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A Boolean model is a simple, discrete and dynamic model without the need to

consider the effects at the intermediate levels. However, little effort has been made

into constructing activation, inhibition, and protein decay networks, which could indicate

the direct roles of a gene (or its synthesized protein) as an activator or inhibitor of a

target gene. Therefore, we propose to focus on the general Boolean functions at the

subfunction level taking into account the effectiveness of protein decay, and further

split the subfunctions into the activation and inhibition domains. As a consequence,

we developed a novel data-driven Boolean model; namely, the Fundamental Boolean

Model (FBM), to draw insights into gene activation, inhibition, and protein decay. This

novel Boolean model provides an intuitive definition of activation and inhibition pathways

and includes mechanisms to handle protein decay issues. To prove the concept of

the novel model, we implemented a platform using R language, called FBNNet. Our

experimental results show that the proposed FBM could explicitly display the internal

connections of the mammalian cell cycle between genes separated into the connection

types of activation, inhibition and protein decay. Moreover, the method we proposed to

infer the gene regulatory networks for the novel Boolean model can be run in parallel

and; hence, the computation cost is affordable. Finally, the novel Boolean model and

related Fundamental Boolean Networks (FBNs) could show significant trajectories in

genes to reveal how genes regulated each other over a given period. This new feature

could facilitate further research on drug interventions to detect the side effects of a

newly-proposed drug.

Keywords: boolean modeling, boolean network, time series data, network inference, data-driven boolean

modeling, fundamental boolean model, fundamental boolean networks, orchard cube

BACKGROUND

DNA carries the genetic information that governs life, death and the reproduction of living
organisms. A gene is a fragment of DNA that codes for one protein, the fundamental unit of
cellular functions. Gene expression is the process whereby a gene initially transcripts into mRNA,
then mRNA translates it into the protein (Albert, 2004). The central dogma of cellular functions
mainly relies on the coordinated interactions between genes, RNAs, and proteins that form the
foundation of genetic regulatory networks (GRNs). Within GRNs, activators and inhibitors are
very important because they control the patterns of gene expression that regulate cellular functions
(Shmulevich et al., 2002a). An activator is a transcription factor (TF) type of protein that increases
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the concentration and activity of a protein through direct binding
to the protein or the promoter sites of its genes. The process
is called gene activation (Saboury, 2009), while an inhibitor is
a repressor that decreases the concentration and activity of the
protein. The process is called gene inhibition (Saboury, 2009).
Inhibition has been extensively analyzed because inhibitors can
be used as pharmaceutical agents in human and veterinary
medicine as well as in herbicides and pesticides (Fontes et al.,
2000; Saboury, 2009).

In systems biology, studying the relationships between the
functional status of proteins and gene expression patterns in
GRNs in a holistic manner is critical to understand the nature
of cellular functions as well as their dysfunctions; for example,
in triggering diseases (Shmulevich et al., 2002a). However,
the identification of GRNs based on the current experimental
methods is usually inefficient due to the lack of reproducibility for
a large number of genes usually involved in complex GRNs (Liu
et al., 2016). Powered by biotechnologies, such as AffymetrixTM

microarray technology, enormous amount of high-throughput
genetic data have been generated, enabling reverse engineering of
unknown regulatory networks revealing the relationships among
the functional genes as in mammalian cell cycle (Fauré et al.,
2006; Ruz et al., 2014) and leukemia (Saez-Rodriguez et al., 2007;
Wittmann et al., 2009; Hwang and Lee, 2010; Saadatpour et al.,
2011, 2013; Zañudo and Albert, 2013; Campbell and Albert,
2014). It is evident from these examples that it is a significant
challenge to analyse the massive data sets to understand the
coordinated interactions among genes.

Boolean modeling is the simplest model for GRNs without
the need to consider any effects at the intermediate levels (Liang
et al., 1998; Tušek and Kurtanjek, 2012; Abou-Jaoude et al., 2016;
Barberis et al., 2017; Traynard et al., 2017). This modeling was
initially introduced by Kauffman (Kauffman, 1969; Kauffman
et al., 2003) in 1969 following the discovery of the first gene
regulatory mechanisms in bacteria (Jacob and Monod, 1961).
Since then, Boolean networks have been intensively used for
modeling gene regulation.

