that we are not able to quantify them with the required
accuracy. For those metrics it is only possible to perform a
qualitative analysis. Although our proposed metrics are based on
just two quantities measured in the experimental data: the length

3https://sigopt.com/

of the longest protrusion and the number of protrusions, we
consider that both variables are fundamental in the regulation of
the final 3D cell motion. In particular, experimental observations
(Moreno-Arotzena et al., 2015; Del Amo et al., 2017; Movilla
et al., 2018) suggest that the length of the longest protrusion
has great influence over the cell speed whereas the number of
protrusions has a great impact on the cell trajectory (whether it
is random or directional).

Optimizing the BC function can be considered as a form of
Bayesian learning in the sense that we are trying to fit a model
that best represents the distribution of the data, and therefore
maximizing the posterior. Similarly, optimizing the BC can be
seen as a form of Bayesian hypothesis testing where we are
rejecting all the models with higher Bayesian error.

Furthermore, Bayesian optimization is a black-box method,
meaning that it does not require specific knowledge about the
metric, and that metrics can be easily interchanged. Thus, the
same methodology can be applied to any other feature or any
other similarity metric, such as KL-divergence or any other loss
function. Besides, we can include metrics not directly related to
the data such as cost, time, etc. These metrics can be competing,
meaning that one metric cannot be improved without another
metric suffering. As a result, the solutions distributed in the
Pareto set might be distributed in a complex way. Thus, sample
efficient search like Bayesian optimization is of paramount
importance. Besides, the resulting Pareto front allows the expert
user to balance the competing metrics a posteriori, choosing the
most convenient parametrization in different circumstances.

Model Validation Using Different
Chemoattractant Concentrations and
Gradients
After calibrating the numerical model, we have to validate it,
testing their predictive ability to simulate different cell responses
under different chemical gradients. This validation process allows
us to prove that the proposed model does not only accurately
replicate the results used to calibrate it, but also new ones,
so that there has been no overfitting during the calibration
process. In the preceding calibration process, we have used
quantitative results related to both the length of the longest
protrusion and the number of protrusions of migrating NHDF
from in vitro experiments without any chemoattractant gradient.
However, the validation process of this computational model is
based on qualitative observations of migrating cells surrounded
by a chemoattractant factor diffusing throughout the ECM
(Song et al., 2006; Bosgraaf and Van Haastert, 2009). We have
simulated six different extracellular environments. Three of these
extracellular environments include different PDGF gradients
(10−1, 100, 101 µM/mm) but a fixed PDGF concentration at
the initial cell’s position (0.8 µM). The other three extracellular
environments include a fixed PDGF gradient (100 µM/mm) but
different PDGF concentrations at the initial cell’s position (0.08,
0.8, and 8.0 µM). Twenty simulations have been executed for
each extracellular environment, using the same seeds used during
the calibrating process. The comparison between in vitro and
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FIGURE 6 | (Left) Phase contrast example of a NHDF cell cultivated in a 2 mg/ml collagen gel, with 200x magnification (20x objective) acquired using

multidimensional microscopy. (Right) Protrusion analysis performed by in-house Matlab algorithms; red line delimits cell body, yellow lines represent the protrusions,

and blue line shows cell body displacement. In this case, the longest protrusion is the green one and the number of protrusions is 5.

in silico results is based on qualitative observations of the velocity
component in the direction of the chemotactic gradient (vx).

We assume a fixed growth factor profile without any induced
modifications of the spatial gradient due to the growth factor
diffusion throughout the ECM. Thus, the chemoattractant
chemical profile is assumed to be temporally stable as the inlets
and outlets of our system keep a fixed growth factor profile during
our 4-h simulation.

RESULTS

By means of in vitro experiments in fibroblasts, it is possible
to quantify both the length of every protrusion, as well as
the number of protrusions generated at every checkpoint t
(t = 0, 5, 10, . . . , 240 min). Figure 6 shows an example
of the images generated by multidimensional microscopy and
the posterior protrusions analysis performed using in-house
Matlab algorithms. However, our model focuses on the length
of only the longest protrusion at each temporal checkpoint t,
ignoring the length of the other protrusions, as explained in
SectionModeling Cell Body Translocation. Therefore, during the
calibration process the comparison between in vitro and in silico
experiments is performed by means of the BC using these two
features (length of the longest protrusion and the number of
protrusions generated by migrating cells).

During calibration, for every iteration in the optimization
loop, 20 simulations replicating the in vitro scenario of a 2
mg/ml collagen ECM have been executed—in order to capture
the stochastic nature of our model. Those 20 simulations used 20
different seeds in order to initialize the global random number
generator of our model. Once the 20 simulations have been
completed, their associated histograms are computed by means
of a computer-based algorithm. These histograms (e.g., Figure 7
bottom) are compared with the in vitro histograms (Figure 7 top)
using the proposed evaluation metrics BCllp and BCnp (defined in

Equations 18, 19 respectively and based on Equation 16).

BCllp =

∑N
i=1 BC

i
llp

N
, N = 20, (18)

BCnp =

∑N
i=1 BC

i
np

N
, N = 20, (19)

In order to compute the two metrics using the BC, it is
required to generate the associated histograms for both the
longest protrusion length and the total number of protrusions.
Histograms associated to in vitro experiments using a cellular
microenvironment based on 2 mg/ml collagen gels show how
the protrusion length ranges from over 0µm to almost 140µm.
However, most of the longest protrusions have a length in the
interval 40–60µm (Figure 7 top left). Regarding the number
of protrusions, there is a high dispersion, ranging from 1 to
14 protrusions in each individual fibroblast during migration
(Figure 7 top right). Figure 7 (bottom) shows an example of a
couple of histograms associated to the in silico experiments. In
this case, we have generated in silico histograms using the best
parametrization suggested by SigOpt with metrics BCllp = 0.87
and BCnp = 0.81 (Figure 7 bottom). These histograms show
how, although the length of the longest protrusions is between 0
and more than 150µm, there is a peak in the interval 60–80µm
(Figure 7 bottom left). Regarding the number of protrusions,
there are usually about 9 to 12 in each fibroblast during migration
(Figure 7 bottom right). When comparing measurements of the
length of the longest protrusion, the mean values are 63.71
(in vitro) vs. 65.98 (in silico), whereas the standard deviations are
31.20 (in vitro) vs. 26.82 (in silico). For the measurements of the
number of protrusions, themean values are 7.57 (in vitro) vs. 7.38
(in silico), whereas the standard deviations are 3.27 (in vitro) vs.
4.00 (in silico).

The values of both metrics BCllp and BCnp for every suggested
parametrization by SigOpt are shown in Figure 8. SigOpt is able
to find parametrizations with higher values of the BCllp (even
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FIGURE 7 | Normalized histograms associated to in vitro experiments (Top) based on the length of the longest protrusion (measured in µm) (Left) and on the number

of protrusions (Right). Normalized histograms associated to in silico experiments (Bottom) based on the length of the longest protrusion (measured in µm) (Left) and

on the number of protrusions (Right). In silico experiments were generated using one of the best parametrizations suggested by SigOpt with metrics BCllp = 0.87

and BCnp = 0.81.

higher than 0.9) than the BCnp (always lower than 0.8). Besides,
the majority of the parametrizations suggested by SigOpt are
higher than 0.7 for both metrics (35.67%), with slightly better
results for the metric related with the length of the longest
protrusion (Figure 8).