A Boolean model is constructed using Boolean variables in
either of two binary states -On (1) orOff (0) - that represent gene
activation or inhibition, respectively. Each variable represents
a gene included in the GRNs with its next state affected by a
Boolean function. A Boolean function, denoted by f, is a logic
rule that gives a Boolean value, of 0 or 1, as an output based
on the logic calculation of the Boolean input, as defined in
Equation (1).

f : {0, 1} → {0, 1} (1)

Figure 1 shows an example of a Boolean network in which gene
B is dependent on the activation of gene A or gene D, and gene
C is related to the activation of gene A and the inhibition of
gene D.

The basic premise of the Boolean network is that the genes
exhibit switch-like behavior during the regulation of their
functional states. The switch-like behavior ensures themovement
of a GRN from one state to another (Shmulevich et al., 2002a;
Shmulevich and Dougherty, 2005; Tušek and Kurtanjek, 2012).

FIGURE 1 | An example of a simple Boolean Network. The right side lists the

Boolean functions of the example; the dashed line means the source gene is

expected to be inhibited; the solid line indicates that the source gene is

expected to be activated.

Boolean models can be converted into electronic circuits so
that we can study the rich dynamics of Boolean networks
using the signal processing theory (Xiao, 2009). Boolean models
have been categorized into two main schema based on the
timescales of biological events (Gershenson, 2004; Wang et al.,
2012): synchronous (also called deterministic systems) and
asynchronous schemes. In synchronous systems, all variables are
assumed to have similar timescales and will be simultaneously
updated, i.e., one unit will update all components simultaneously.
In contrast, all variables will be updated non-simultaneously in
asynchronous schemes if most of the timescales of biological
events are different, i.e., each component will be updated at their
own time unit (Wang et al., 2012).

Synchronous Boolean networks are based on the assumption
that the state of a gene at a given time step is influenced by the
state of a subset of genes in the network at the previous time
step. The drawbacks of the synchronous systems are: they do not
allow the temporal separation of changes in multiple regulatory
events (Fauré et al., 2006), and they cannot measure differences
in the speed of signal propagation as no two cells have the same
properties. Hence, this results in differences in the rates of signal
propagation between cells in the context of biological systems
(Hwang and Lee, 2010).

The asynchronous networks only allow the update of one gene
or component at a random time, resulting in a nondeterministic
representation of the dynamics (Siebert, 2011). A drawback of
the asynchronous scheme is that the resulting state transition
graph is very complicated and encompasses many incompatible
or unrealistic pathways (Fauré et al., 2006). There are also
some modifications proposed for asynchronous Boolean models,
such as non-deterministic asynchronous Boolean networks and
deterministic asynchronous Boolean networks (Gershenson,
2004).

Models that combine synchronous and asynchronous
transitions can illustrate the flexibility of the combination of
different updating assumptions (Fauré et al., 2006). Berestovsky
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et al. (2013) proposed an integrated hybrid model (IHM) that
combines Petri nets and Boolean networks to model integrated
cellular networks. The hybrid model can be applied to three main
cellular biochemical processes: signal transduction, transcription
regulation and metabolism (Chaouiya, 2007; Berestovsky et al.,
2013).

With the facilities of the existing Boolean modeling tools,
Boolean networks have been successfully applied to yeast
(Kauffman et al., 2003; Li et al., 2004; Davidich and Bornholdt,
2008; Kazemzadeh et al., 2012), flower morphogenesis of
wall cress: Arabidopsis thaliana (Espinosa-Soto et al., 2004),
Drosophila development (Sánchez and Thieffry, 2001; Albert
and Othmer, 2003; Ghysen and Thomas, 2003; González et al.,
2008; Sánchez et al., 2008; Fauré et al., 2014), haematopoiesis
(Bonzanni et al., 2013), MOMP regulation (Tokar et al., 2013),
the mammalian cell cycle or cell fate (Fauré et al., 2006;
Schlatter et al., 2009; Grieco et al., 2013; Mombach et al., 2014;
Ruz et al., 2014; Cohen et al., 2015), the light- and carbon-
signaling pathways (Thum et al., 2003), apoptosis networks
(Mai and Liu, 2009; Schlatter et al., 2009; Kazemzadeh et al.,
2012; Schleich and Lavrik, 2013), the hepatocyte signal networks
(Schlatter et al., 2012), NF-kappaB and IL-6 mediated by miRNA
(Xue et al., 2013), and leukemia (Saez-Rodriguez et al., 2007;
Wittmann et al., 2009; Hwang and Lee, 2010; Saadatpour et al.,
2011, 2013; Zañudo and Albert, 2013; Campbell and Albert,
2014).