A total of nine parameters of the model have been calibrated
(Table 5). The range of values for each parameter has also been
established in order to define the search space (Table 5). Note that
in this case, the search space includes both continuous regions
in the real space and discrete values for integer parameters.
Thus becoming a mixed-integer programming problem, much
harder to be optimized than just real spaces (non-linear
optimization) or integer spaces (combinatorial optimization).
For some parameters we have established a range based on the
values used in Ribeiro et al. (2017), whereas for others such as
Eprotrusion we have determined a range based on values found
in literature. In addition, for the parameters related to s signal
(sbirth, sexp, sret , and sbinary), we have analyzed the values of

s at different time steps. These ranges should be biologically
relevant. For example, the range of the parameter Eprotrusion
(protrusions elastic modulus) includes the value given in Mofrad
and Kamm (2006) and Li et al. (2014).We have also automatically
discarded any parametrization with sret ≥ sbirth or sret ≥ sexp
or sexp ≥ sbirth because from a biological perspective they are
invalid (the minimal amount of signal required for the onset of
new protrusions, sbirth, and for the reinforcement of pre-existing
protrusions, sexp, cannot be lower than the minimal amount of
chemotactic signal s required to remain active and not disappear,
sret ; the minimal amount of signal required for the onset of new
protrusions, sbirth, cannot be lower than the minimal amount
for the reinforcement of pre-existing protrusions either). The
parametrization selected as the optimal one after 300 iterations
of the calibration process using SigOpt is summarized in Table 2.
For example, the best value for the elastic modulus is 107 Pa. The
best parametrization, withmetrics BCllp = 0.87 and BCnp = 0.81,
have been selected due to the balance between both metrics.
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FIGURE 8 | Values associated to both metrics (BCllp and BCnp) for the 300 model parametrizations suggested by SigOpt during the calibration process. Red circles

are associated to every parametrization tested whereas the blue ones represent Pareto optimal points (parametrizations where one metric cannot be improved without

another metric suffering) and form an approximate Pareto frontier.

FIGURE 9 | Parameters sensitivity based on SigOpt analysis of each

parameter importance on the proposed evaluation metrics.

The advantage of having a probabilistic surrogate model
of the metrics is that we can perform other types of data
analysis during the optimization process. SigOpt also offers

TABLE 5 | Model parameters calibrated using Bayesian optimization with SigOpt.

Parameter Calibrated value Equation Range

Eprotrusion 107 Pa (7) 10i , i ∈ {4, 5, . . . , 10}

sbirth 85 (9) Z ∈ [0, 100]

sexp 76 (9) Z ∈ [0, 100]

sret 0 (9) Z ∈ [0, 100]

αexp 0.14 mm (7) R ∈ [0.01, 0.2]

βexp 100 (7) R ∈ [0.1, 100]

αret 0.05 mm (7) R ∈ [0.01, 0.2]

βret 54.86 (7) R ∈ [0.1, 100]

sbinary 62500 12500+ 2000 · j, j ∈ {0, 1, . . . , 100}

The calibrated values are associated to the parametrization considered the best one

(with computed metrics BCllp = 0.87 and BCnp = 0.81). The given ranges have been

established at the beginning of the calibration process and leave them unchanged.

an importance analysis of each parameter on the metrics (see
Figure 9), i.e., how influential each parameter is on the metrics,
that is, how much the metric values change with variations
of each parameter. This analysis gives us valuable insights
on our model performance. Although every parameter has
some influence over the metrics output, αexp, a parameter
which computes the free expansion/retraction stretch rate
field (during the protrusion dynamics stage) is the most
important parameter (24.06%). The parameters βexp, also used
to compute the free expansion/retraction stretch rate field, and
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FIGURE 10 | Cell migration speed statistical analysis for 20 simulations using the parametrization selected during the calibration process and associated with six

different extracellular environments. (Left) three of these extracellular environments include different PDGF gradients (10−1, 100, 101 µM/mm) but a fixed PDGF

concentration at the initial cell’s position (0.8 µM). (Right) three extracellular environments include a fixed PDGF gradient (100 µM/mm) but different PDGF

concentrations at the initial cell’s position (0.08, 0.8, and 8.0 µM).

sbinary, used to simplify the search of signal s peaks where
protrusions centroids are localized, are the second and third
most influential parameters on the metrics (15.25 and 13.76%,
respectively). Lastly, sbirth and sexp are the ones with the
least importance on our evaluation metrics (4.76 and 3.86%,
respectively).

Finally, we validate this computationalmodel using qualitative
observations based on cell motion of migrating cells surrounded
by different chemoattractant gradients. Figure 10 (left) shows
that as the PDGF gradient grows, cell’s velocity in the direction of
the chemotactic gradient increases too. Thus, cells are following
a more directional trajectory which agrees with experimental
observations from Bosgraaf and Van Haastert (2009). On
the other hand, Figure 10 (right) shows that as the PDGF
concentration surrounding the cell increases, cell’s velocity in
the direction of the chemotactic gradient decreases. In this case,
cells are following a more random trajectory. This fall in the
effective speed of the cell is thought to be associated with receptor
saturation (Song et al., 2006).

DISCUSSION

Understanding the process of cell migration is a really difficult
endeavor since it is a biological process coordinated by multiple
factors. Temperature (Higazi et al., 1996), adhesion sites in the
ECM (Cukierman et al., 2001), ECM mechanical properties and
architecture (Wolf et al., 2013) as well as the gradient of chemical
factors (Devreotes and Janetopoulos, 2003), modulate cell
migration, by regulating the signaling pathways and intracellular
cytoskeleton and adhesion organization (Paul et al., 2016).

According to our experimental observations (Moreno-
Arotzena et al., 2015; Del Amo et al., 2017; Movilla et al., 2018)
cells tend to present two different behaviors: they increase the
number of stable protrusions, in which case each protrusion is

shorter; or they decrease the number of stable protrusions, in
which case at least some of them are longer. In the first case,
protrusions compete and there is not any preferential movement.
In the second case, normally cells present a defined movement in
the direction of the longest protrusion.

Several assumptions are made regarding the mechanical
model of the ECM. First, we consider the ECM as an isotropic
material. Nevertheless, the ECM is anisotropic due to the
different fiber directions (Valero et al., 2018). Second, the
mechanical properties of the ECM are assumed homogeneous,
thus we do not consider the heterogeneity associated to the
distribution of the fibers. Third, ECM remodeling is not
considered in this model. However, this is an acceptable
approximation for preliminary studies of cell motility in collagen
gels, which allows us to use the Eshelby’s theory.