In their noteworthy analysis, Davidich and Bornholdt
predicted the biological cell cycle sequence of fission yeast
using a Boolean model, making 47 kinetic constants that were
necessary for the ODE (ordinary differential equations) approach
redundant, and it was assumed that the biochemical network
was functioning in a parameter-insensitive way (Davidich and
Bornholdt, 2008). Faure et al. extended the software GINsim
and studied the dynamics of a Boolean model for the control
of the mammalian cell cycle, with synchronous, asynchronous
or hybrid treatment of concurrent transitions (Fauré et al.,
2006). Moreover, the signal transduction network for abscisic
acid has been proven to induce stomatal closure (Li et al.,
2006).

Currently, the most proposed biological network inference
methods to identify functional modules focus either on the
definition of gene regulatory networks or, more recently, on
the functional networks in which an edge indicates a functional
relationship and a subset of genes that describe, explain or predict
a biological process or phenotype (Lazzarini et al., 2016). Far
less effort has been put into the consideration of constructing
activation, inhibition, and protein decay networks that could
indicate the direct roles of a gene (or its synthesized protein) as
an activator or an inhibitor of a target gene. The major reason for
this is that the hypotheses of the current Boolean models do not
provide an intuitive way to identify the individual activation or
inhibition pathways of the target gene. For example, a Boolean
function determines the next state of the gene expression process
as either On (activation) or Off (inhibition), taking into account
the combined effects of the current state of its regulators (or the
states of the associated regulators of the relevant gene expression
processes) such as the Boolean function that describes the gene

expression status of gene CycA (Hopfensitz et al., 2013; Ruz et al.,
2014), which is given by:

E2F & ! Rb & !Cdc20 & ! (Cdh1 & UbcH10) | CycA & ! Rb &

!Cdc20 & ! (Cdh1 & UbcH10) → CycA (2)

where E2F, Rb, Cdc20, Cdh1or UbcH10 are potential genes that
regulate gene CycA. As a result, a model of GRNs, including k
number of genes, is constructed by the set of Boolean functions
denoted as F, as given by Equation (3):

F =
{

fi|i = 1, . . . , k
}

, fi : {0, 1} → {0, 1} (3)

The function given by Equation (2) for CycA combines both
activation and inhibition pathways that require further inferences
to determine the activation and inhibition parts. The roles of the
gene activator and inhibitor in this example are not intuitively
defined in the compressed Boolean function even though the
compressed rule can be split into multiple subfunctions. A
compressed Boolean function, which is defined as a rule that
contains disjunctions with various subfunctions, can be divided
into a set of And Boolean functions by the disjunction Or. For
example, a Boolean function P & Q | A & B & C & (D |E) can be
divided as follows:

∀ = {P&Q,A&B&C&D, A&B&C&E}

where ∀ is a set of subfunctions. In a large GRN with many genes,
this weakness becomes a significant problem in deciphering
GRNs that are biologically meaningful. Furthermore, a single
Boolean function determines the next status of a gene. However,
this may not be true biologically because a gene may remain
activated within a period of decay time when activator/activators
are not present (Albert, 2004). Also, the original Boolean
functions, as defined by Kauffman (Kauffman, 1969; Kauffman
et al., 2003), are hard-wired with the assumption of biological
determinism, but genetic regulations are fundamentally
stochastic (Raj and van Oudenaarden, 2008; Xiao, 2009).
The reason for this is that the expression of a gene usually
encompasses the discrete and intrinsically random biochemical
reactions involved in the processes of transcription and
translation of mRNAs and proteins (Raj and van Oudenaarden,
2008). Probability Boolean networks (Shmulevich et al., 2002b;
Shmulevich and Dougherty, 2005) are proposed to address the
hard-wired issue by introducing stochastic components in which
a gene is associated with multiple Boolean rules, and where
each rule has a probability indicating the chance, and it will
impact the target gene (Raj and van Oudenaarden, 2008). The
total probability for all the rules of a gene is 1, and that means
only 1 rule will be used to determine whether or not the target
gene will be activated or inhibited at a particular time. Hence,
the probability Boolean network model still inherits the major
drawback of the conventional Boolean model in that a randomly
selected rule ignores the fact that an unregulated gene can still
be in the state of being activated. A gene can also be regulated
competitively by another rule at the same time, such as the
competitive inhibition (Fontes et al., 2000). Hence, the current
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Boolean models, in reality, may not be able to explain biological
phenotypes accurately.

Therefore, to make the conventional Boolean functions
clearer, we propose to focus on the general Boolean functions
at the subfunction level taking into account the effectiveness
of protein decay, and further split the subfunctions into the
activation and inhibition domains. Because gene activation and
inhibition are the twomost fundamental components of complex
cellular machinery, we use the term “fundamental Boolean
functions” to denote these subfunctions. The biological meaning
of the fundamental Boolean function is that it represents a
regulatory function or regulatory complex function which can
determine the activation or inhibition activity, respectively and
directly. For example, Equation (2) is decomposed into six
fundamental Boolean functions: CycA and E2F being TRUE
trigger the activation function and Rb, Cdc20, (!E2F & !CycA)
and (Cdh1 & UbcH10) being TRUE trigger the inactivation
function.

In this paper, we propose a novel data-driven Boolean model,
called the Fundamental Boolean Model (FBM), to draw insights
into gene activation, inhibition and protein decay. This novel
Boolean model provides an intuitive definition of the activation
and inhibition pathways and includes mechanisms to handle
protein decay as well as introducing uncertainty into Boolean
functions. Furthermore, the new structure of the Boolean
network allows us to propose a data mining method to extract
the fundamental Boolean functions from genetic time series data.
To prove the concept of the novel model, we implemented a
platform using R language, called FBNNet, that is based on
the proposed novel Boolean model, together with a novel data
mining technique, to infer fundamental Boolean functions that
visualize the dynamic trajectory of gene activation, inhibition and
protein decay activities. The novel Boolean model is shown to
infer GRNs with a high degree of accuracy using the time series
data generated from an original cell cycle network.

The paper is prepared as follows: section Methods presents
the proposed novel Boolean model and introduces a network
inference method to infer networks for the model. In section
Result and Discussion we present and discuss the details of the
analysis results on a mammalian cell cycle network (Ruz et al.,
2014), processed with the proposed FBM. Section Conclusions
is the conclusions and discussion on the proposed FBM and
experiment results.

METHODS

As discussed in the previous section, the hypotheses of the
current Boolean models do not provide an intuitive way to
identify the individual activation, inhibition, and protein decay
of the target gene, as separate pathways. The gene activation and
inhibition processes are the two primary fundamental processes
of genetic regulation. Activation that increases the metabolism
of drugs, for example, may result in significant drug regulatory
effects, such as alterations in the metabolism of in vivo substances
and vitamins as well as the activity of extrahepatic enzyme
systems (Barry and Feely, 1990). Similarly, inhibition may result

in significant clinical drug interactions that are produced by a
wide range of drugs (Barry and Feely, 1990). Inhibition is usually
divided into two groups: the first group consists of reversible
inhibitors that can be easily reversed by dilution or dialysis
because the interactions of this group are noncovalent with
the various parts of the enzyme surface (Saboury, 2009); and
the second group contains irreversible inhibitors that usually
persist even during complete protein breakdown because their
covalent bonds on the enzyme surface are strong (Saboury,
2009). Theoretically, under the assumption of an enzyme reaction
exposed to the action of a reversible inhibitor, the degree of
inhibitionmay bemodeled as the reduction of the rate of reaction
divided by the rate of uninhibited reaction (Saboury, 2009):

i =
Vo − V

Vo

where V and Vo are the rates of inhibited and uninhibited
reactions, respectively (Saboury, 2009). The degree of inhibition
(i) introduces uncertainty into the target gene. Because enzyme
activation also contains the concept of the reversible type of
activators, we can redefine the degree of inhibition to the degree
of enzyme reaction where V and Vo are the rates of affected
and unaffected reactions, respectively. Therefore, we can convert
the equation to a conditional probability measure, which is the
probability of an event that occurs given another event has
happened, to represent the propensity of an enzyme reaction to
reduce or raise the enzyme-catalyzed reaction rate to the target
gene. If a conditional probability value of an inhibitor is 1, the
inhibitor is irreversible, and if the probability is <1 and more
than 0, it is reversible.