Due to the complexity of cell migration, computational
models have been widely used to improve its understanding
(Rangarajan and Zaman, 2008; Mak et al., 2016; Chen et al.,
2017). Cell migration include several stochastic processes such
as the evolution of chemically reacting systems. The Stochastic
Simulation Algorithm (SSA) (Gillespie, 1976, 1977) has been
widely used to numerically simulate the stochastic behavior of
biochemical reactions. However, the SSA is considered too slow
for many practical applications (Gillespie, 2001, 2007). This effect
occurs clearly in our case: even though the SSA offers an exact
solution, simulations take too long to finish (an average of 10.77 h
of execution time for each simulations of 4 h of cell migration).
The tau leaping algorithm has been considered a good fit
for our purposes: it gives us a “good-enough” approximation
(see footnote 1) of the temporal evolution of our biochemical
system and allows us to optimize the numerical performance
of our mechanochemical model (an average of 1.28 h of
execution time for each simulation of 4 h of cell migration).
Thus, reducing the computational cost to almost an order of
magnitude.
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Although in most computational works (Bauer et al., 2009;
Bentley et al., 2009; Vermolen and Javierre, 2012; Daub and
Merks, 2013; Talkenberger et al., 2017; Escribano et al., 2018;
González-Valverde and García-Aznar, 2018; Kim et al., 2018;
Moure and Gomez, 2018) authors perform strong efforts to
validate models comparing experimental results with numerical
ones, there is a lack of full integration of both kind of results.
However, this paper presents a relevant step forward in this
direction, showing a novel methodology that integrates both
modeling strategies (in vitro and in silico) by means of the
application of Bayesian optimization during the calibration
process.

The complexity of the calibration process of any model grows
rapidly with the number of parameters. Another factor that
greatly increases the complexity of the calibration process is the
stochastic nature of some biological models such as the one
presented in this paper. Stochastic models require the execution
of several simulations for each model parametrization in order
to capture the results variation associated to the stochastic
randomness. Moreover, if the execution of each simulation takes
more than a couple of minutes, a manual approach for this
calibration process becomes highly prone to inefficiencies.

When choosing the values for each model parameter using
such a manual approach, it is usually the case that researchers
turn to literature as their starting point. Then, they perform
some manual tuning so simulations results fit approximately the
experimental data. Generally, researchers start by modifying just
a couple of parameters using some values considered biologically
relevant. Then, they analyze how those parameters influence
the model output based on the different values tested. They
iterate over this process by picking a couple of the remaining
parameters in every iteration—ideally, the selected parameters in
each iteration are related to each other. This manual approach
is really tedious since the modification of some parameters can
potentially require the recalibration of some already calibrated
parameters. If the model includes a large number of parameters,
researchers could start this tuning process by performing a
sensitivity analysis (Saltelli, 2002; Bauer et al., 2009; Bentley
et al., 2009; Borau et al., 2012; Vermolen and Javierre, 2012;
Daub andMerks, 2013; Escribano et al., 2015, 2018; Talkenberger
et al., 2017) in order to focus on those parameters with a
higher importance on the model output. Due to computational
and time restrictions, this manual step does not generally
include more than a couple of iterations, even though it is
becoming more and more common to have access to a High-
Throughput Computing (HTC) environment—which can reduce
the required times to run those simulations by parallelizing
them.

This paper proposes the application of the Bayesian
optimization technique to reduce these inefficiencies. Bayesian
optimization, which has been applied to solve a wide range
of problems such as machine learning applications (Snoek
et al., 2012), robot planning (Martinez-Cantin et al., 2009),
simulation design (Brochu et al., 2010), biochemistry (Czarnecki
et al., 2015), and dynamical modeling of biological systems
(Ulmasov et al., 2016), offers an automated approach for this
calibration process. Furthermore, the Bayesian optimization

technique is able to minimize the number of parametrizations
to test on the computational model and find a good enough
fit to in vitro observations. In our case, from the 300 different
parametrizations tested during the calibration process, only
6 parametrizations (2%) have the two metrics considered
(BCllp and BCnp) below 0.5. On the other hand, SigOpt
suggests 107 parametrizations (35.67%) with both metrics
above 0.7.

Clearly, the methodology here presented—based on the
application of Bayesian optimization to compare the results of
in vitro and in silico experiments—has allowed to identify the
key parameters that regulates individual 3D fibroblast migration
embedded in a collagen-based matrix. In particular, this novel
methodology has been applied during the development of a
stochastic model that simulates a chemically reacting system
based on the biochemical interaction between the PDGF and a
specific type of cell surface receptors, the RTKs. This interaction,
in turn, triggers a metabolic cascade of internal signaling that
activates a cellular chemosensing mechanism. Moreover, the
model’s calibration has been proven to be a valid and not an
overfitted one during the final validation process. In order to
validate the selected parametrization, we have simulated cell
migration with a diffused chemoattractant factor throughout
the ECM and qualitatively compare observations based on cell’s
velocity in the direction of the chemotactic gradient with results
from previous experimental works (Song et al., 2006; Bosgraaf
and Van Haastert, 2009). Our results are in agreement with those
from in vitro experiments, cells follow a more directional motion
as the chemoattractant gradient increases. However, when the
chemoattractant concentration surrounding the cell reaches a
saturation point cells start to lose the ability to sense the chemical
cues.

In conclusion, the tau leaping algorithm allows to optimize the
performance of stochastic models based on biochemical kinetics
by greatly reducing the execution time of its simulations. In
addition, by means of Bayesian optimization it is possible to
perform model parameters calibration in a very efficient and
completely automatic way. As a result, this novel methodology
will improve the development of in silico models for a better
understanding of cell migration.

AUTHOR CONTRIBUTIONS

FM-C, MG-B, and JG-A designed research; FM-C, MG-B, YJ-
L, and JG-A performed research; YJ-L performed in vitro
experiments, FM-C, MG-B, RM-C, and JG-A analyzed data; FM-
C, MG-B, YJ-L, RM-C, and JG-A wrote the paper; FM-C, MG-B,
and RM-C defined Bayesian optimization setup and FM-C built
a code for the model and performed all simulations.

FUNDING

FM-C was supported by Spanish Ministry of Economy and
Competitiveness (Grant no: BES-2016-076291). MG-B, YJ-L, and
JG-A were supported by the European Research Council (Grant
no: ERC2012-StG306571) and the Spanish Ministry of Economy

Frontiers in Physiology | www.frontiersin.org 14 September 2018 | Volume 9 | Article 1246

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Merino-Casallo et al. In-vitro and in-silico Integration Using BO

and Competitiveness (Grant no: DPI2015-64221-C2-1-R). RM-
C was supported by the Spanish Ministry of Economy and
Competitiveness (Grant no: DPI2015-65962-R).

ACKNOWLEDGMENTS

The authors would like to acknowledge Frederico O. Ribeiro
assistance during the model’s development and SigOpt Inc. for

their assistance and support with their Bayesian optimization
framework.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.
2018.01246/full#supplementary-material

REFERENCES

Alber, M., Chen, N., Lushnikov, P. M., and Newman, S. A. (2007). continuous

macroscopic limit of a discrete stochastic model for interaction of living cells.

Phys. Rev. Lett. 99:168102. doi: 10.1103/PhysRevLett.99.168102

Anderson, D. F., Ganguly, A., and Kurtz, T. G. (2011). Error analysis

of tau-leap simulation methods. Ann. Appl. Probab. 21, 2226–2262.

doi: 10.1214/10-AAP756

Bauer, A. L., Jackson, T. L., and Jiang, Y. (2009). Topography of extracellular matrix

mediates vascular morphogenesis and migration speeds in angiogenesis. PLoS

Comput. Biol. 5:e1000445. doi: 10.1371/journal.pcbi.1000445

Bazmara, H., Soltani, M., Sefidgar, M., Bazargan, M., Mousavi Naeenian, M., and

Rahmim, A. (2015). The vital role of blood flow-induced proliferation and

migration in capillary network formation in amultiscale model of angiogenesis.