In the conventional Boolean models Equation (1) represents
the processes of gene activation and inhibition which do
not consider the different behaviors of enzyme reactions
such as reversible and irreversible reactions. Furthermore, the
disappearance of an activator does not mean the emergence of
an inhibitor, i.e., a Boolean activation function with a negation
sign does not mean it has to be an inhibitor. Hence, there
are justifiable reasons to separate the general Boolean function
into the domains of activation and inhibition. To analyse
the gene activation and inhibition networks, we abstracted
the characteristics of enzyme activation and inhibition, such
as mutual offsetting, reversible inhibition and the long-run
degradation of a specific gene product (protein). Henceforth, we
propose a novel Boolean model to construct dynamic activation
and inhibition networks based on this abstraction. The following
section explains the proposed novel model in detail.

Definition of the Fundamental Boolean
Model
Following the same pattern as the original definition of a Boolean
model, we define our novel Boolean network as a graph G
(X, Ea,Ed), where the node collection, V = {v1, v2, . . . , vn}
corresponded to a group of states, X = {xi|i = 1, . . . , n}
of size n, where each variable is only in one of two states:
On (1) or Off (0), and the general edge set, E, was divided
into two set of fundamental Boolean functions, Ea and Ed,
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which are categorized by their regulatory functionalities, i.e.,
the activation and inhibition, rather than a single function, as
in all conventional Boolean models. We denote this graph as
a Fundamental Boolean Network (FBN) and the two sets of
fundamental Boolean functions are defined as -

Fundamental Boolean functions of activation:

Fia =
{

f iaj |j = 1, . . . , la(i)
}

, f iaj : {0, 1} → {−, 1} (4.a)

Fundamental Boolean functions of inhibition:

Fid =
{

f idk |k = 1, . . . , ld(i)
}

, f idk
: {0, 1} → {−, 0} (4.b)

where Fia and F
i
d present a set of fundamental Boolean activiation

and inhibition functions for the target gene i, respectively. “–”
means the output of the function has no impact on the target
gene. la (i) denotes the total number of fundamental Boolean
functions activating the target gene and ld (i) denotes the total
number of fundamental Boolean functions deactivating the target
gene. The output of a fundamental Boolean activation function
is TRUE means the target gene will be activated and FALSE
means the activation function has no impact on the target
gene. Similarly, The output of a fundamental Boolean inhibition
function is TRUE means the target gene will be inhibited and
FALSEmeans the inhibition function has no impact on the target
gene.

The proposed fundamental Boolean functions encapsulate the
following biologically meaningful key ideas:

• A fundamental Boolean function is a simple transition rule
that takes a minimum group of essential gene states as an input
and determines the regulation effect on the target gene in the
form of a Boolean value.

• In general, a fundamental Boolean function is a function that
cannot be divided any further. Hence, a fundamental Boolean
function can be regarded as a delegation of stereochemical
reactions, such as the activity of a transcription factor formed
by the binding of a few essential proteins; a combination of
transcription factors formed containing multiple transcription
factors; a transcription factor complex formed by binding a
transcription factor with other proteins; and, conditions that
constrain gene activity.

• A general assumption of the proposed fundamental Boolean
functions is that the production of the coded protein for
each gene at each time step is either completely activated or
inhibited. A further assumption is that gene regulation can
be entirely or partially affected by the recipe defined by a
fundamental Boolean function that states how proteins bind
to their target genes.

• The gene regulation time is embedded into Boolean
updating schema based on the treatment of time. Under
the synchronous scheme, all states have a unique successor,
i.e., all nodes are updated at the same time, and all gene
regulation processes are assumed to have completed upon the
next time step. This scheme is simple but induces well-known
artifacts (Fauré et al., 2006). With the asynchronous scheme,
the result may be closer to biological reality but could be

more computationally challenging to evaluate because every
transition is updated at a different time step.

The output of the proposed functions reflects only the potential
effectiveness of gene regulation on the target gene. Therefore, we
need to make sure how confident we are to trust the regulatory
functions that can impact on the target gene. As discussed
previously, the degree of enzyme reaction can be replaced by
the conditional probability of the event that an enzyme reaction
can affect the target gene. Hence, the concept of conditional
probability is then applied to measure the general confidence
of the proposed functions. The following formulae, denoted as
confidence measures, calculated the conditional probability of
each fundamental Boolean function separated by the activation
and inhibition of genes.