PLoS ONE 10:e0128878. doi: 10.1371/journal.pone.0128878

Bear, J. E., and Haugh, J. M. (2014). Directed migration of mesenchymal cells:

where signaling and the cytoskeleton meet. Curr. Opin. Cell Biol. 30, 74–82.

doi: 10.1016/J.CEB.2014.06.005

Beauchemin, C., Dixit, N. M., and Perelson, A. S. (2007). Characterizing T cell

movement within lymph nodes in the absence of antigen. J. Immunol. 178,

5505–5512. doi: 10.4049/JIMMUNOL.178.9.5505

Bentley, K., Mariggi, G., Gerhardt, H., and Bates, P. A. (2009). Tipping the balance:

robustness of tip cell selection, migration and fusion in angiogenesis. PLoS

Comput. Biol. 5:e1000549. doi: 10.1371/journal.pcbi.1000549

Bogle, G., and Dunbar, P. R. (2010). T cell responses in lymph nodes. Wiley

Interdiscip. Rev. Syst. Biol. Med. 2, 107–116. doi: 10.1002/wsbm.47

Borau, C., Kamm, R. D., and García-Aznar, J. M. (2011). Mechano-sensing and

cell migration: a 3D model approach. Phys. Biol. Phys. Biol. Phys. Biol 8,

66008–66013. doi: 10.1088/1478-3975/8/6/066008

Borau, C., Kim, T., Bidone, T., García-Aznar, J. M., and Kamm, R.

D. (2012). Dynamic mechanisms of cell rigidity sensing: insights from

a computational model of actomyosin networks. PLoS ONE 7:e49174.

doi: 10.1371/journal.pone.0049174

Bosgraaf, L., and Van Haastert, P. J. M. (2009). Navigation of chemotactic cells by

parallel signaling to pseudopod persistence and orientation. PLoS ONE 4:e6842.

doi: 10.1371/journal.pone.0006842

Brochu, E., Brochu, T., and de Freitas, N. (2010). “A Bayesian interactive

optimization approach to procedural animation design,” in Proc. 2010 ACM

SIGGRAPH/Eurographics Symp. Comput. Animat. (Madrid), 103–112.

Camley, B. A., and Rappel, W.-J. (2017). Physical models of collective

cell motility: from cell to tissue. J. Phys. D Appl. Phys. 50:113002.

doi: 10.1088/1361-6463/aa56fe

Campellone, K. G., and Welch, M. D. (2010). A nucleator arms race:

cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11, 237–251.

doi: 10.1038/nrm2867

Cao, R., Björndahl, M. A., Religa, P., Clasper, S., Garvin, S., Galter, D., et al. (2004).

PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic

metastasis. Cancer Cell 6, 333–345. doi: 10.1016/J.CCR.2004.08.034

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step size

selection for the tau-leaping simulation method. J. Chem. Phys. 124:044109.

doi: 10.1063/1.2159468

Cazzaniga, P., Pescini, D., Besozzi, D., and Mauri, G. (2006). Tau Leaping

Stochastic Simulation Method in P Systems. Berlin; Heidelberg: Springer Berlin

Heidelberg.

Chen, J., Weihs, D., and Vermolen, F. J. (2017). A model for cell migration in

non-isotropic fibrin networks with an application to pancreatic tumor islets.

Biomech. Model. Mechanobiol. 17, 367–386. doi: 10.1007/s10237-017-0966-7

Chen, R. R., Silva, E. A., Yuen, W. W., and Mooney, D. J. (2007). Spatio–temporal

VEGF and PDGF delivery patterns blood vessel formation and maturation.

Pharm. Res. 24, 258–264. doi: 10.1007/s11095-006-9173-4

Comaniciu, D., Ramesh, V., and Meer, P. (2000). “Real-time tracking of non-rigid

objects using mean shift,” in Proceedings IEEE Conference on Computer Vision

and Pattern Recognition, CVPR 2000 (Cat. No.PR00662) (Hilton Head Island,

SC: IEEE Comput. Soc), 142–149.

Condeelis, J., and Pollard, J. W. (2006). Macrophages: obligate partners

for tumor cell migration, invasion, and metastasis. Cell 124, 263–266.

doi: 10.1016/J.CELL.2006.01.007

Condeelis, J., Singer, R. H., and Segall, J. E. (2005). THE GREAT ESCAPE: when

cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev.

Biol. 21, 695–718. doi: 10.1146/annurev.cellbio.21.122303.120306

Cukierman, E., Pankov, R., Stevens, D. R., and Yamada, K. M. (2001). Taking

cell-matrix adhesions to the third dimension. Science 294, 1708–1712.

doi: 10.1126/science.1064829

Czarnecki, W. M., Podlewska, S., and Bojarski, A. J. (2015). Robust optimization

of SVM hyperparameters in the classification of bioactive compounds. J.

Cheminform. 7:38. doi: 10.1186/s13321-015-0088-0

Daub, J. T., andMerks, R.M. H. (2013). A cell-basedmodel of extracellular-matrix-

guided endothelial cell migration during angiogenesis. Bull. Math. Biol. 75,

1377–1399. doi: 10.1007/s11538-013-9826-5

Del Amo, C., Borau, C., Movilla, N., Asín, J., and García-Aznar, J. M.

(2017). Quantifying 3D chemotaxis in microfluidic-based chips with step

gradients of collagen hydrogel concentrations. Integr. Biol. 9, 339–349.

doi: 10.1039/C7IB00022G

Devreotes, P., and Janetopoulos, C. (2003). Eukaryotic chemotaxis: distinctions

between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448.

doi: 10.1074/jbc.R300010200

Elangovan, S., D’Mello, S. R., Hong, L., Ross, R. D., Allamargot, C., Dawson, D.

V., et al. (2014). The enhancement of bone regeneration by gene activated

matrix encoding for platelet derived growth factor. Biomaterials 35, 737–747.

doi: 10.1016/J.BIOMATERIALS.2013.10.021

Escribano, J., Sánchez, M. T., and García-Aznar, J. M. (2015). Modeling the

formation of cell-matrix adhesions on a single 3D matrix fiber. J. Theor. Biol.

384, 84–94. doi: 10.1016/J.JTBI.2015.07.015

Escribano, J., Sunyer, R., Sánchez, M. T., Trepat, X., Roca-Cusachs, P., and García-

Aznar, J. M. (2018). A hybrid computational model for collective cell durotaxis.

Biomech. Model. Mechanobiol. 17, 1037–1052. doi: 10.1007/s10237-018-1010-2

Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal

inclusion, and related problems. Proc. R Soc. A Math. Phys. Eng. Sci. 241,

376–396. doi: 10.1098/rspa.1957.0133

Fraley, S., Feng, Y., Krishnamurthy, R., Kim, D. H., Celedon, A., Longmore,

G. D. D., et al. (2010). A distinctive role for focal adhesion proteins in

three-dimensional cell motility. Nat. Cell Biol. 12, 598–604. doi: 10.1038/

ncb2062

Franz, C. M., Jones, G. E., and Ridley, A. J. (2002). Cell migration in development

and disease. Dev. Cell 2, 153–158. doi: 10.1016/S1534-5807(02)00120-X

Friedl, P., and Wolf, K. (2010). Plasticity of cell migration: a multiscale tuning

model. J. Cell Biol. 188, 11–19. doi: 10.1083/jcb.200909003

Friedlaender, G. E., Lin, S., Solchaga, L. A., Snel, L. B., and Lynch, S. E. (2013). The

role of recombinant human platelet-derived growth factor-BB (rhPDGF-BB) in

orthopaedic bone repair and regeneration. Curr. Pharm. Des. 19, 3384–3390.

doi: 10.2174/1381612811319190005

Gillespie, D. T. (1976). A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

doi: 10.1016/0021-9991(76)90041-3

Frontiers in Physiology | www.frontiersin.org 15 September 2018 | Volume 9 | Article 1246

https://www.frontiersin.org/articles/10.3389/fphys.2018.01246/full#supplementary-material
https://doi.org/10.1103/PhysRevLett.99.168102
https://doi.org/10.1214/10-AAP756
https://doi.org/10.1371/journal.pcbi.1000445
https://doi.org/10.1371/journal.pone.0128878
https://doi.org/10.1016/J.CEB.2014.06.005
https://doi.org/10.4049/JIMMUNOL.178.9.5505
https://doi.org/10.1371/journal.pcbi.1000549
https://doi.org/10.1002/wsbm.47
https://doi.org/10.1088/1478-3975/8/6/066008
https://doi.org/10.1371/journal.pone.0049174
https://doi.org/10.1371/journal.pone.0006842
https://doi.org/10.1088/1361-6463/aa56fe
https://doi.org/10.1038/nrm2867
https://doi.org/10.1016/J.CCR.2004.08.034
https://doi.org/10.1063/1.2159468
https://doi.org/10.1007/s10237-017-0966-7
https://doi.org/10.1007/s11095-006-9173-4
https://doi.org/10.1016/J.CELL.2006.01.007
https://doi.org/10.1146/annurev.cellbio.21.122303.120306
https://doi.org/10.1126/science.1064829
https://doi.org/10.1186/s13321-015-0088-0
https://doi.org/10.1007/s11538-013-9826-5
https://doi.org/10.1039/C7IB00022G
https://doi.org/10.1074/jbc.R300010200
https://doi.org/10.1016/J.BIOMATERIALS.2013.10.021
https://doi.org/10.1016/J.JTBI.2015.07.015
https://doi.org/10.1007/s10237-018-1010-2
https://doi.org/10.1098/rspa.1957.0133
https://doi.org/10.1038/ncb2062
https://doi.org/10.1016/S1534-5807(02)00120-X
https://doi.org/10.1083/jcb.200909003
https://doi.org/10.2174/1381612811319190005
https://doi.org/10.1016/0021-9991(76)90041-3
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Merino-Casallo et al. In-vitro and in-silico Integration Using BO

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions.

J. Phys. Chem. 81, 2340–2361. doi: 10.1021/j100540a008

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation

of chemically reacting systems. J. Chem. Phys. 115, 1716–1733.

doi: 10.1063/1.1378322

Gillespie, D. T. (2007). Stochastic simulation of chemical kinetics.Annu. Rev. Phys.

Chem. 58, 35–55. doi: 10.1146/annurev.physchem.58.032806.104637

González-Valverde, I., and García-Aznar, J. M. (2018). Mechanical

modeling of collective cell migration: an agent-based and continuum

material approach. Comput. Methods Appl. Mech. Eng. 337, 246–262.

doi: 10.1016/J.CMA.2018.03.036

González-Valverde, I., Semino, C., and García-Aznar, J. M. (2016).

Phenomenological modelling and simulation of cell clusters in 3D cultures.

Comput. Biol. Med. 77, 249–260. doi: 10.1016/J.COMPBIOMED.2016.08.019

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing

the time complexity of the derandomized evolution strategy with

Covariance Matrix Adaptation (CMA-ES). Evol. Comput. 11, 1–18.

doi: 10.1162/106365603321828970

Hatakeyama, M., Kimura, S., Naka, T., Kawasaki, T., Yumoto, N., Ichikawa,

M., et al. (2003). A computational model on the modulation of mitogen-

activated protein kinase (MAPK) and Akt pathways in heregulin-induced ErbB

signalling. Biochem. J. 373, 451–463. doi: 10.1042/BJ20021824

Hawkins, P. T., Anderson, K. E., Davidson, K., and Stephens, L. R. (2006).

Signalling through Class I PI3Ks in mammalian cells. Biochem. Soc. Trans. 34,

647–662. doi: 10.1042/BST0340647

Heinecke, K., Seher, A., Schmitz, W., Mueller, T. D., Sebald, W., and Nickel,

J. (2009). Receptor oligomerization and beyond: a case study in bone

morphogenetic proteins. BMC Biol. 7:59. doi: 10.1186/1741-7007-7-59

Higazi, A. A., Kniss, D., Manuppello, J., Barnathan, E. S., and Cines, D. B.

(1996). Thermotaxis of human trophoblastic cells. Placenta 17, 683–687.

doi: 10.1016/S0143-4004(96)80019-1

Jilkine, A., and Edelstein-Keshet, L. (2011). A Comparison of mathematical models

for polarization of single eukaryotic cells in response to guided cues. PLoS

Comput. Biol. 7:e1001121. doi: 10.1371/journal.pcbi.1001121

Jones, D. R., Schonlau, M., and Welch, W. J. (1998). Efficient global

optimization of expensive black-box functions. J. Glob. Optim. 13, 455–492.

doi: 10.1023/A:1008306431147

Jones, E., Oliphant, T., and Peterson, P. (2001). {SciPy}: Open Source Scientific Tools

for {Python}. Available online at: https://www.scipy.org/citing.html

Kass, R. E., and Raftery, A. E. (1995). Bayes factors. J. Am. Stat. Assoc. 90:773.

doi: 10.2307/2291091

Kennedy, J., and Eberhart, R. (1995). “Particle swarm optimization,” in Proceedings

of IEEE International Conference on Neural Networks (ICNN) (Nagoya: IEEE),

1942–1948.

Kim, M. C., Silberberg, Y. R., Abeyaratne, R., Kamm, R. D., and Asada, H. H.

(2018). Computational modeling of three-dimensional ECM-rigidity sensing

to guide directed cell migration. Proc. Natl. Acad. Sci. U.S.A. 115, E390–E399.

doi: 10.1073/pnas.1717230115

Kim, M. C., Whisler, J., Silberberg, Y. R., Kamm, R. D., and Asada, H. H. (2015).