Confidence measure of activation:

Ci
aj

⌊

f iaj

(

A
j
i (t)

)⌋

= p
(

σ
t+1
i = 1|A

j
i (t) = 1

)

=
p
(

A
j
i (t) = 1 ∩ σ

t+1
i = 1

)

p
(

A
j
i (t) = 1

) (5.a)

Confidence measure of inhibition:

Ci
dk

⌊

f idk

(

Dk
i (t)

)⌋

= p
(

σ
t+1
i = 0|Dk

i (t) = 1
)

=
p
(

Dk
i (t) = 1 ∩ σ

t+1
i = 0

)

p
(

Dk
i (t) = 1

) (5.b)

Where σ t
i represents the Boolean state of gene i at time t, and

σ
t+1
i represents the Boolean state of gene i at time t+1. ∩ is

a logical And connector. Ci
aj

and Ci
dk
delegate the confidence

function with the input of the fundamental Boolean functions

f iaj and f idk
, respectively. A

j
i and Dk

i represent the set of required

inputs for the gene state functions, f iaj and f idk
, respectively.

A
j
i (t) = 1 or Dk

i (t) = 1 mean the required gene input
of f iaj or f idk

at time t is satisfied. If the required gene input

of a function is not satisfied, the conditional probability of
the function is 0. The output of the confidence function is a
probability indicating by what percentage we can believe the
proposed functions have as the final impact on their target genes,
when all conditions of their required input gene state are satisfied.
The confidence measures of activation and inhibition introduce
stochastic processes into gene regulation and they can be used
to simulate stochastic epigenetic switches in nature. For example,
chromosomal rearrangements can cause genes to show stochastic
regulation such as position effect variegation in Drosophila and
telomere position effect in yeasts (Edwards and Bestor, 2007).
Another example is that the competition between the OxyR
repressor, which is a regulator of antioxidant genes, and Dam
(DNA adenine methyltransferase), which controls the activity of
the agn43 promoter, causes neither OxyR or Dam 100% efficient
(Edwards and Bestor, 2007). We can simulate these examples
by increasing or decreasing the confidence value, similar to the
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classic example of the lac operon discussed in (Edwards and
Bestor, 2007).

There are debates on the decay time of mRNA/proteins
in Boolean models that allow the gene to remain in the On
state when no activators or inhibitors are present. Réka Albert
proposed that this decay may happen in two time steps because
the decay time of a protein in an inactive state is usually
longer than the time taken for its synthesis (Albert, 2004). To
encapsulate the factor of protein decay, we denote a function
fdecay (given below) to summarize the requirements of protein
degradation with input from the target gene i at time t:

fdecay
(

σ t
i ,ϑ

)

= ¬ (τ ≤ ϑ) × σ t
i (6)

where τ represents an incremental variable presenting the
number of time steps that have been processed. The τ will be
reset to 0 whenever there is any fundamental Boolean function
having an effect on the target gene i at time t + 1. ϑ delegates
the decay time period to reflect the fact that the attenuation
or enhancement of the expression of mRNA requires time. ¬
represents a negation operator that changes a Boolean function
from TRUE to FALSE or vice versa. × is a logical And operator.
The output of the decay function fdecay is a Boolean value of
On (1) at time t +1 if the gene state of σi at time t is On (1)
within the tolerated time period or Off (0) at time t +1 when the
tolerated time period is expired regardless of the gene state of σi
at time t. We assume that the tolerated time period for protein
decay has only one time step for short time series data. Short
time series data contain an enormous number of genes but only
a few observations; hence, knowledge of the mechanistic details
and kinetic parameters cannot be extracted consistently from the
data (Ernst et al., 2005; Wang et al., 2008; Chaiboonchoe, 2010).
About 80% of published experimental data are short time series
because the expenses involved in acquiring genetic data are not
economic and the time taken to examine the patients is usually
too short due to health issues (Ernst et al., 2005;Wang et al., 2008;
Chaiboonchoe, 2010).With regard to long time series data, which
containmore observations than short time series data, we assume
the tolerated time period is in two time steps to match the decay
assumptions of Réka Albert (Albert, 2004).