Cell invasion dynamics into a three dimensional extracellular matrix fibre

network. PLOS Comput. Biol. 11:e1004535. doi: 10.1371/journal.pcbi.1004535

Knecht, A. K., and Bronner-Fraser, M. (2002). Induction of the neural crest: a

multigene process. Nat. Rev. Genet. 3, 453–461. doi: 10.1038/nrg819

Knowles, J. (2006). ParEGO: a hybrid algorithm with on-line landscape

approximation for expensive multiobjective optimization problems. IEEE

Trans. Evol. Comput. 10, 50–66. doi: 10.1109/TEVC.2005.851274

Lamalice, L., Le Boeuf, F., and Huot, J. (2007). Endothelial

cell migration during angiogenesis. Circ. Res. 100, 782–794.

doi: 10.1161/01.RES.0000259593.07661.1e

Lämmermann, T., Bader, B. L., Monkley, S. J., Worbs, T., Wedlich-Söldner, R.,

Hirsch, K., et al. (2008). Rapid leukocyte migration by integrin-independent

flowing and squeezing. Nature 453, 51–55. doi: 10.1038/nature06887

Li, T., Gu, Y. T., Oloyede, A., and Yarlagadda, P. K. (2014). Molecular

investigation of the mechanical properties of single actin filaments based

on vibration analyses. Comput. Methods Biomech. Biomed. Eng. 17, 616–622.

doi: 10.1080/10255842.2012.706279

Liou, Y. R., Torng, W., Kao, Y. C., Sung, K. B., Lee, C. H., and Kuo, P. L. (2014).

Substrate stiffness regulates filopodial activities in lung cancer cells. PLoS ONE

9:e89767. doi: 10.1371/journal.pone.0089767

Lok, L. (2004). The need for speed in stochastic simulation. Nat. Biotechnol. 22,

964–965. doi: 10.1038/nbt0804-964

Luster, A. D., Alon, R., and von Andrian, U. H. (2005). Immune cell migration

in inflammation: present and future therapeutic targets. Nat. Immunol. 6,

1182–1190. doi: 10.1038/ni1275

Mak, M., Spill, F., Kamm, R. D., and Zaman, M. H. (2016). Single-cell migration in

complex microenvironments: mechanics and signaling dynamics. J. Biomech.

Eng. 138:021004. doi: 10.1115/1.4032188

Mark, C., Metzner, C., Lautscham, L., Strissel, P. L., Strick, R., and Fabry, B. (2018).

Bayesian model selection for complex dynamic systems. Nat. Commun. 9:1803.

doi: 10.1038/s41467-018-04241-5

Martin, P., and Parkhurst, S. M. (2004). Parallels between tissue repair and

embryo morphogenesis. Development 131, 3021–3034. doi: 10.1242/dev.

01253

Martinez-Cantin, R. (2014). BayesOpt: a bayesian optimization library for

nonlinear optimization, experimental design and bandits. J. Mach. Learn.

Res. 15, 3915–3919. Available online at: http://www.jmlr.org/papers/v15/

martinezcantin14a.html

Martinez-Cantin, R., de Freitas, N., Brochu, E., Castellanos, J., and Doucet,

A. (2009). A Bayesian exploration-exploitation approach for optimal online

sensing and planning with a visually guided mobile robot. Auton. Robots 27,

93–103. doi: 10.1007/s10514-009-9130-2

Martinez-Cantin, R., Tee, K., and McCourt, M. (2018). “Practical Bayesian

optimization in the presence of outliers,” in International Conference on

Artificial Intelligence and Statistics (AISTATS) (Lanzarote).

Meineke, F. A., Potten, C. S., and Loeffler, M. (2001). Cell migration and

organization in the intestinal crypt using a lattice-free model. Cell Prolif. 34,

253–266. doi: 10.1046/j.0960-7722.2001.00216.x

Milde, F., Tauriello, G., Haberkern, H., and Koumoutsakos, P. (2014). SEM++:

a particle model of cellular growth, signaling and migration. Comput. Particle

Mech. 1, 211–227. doi: 10.1007/s40571-014-0017-4

Mofrad, M., and Kamm, R. (eds.). (2006). Cytoskeletal Mechanics: Models and

Measurements in Cell Mechanics (Cambridge Texts in Biomedical Engineering).

Cambridge: Cambridge University Press.

Moreno-Arotzena, O., Borau, C., Movilla, N., Vicente-Manzanares, M., and

García-Aznar, J. M. (2015). Fibroblast migration in 3D is controlled by

haptotaxis in a non-muscle myosin II-dependent manner. Ann. Biomed. Eng.

43, 3025–3039. doi: 10.1007/s10439-015-1343-2

Moreno-Arotzena, O., Mendoza, G., Cóndor, M., Rüberg, T., and García-Aznar,

J. M. (2014). Inducing chemotactic and haptotactic cues in microfluidic

devices for three-dimensional in vitro assays. Biomicrofluidics 8:064122.

doi: 10.1063/1.4903948

Moure, A., and Gomez, H. (2017). Phase-field model of cellular migration: three-

dimensional simulations in fibrous networks. Comput. Methods Appl. Mech.

Eng. 320, 162–197. doi: 10.1016/J.CMA.2017.03.025

Moure, A., and Gomez, H. (2018). Three-dimensional simulation

of obstacle-mediated chemotaxis. Biomech. Model. Mechanobiol.

doi: 10.1007/s10237-018-1023-x. [Epub ahead of print].

Movilla, N., Borau, C., Valero, C., and García-Aznar, J. M. (2018). Degradation of

extracellular matrix regulates osteoblast migration: a microfluidic-based study.

Bone 107, 10–17. doi: 10.1016/j.bone.2017.10.025

Nielsen, F. (2014). Generalized Bhattacharyya and Chernoff upper bounds on

Bayes error using quasi-arithmetic means. Pattern Recognit. Lett. 42, 25–34.

doi: 10.1016/J.PATREC.2014.01.002

Nocedal, J. (1980). Updating quasi-Newton matrices with limited storage. Math.

Comput. 35, 773–773. doi: 10.1090/S0025-5718-1980-0572855-7

Norton, K. A., and Popel, A. S. (2016). Effects of endothelial cell proliferation and

migration rates in a computational model of sprouting angiogenesis. Sci. Rep.

6:36992. doi: 10.1038/srep36992

Paralkar, V. M., Weeks, B. S., Yu, Y. M., Kleinman, H. K., and Reddi, A. H.

(1992). Recombinant human bone morphogenetic protein 2B stimulates PC12

cell differentiation: potentiation and binding to type IV collagen. J. Cell Biol.

119, 1721–1728. doi: 10.1083/JCB.119.6.1721

Paul, C. D., Hung, W. C., Wirtz, D., and Konstantopoulos, K. (2016). Engineered

models of confined cell migration. Annu. Rev. Biomed. Eng. 18, 159–180.

doi: 10.1146/annurev-bioeng-071114-040654

Poukkula, M., Cliffe, A., Changede, R., and Rørth, P. (2011). Cell behaviors

regulated by guidance cues in collective migration of border cells. J. Cell Biol.

192, 513–524. doi: 10.1083/jcb.201010003

Frontiers in Physiology | www.frontiersin.org 16 September 2018 | Volume 9 | Article 1246

https://doi.org/10.1021/j100540a008
https://doi.org/10.1063/1.1378322
https://doi.org/10.1146/annurev.physchem.58.032806.104637
https://doi.org/10.1016/J.CMA.2018.03.036
https://doi.org/10.1016/J.COMPBIOMED.2016.08.019
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1042/BJ20021824
https://doi.org/10.1042/BST0340647
https://doi.org/10.1186/1741-7007-7-59
https://doi.org/10.1016/S0143-4004(96)80019-1
https://doi.org/10.1371/journal.pcbi.1001121
https://doi.org/10.1023/A:1008306431147
https://www.scipy.org/citing.html
https://doi.org/10.2307/2291091
https://doi.org/10.1073/pnas.1717230115
https://doi.org/10.1371/journal.pcbi.1004535
https://doi.org/10.1038/nrg819
https://doi.org/10.1109/TEVC.2005.851274
https://doi.org/10.1161/01.RES.0000259593.07661.1e
https://doi.org/10.1038/nature06887
https://doi.org/10.1080/10255842.2012.706279
https://doi.org/10.1371/journal.pone.0089767
https://doi.org/10.1038/nbt0804-964
https://doi.org/10.1038/ni1275
https://doi.org/10.1115/1.4032188
https://doi.org/10.1038/s41467-018-04241-5
https://doi.org/10.1242/dev.01253
http://www.jmlr.org/papers/v15/martinezcantin14a.html
http://www.jmlr.org/papers/v15/martinezcantin14a.html
https://doi.org/10.1007/s10514-009-9130-2
https://doi.org/10.1046/j.0960-7722.2001.00216.x
https://doi.org/10.1007/s40571-014-0017-4
https://doi.org/10.1007/s10439-015-1343-2
https://doi.org/10.1063/1.4903948
https://doi.org/10.1016/J.CMA.2017.03.025
https://doi.org/10.1007/s10237-018-1023-x
https://doi.org/10.1016/j.bone.2017.10.025
https://doi.org/10.1016/J.PATREC.2014.01.002
https://doi.org/10.1090/S0025-5718-1980-0572855-7
https://doi.org/10.1038/srep36992
https://doi.org/10.1083/JCB.119.6.1721
https://doi.org/10.1146/annurev-bioeng-071114-040654
https://doi.org/10.1083/jcb.201010003
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Merino-Casallo et al. In-vitro and in-silico Integration Using BO

Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Trier, S. M., and Keely, P. J. (2008).

Contact guidance mediated three-dimensional cell migration is regulated

by Rho/ROCK-dependent matrix reorganization. Biophys. J. 95, 5374–5384.

doi: 10.1529/BIOPHYSJ.108.133116

Rangarajan, R., and Zaman,M. H. (2008). Modeling cell migration in 3D.Cell Adh.

Migr. 2, 106–109. doi: 10.4161/cam.2.2.6211

Reina-Romo, E., Gómez-Benito, M. J., Domínguez, J., and García-Aznar, J. M.

(2012). A lattice-based approach to model distraction osteogenesis. J. Biomech.

45, 2736–2742. doi: 10.1016/j.jbiomech.2012.09.004

Ribeiro, F. O., Gómez-Benito, M. J., Folgado, J., Fernandes, P. R., and García-

Aznar, J. M. (2017). Computational model of mesenchymal migration in

3D under chemotaxis. Comput. Methods Biomech. Biomed. Eng. 20, 59–74.

doi: 10.1080/10255842.2016.1198784

Roca-Cusachs, P., Sunyer, R., and Trepat, X. (2013). Mechanical guidance of

cell migration: lessons from chemotaxis. Curr. Opin. Cell Biol. 25, 543–549.

doi: 10.1016/J.CEB.2013.04.010

Saltelli, A. (2002). Sensitivity analysis for importance assessment. Risk Anal. 22,

579–590. doi: 10.1111/0272-4332.00040

Saltzman, E. A., Drew, J. H., Leemis, L. M., and Henderson, S. G. (2012).

Simulating multivariate nonhomogeneous poisson processes using projections.

ACM Trans. Model. Comput. Simul. 22, 1–13. doi: 10.1145/2331140.2331143

Schlüter, D. K., Ramis-Conde, I., and Chaplain, M. A. (2012). Computational

modeling of single-cell migration: the leading role of extracellular matrix fibers.

Biophys. J. 103, 1141–1151. doi: 10.1016/J.BPJ.2012.07.048

Scianna, M., and Preziosi, L. (2014). A cellular Potts model for the

MMP-dependent and -independent cancer cell migration in matrix

microtracks of different dimensions. Comput. Mech. 53, 485–497.

doi: 10.1007/s00466-013-0944-6

Scianna, M., Preziosi, L., and Wolf, K. (2012). A Cellular Potts model simulating

cell migration on and in matrix environments. Math. Biosci. Eng. 10, 235–261.

doi: 10.3934/mbe.2013.10.235

Serrano-Alcalde, F., García-Aznar, J. M., and Gómez-Benito, M. J. (2017). The role

of nuclear mechanics in cell deformation under creeping flows. J. Theor. Biol.

432, 25–32. doi: 10.1016/J.JTBI.2017.07.028

Shah, P., Keppler, L., and Rutkowski, J. (2014). A review of platelet derived growth

factor playing pivotal role in bone regeneration. J. Oral Implantol. 40, 330–340.

doi: 10.1563/AAID-JOI-D-11-00173

Shahriari, B., Swersky, K.,Wang, Z., Adams, R. P., and de Freitas, N. (2016). Taking

the human out of the loop: a review of bayesian optimization. Proc. IEEE 104,

148–175. doi: 10.1109/JPROC.2015.2494218

Shaw, T. J., and Martin, P. (2009). Wound repair at a glance. J. Cell Sci. 122,

3209–3213. doi: 10.1242/jcs.031187

Snoek, J., Larochelle, H., and Adams, R. P. (2012). “Practical Bayesian optimization

of machine learning algorithms,” in Conference on Neural Information

Processing Systems (NIPS) (Lake Tahoe, NV).

Song, L., Nadkarni, S. M., Bödeker, H. U., Beta, C., Bae, A., Franck, C., et al. (2006).

Dictyostelium discoideum chemotaxis: threshold for directed motion. Eur. J.

Cell Biol. 85, 981–989. doi: 10.1016/J.EJCB.2006.01.012

Spill, F., Guerrero, P., Alarcon, T., Maini, P. K., and Byrne, H. M. (2015).

Mesoscopic and continuum modelling of angiogenesis. J. Math. Biol. 70,

485–532. doi: 10.1007/s00285-014-0771-1

Starke, J., Maaser, K., Wehrle-Haller, B., and Friedl, P. (2013).

Mechanotransduction of mesenchymal melanoma cell invasion into 3D

collagen lattices: filopod-mediated extension–relaxation cycles and force

anisotropy. Exp. Cell Res. 319, 2424–2433. doi: 10.1016/J.YEXCR.2013.

04.003

Sun, M., and Zaman, M. H. (2017). Modeling, signaling and cytoskeleton

dynamics: integrated modeling-experimental frameworks in cell migration.