By combining Equations (4.a, 4.b), (5.a, 5.b), and (6) we
propose the novel Boolean model (FBM) as:

σ
t+1
i =

(

fdecay(σ
t
i ,ϑ)+ ∨

la(i)
j= 1

{

P
[[

Ci
aj

⌊

f iaj (A
j
i(t))

⌋]]

})

×¬ ∨
ld(i)
k= 1

{

P
[[

Ci
dk

⌊

f idk (D
k
i (t))

⌋]]

}

(7)

The role of fdecay(σ
t
i ,ϑ) in Equation (6) is to ensure that if no

activators are present, the gene state σi at time t + 1 depends
on the state of itself at time t if it is tolerated by the parameter
ϑ , a decay time period. P

[[

x
]]

is a Boolean function that takes a
uniform distributed random number, µ, and an output of 1 if µ

< x and 0 otherwise. V{x} denotes the logical connective function

ofOr, i.e., V la(i)
j= 1{F

i
a }= f ia1 + f ia2 + . . .+ f iala(i)

if all activation rules

of gene i have the confidence measure value of 1. +is a logical
Or operator. The output of the proposed model is the activation
or inhibition status of the target gene i at time t +1. A general

assumption of the proposed model is that all gene regulations are
controlled by the proposed fundamental Boolean functions in the
activation, inhibition and protein decay domains.

Figure 2 illustrates an example of FBN. The terms activator
and activation function, and inhibitor and inhibition function
are interchangeable throughout this paper. The left hand side
presents a wiring diagram of FBNs; the top right hand side is a list
of Boolean functions in the form of traditional Boolean models;
the bottom right hand side has a list of fundamental Boolean
functions. Both sets of functions have identical functionalities
but the second set displays the rules separated by the types of
activators and inhibitors (see Supplementary Information for
an example of the calculation of fundamental Boolean function).

The proposed model can simulate the dynamic equilibrium
of gene regulation. Figure 3 illustrates an example of how the
proposed model (FBM) can handle the dynamic equilibrium
of gene regulation. In this example, gene A is an activator for
gene B, but gene B is an inhibitor of gene A. The result is an
equilibrium of both A and B. The FBM parameters are: the
time step for protein decay is 1; the time step for a gene to
complete its regulation process is 1; the confidence measure
for each rule is 1 (100%). The Boolean updating schema is the
synchronous scheme. In case 1, Gene B was activated by Gene
A at the time step 2. Gene A was turned Off due to the protein
decay at the time step 2. Gene B was turned Off at the time
step 3, which is also due to the protein decay. In case 2, Gene
A was inhibited by Gene B at the time step 2, and Gene B
was continually boosted up by Gene A at the time step 2 but
inhibited due to the protein decay at the time step 3. In case
3, Gene A was inhibited by Gene B and Gene B was turned
Off due to the protein decay at the time step 2. In case 4, both
genes were entrapped into a simple loop, namely, attractor due
to the lack of activators to turn any of them On. All of the cases
will be entrapped into the same attractor, i.e., the gene state of
{0,0}.

The proposed Boolean model, i.e., Fundamental Boolean
Model and the related Boolean network, i.e., Fundamental
Boolean Network provides a novel mechanism to analyse the
activation, inhibition and protein decay pathways intuitively. The
potential application of the mechanism can be used to analyse the
drug-related gene regulations because the inhibition pathway of
a new drug can be revealed intuitively through the usage of the
drug-related fundamental Boolean networks. The main challenge
is how to extract the knowledge network (NK) from the drug-
related dataset. The first knowledge network is normally referred
to as the prior knowledge network (PNK) which encapsulates the
biological knowledge already known for the main compounds
involved in the process being studied (Traynard et al., 2017).
Most of the PNKs came from the literature, and a very few
of them came from the data mining related technologies. The
PNKs retrieved from the literature were normally based on
very small sample datasets: One reason is that the high expense
involved in acquiring genetic data; another reason is that the
period of patient’s examination is usually either too short or
fatal (Wang et al., 2008). Hence, we propose a new technology
to extract the proposed fundamental Boolean networks from
time series data. The following paragraphs illustrate the
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FIGURE 2 | Example of a Fundamental Boolean Network. The icon box is denoted as a fundamental Boolean function. The red box is denoted as an inhibition

function, and the light green box is denoted as an activation function. The green circle icon is denoted as a gene or a variable.

FIGURE 3 | Simulation of the dynamic equilibrium of gene regulation.

methodology to extract the fundamental Boolean model related
networks.

Inference Network With an Analytical Cube
There are two main steps to inferring fundamental Boolean
networks from time series data. The initial phase is to construct a

cube type database to store all important precomputed measures.
The precomputed measures are listed as follows (see SI for the
example of each measure):

• Confidence Measures:
Confidence measures are outputs of the confidence

functions introduced in Equations (5.a) and (5.b) that indicate
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a conditional probability on the causality of regulation
between a conditional gene, at time t, and the target gene, at
time t + 1.