Wiley Interdiscip. Rev. Syst. Biol. Med. 9:e1365. doi: 10.1002/wsbm.1365

Sunyer, R., Conte, V., Escribano, J., Elosegui-Artola, A., Labernadie, A., Valon, L.,

et al. (2016). Collective cell durotaxis emerges from long-range intercellular

force transmission. Science 353, 1157–1161. doi: 10.1126/science.aaf7119

Swaney, K. F., Huang, C. H., and Devreotes, P. N. (2010). Eukaryotic

chemotaxis: a network of signaling pathways controls motility,

directional sensing, and polarity. Annu. Rev. Biophys. 39, 265–289.

doi: 10.1146/annurev.biophys.093008.131228

Talkenberger, K., Cavalcanti-Adam, E. A., Voss-Böhme, A., and Deutsch,

A. (2017). Amoeboid-mesenchymal migration plasticity promotes invasion

only in complex heterogeneous microenvironments. Sci. Rep. 7:9237.

doi: 10.1038/s41598-017-09300-3

Te Boekhorst, V., Preziosi, L., and Friedl, P. (2016). Plasticity of cell

migration in vivo and in silico. Annu. Rev. Cell Dev. Biol. 32, 491–526.

doi: 10.1146/annurev-cellbio-111315-125201

Trichet, L., Le Digabel, J., Hawkins, R. J., Vedula, S. R., Gupta, M., Ribrault, C.,

et al. (2012). Evidence of a large-scale mechanosensing mechanism for cellular

adaptation to substrate stiffness. Proc. Natl. Acad. Sci. U.S.A. 109, 6933–6938.

doi: 10.1073/pnas.1117810109

Ueda, M., and Shibata, T. (2007). Stochastic signal processing and transduction

in chemotactic response of eukaryotic cells. Biophys. J. 93, 11–20.

doi: 10.1529/BIOPHYSJ.106.100263

Ulmasov, D., Baroukh, C., Chachuat, B., Deisenroth, M. P., and Misener,

R. (2016). Bayesian optimization with dimension scheduling: application

to biological systems. Comput. Aided Chem. Eng. 38, 1051–1056.

doi: 10.1016/B978-0-444-63428-3.50180-6

Valero, C., Amaveda, H., Mora, M., and García-Aznar, J. M. (2018). Combined

experimental and computational characterization of crosslinked collagen-based

hydrogels. PLoS ONE 13:e0195820. doi: 10.1371/journal.pone.0195820

Valero, C., Javierre, E., García-Aznar, J. M., and Gómez-Benito, M. J. (2014a).

A cell-regulatory mechanism involving feedback between contraction and

tissue formation guides wound healing progression. PLoS ONE 9:e92774.

doi: 10.1371/journal.pone.0092774

Valero, C., Javierre, E., García-Aznar, J. M., and Gómez-Benito, M. J. (2014b).

Nonlinear finite element simulations of injuries with free boundaries:

application to surgical wounds. Int. J. Numer. Methods Biomed. Eng. 30,

616–633. doi: 10.1002/cnm.2621

van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The NumPy array:

a structure for efficient numerical computation. Comput. Sci. Eng. 13, 22–30.

doi: 10.1109/MCSE.2011.37

Van Liedekerke, P., Palm, M. M., Jagiella, N., and Drasdo, D. (2015).

Simulating tissue mechanics with agent-based models: concepts,

perspectives and some novel results. Comput. Particle Mech. 2, 401–444.

doi: 10.1007/s40571-015-0082-3

Vermolen, F. J., and Javierre, E. (2012). A finite-element model for healing of

cutaneous wounds combining contraction, angiogenesis and closure. J. Math.

Biol. 65, 967–996. doi: 10.1007/s00285-011-0487-4

Weiger, M. C., Ahmed, S., Welf, E. S., and Haugh, J. M. (2010). Directional

persistence of cell migration coincides with stability of asymmetric

intracellular signaling. Biophys. J. 98, 67–75. doi: 10.1016/J.BPJ.2009.

09.051

Wolf, K., Te Lindert, M., Krause, M., Alexander, S., Te Riet, J., Willis, A. L., et al.

(2013). Physical limits of cell migration: control by ECM space and nuclear

deformation and tuning by proteolysis and traction force. J. Cell Biol. 201,

1069–1084. doi: 10.1083/jcb.201210152

Zaman, M. H., Kamm, R. D., Matsudaira, P., and Lauffenburger, D. A. (2005).

Computational model for cell migration in three-dimensional matrices.

Biophys. J. 89, 1389–1397. doi: 10.1529/BIOPHYSJ.105.060723

Zhu, J., and Mogilner, A. (2016). Comparison of cell migration mechanical

strategies in three-dimensional matrices: a computational study. Interface Focus

6:20160040. doi: 10.1098/rsfs.2016.0040

Conflict of Interest Statement: RM-C was employed by company SigOpt, Inc.

The remaining authors declare that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

The reviewer AL and handling editor declared their shared affiliation at the time of

the review.

Copyright © 2018 Merino-Casallo, Gomez-Benito, Juste-Lanas, Martinez-Cantin

and Garcia-Aznar. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Physiology | www.frontiersin.org 17 September 2018 | Volume 9 | Article 1246

https://doi.org/10.1529/BIOPHYSJ.108.133116
https://doi.org/10.4161/cam.2.2.6211
https://doi.org/10.1016/j.jbiomech.2012.09.004
https://doi.org/10.1080/10255842.2016.1198784
https://doi.org/10.1016/J.CEB.2013.04.010
https://doi.org/10.1111/0272-4332.00040
https://doi.org/10.1145/2331140.2331143
https://doi.org/10.1016/J.BPJ.2012.07.048
https://doi.org/10.1007/s00466-013-0944-6
https://doi.org/10.3934/mbe.2013.10.235
https://doi.org/10.1016/J.JTBI.2017.07.028
https://doi.org/10.1563/AAID-JOI-D-11-00173
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1242/jcs.031187
https://doi.org/10.1016/J.EJCB.2006.01.012
https://doi.org/10.1007/s00285-014-0771-1
https://doi.org/10.1016/J.YEXCR.2013.04.003
https://doi.org/10.1002/wsbm.1365
https://doi.org/10.1126/science.aaf7119
https://doi.org/10.1146/annurev.biophys.093008.131228
https://doi.org/10.1038/s41598-017-09300-3
https://doi.org/10.1146/annurev-cellbio-111315-125201
https://doi.org/10.1073/pnas.1117810109
https://doi.org/10.1529/BIOPHYSJ.106.100263
https://doi.org/10.1016/B978-0-444-63428-3.50180-6
https://doi.org/10.1371/journal.pone.0195820
https://doi.org/10.1371/journal.pone.0092774
https://doi.org/10.1002/cnm.2621
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1007/s40571-015-0082-3
https://doi.org/10.1007/s00285-011-0487-4
https://doi.org/10.1016/J.BPJ.2009.09.051
https://doi.org/10.1083/jcb.201210152
https://doi.org/10.1529/BIOPHYSJ.105.060723
https://doi.org/10.1098/rsfs.2016.0040
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles

	Integration of in vitro and in silico Models Using Bayesian Optimization With an Application to Stochastic Modeling of Mesenchymal 3D Cell Migration
	Introduction
	Materials and Methods
	Model Description
	Modeling Cell Behavior
	Modeling the Chemosensing Mechanism
	Modeling Protrusion Dynamics
	Modeling Cell Body Translocation

	Numerical Implementation
	Development and Quantification of in vitro Experiments
	Model Calibration Using Bayesian Optimization
	Model Validation Using Different Chemoattractant Concentrations and Gradients

	Results
	Discussion
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