• Confidence Counter Measures:
Confidence counter measures are similar to the confidence

measures introduced in Equations (5.a) and (5.b) but are used
to indicate the conditional probability on the causality of the
target gene, at time t, which regulates the conditional gene
at time t + 1. We denote the confidence counter measures
as C∀iaj and C∀idk

for activation and inhibition, respectively,

then we applied the following formula to calculate the value
of the confidence counter. The outputs, C∀iaj and C∀idk

are

conditional probabilities and, hence, the range of the value is
between 0 and 1.

Confidence counter measures of activation:

C∀iaj

⌊

f iaj

(

A
j
i (t + 1)

)⌋

= p
(

A
j
i (t + 1) = 1|σ t

i = 1
)

=
p
(

A
j
i (t + 1) = 1 ∩ σ t

i = 1
)

p
(

σ t
i = 1

) (8.a)

Confidence counter measures of inhibition:

C∀idk

⌊

f idk

(

Dk
i (t + 1)

)⌋

= p
(

Dk
i (t + 1) = 1|σ t

i = 0
)

=
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(

Dk
i (t + 1) = 1 ∩ σ t
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p
(

σ t
i = 0

) (8.b)

• Support Measures:
Support measures are the percentage of transactions

contain marched rules (A
j
i (t) = 1 ∩ σ

t+1
i = 1 and Dk

i (t) =

1 ∩ σ
t+1
i = 0) over all time steps in all samples. Let us denote

the total number of time steps involved as ℵ

ℵ =

s
∑

i= 1

(ti − 1)

where ti is the number of time steps of sample i and s is
the total number of samples. The first time step of sample i
is not included because the calculation of support measure
involves two time steps (t and t + 1). We denote the
support measures as Siaj and Sidk

for activation and inhibition

respectively. Therefore, the activation and inhibition of the
support measurements for gene i are definded as:

Support measure of activation:

Siaj =
count

(

A
j
i (t) = 1 ∩ σ

t+1
i = 1

)

ℵ
(9.a)

Support measure of inhibition:

Sidk =
count

(

Dk
i (t) = 1 ∩ σ

t+1
i = 0

)

ℵ
(9.b)

• Conditional Causality Test:
Some researchers claimed that causality is not a concept

statistic and is not statistically ‘identifiable’ because a
secluded causal hypothesis cannot be verified by using only
observational data (Simcha et al., 2013). However, we believe
that the direction between the conditional gene and the target
gene is still able to be calculated based on the conditional
probabilities between the conditional gene and the target gene
using the following formulae:

Conditional causality test =
Confidence measure

Confidence counter measure
(10)

The formulae for calculating the confidence measures
and the confidence counter measures have been discussed
in Equations (5.a, 5.b) and (8.a, 8.b). The ratios and
interpretations are based on plausibility reasoning theory: if
gene B at time t causes gene A, at time t + 1, to be expressed,
then the confidence of p(At+1 = 1|Bt = 1) is equal to 1; in
contrast, the reasoning that gene B at time t +1 is caused by
gene A at time t may not be as strong as gene A at time t +1
caused by gene B at time t due to lack of information to support
this reasoning. Hence, confidence p(Bt+1 = 1|At = 1) is
≤ p(At+1 = 1|Bt = 1). The ratio p(At+1 = 1|Bt = 1) divided
by p(Bt+1 = 1|At = 1), can then be used as a test for the
causality direction between genes A and B. We named this test
a conditional causality test. This test can differentiate indirect
regulators from direct ones because the indirect regulators will
usually have weaker reasoning than the direct ones.

Therefore, by giving confidence for a potential fundamental
Boolean function and a confidence counter for the potential
fundamental Boolean function, we can calculate the value of
the conditional causality test and interpret it as follows:

• If the value of the conditional causality test for target gene
A and the conditional gene B is greater than 1, gene A, then,
is regulated by gene B.

• If the value is equal to 1, genes A and B are then regulated
from each other.

• If the value is lower than 1, there is no causal relationship, so
the hypothesis that gene B regulates gene A can be rejected.

• Entropy and Mutual Information:
The Shannon entropy theory provides a quantitative

information measure about the probability of observing a
particular symbol, or event, Pi, within a given sequence

H = −
∑

PilogPi

where log is a logarithm with base 2. The sequence is the
sum of the probabilities of an event being either On or Off
(Shannon, 1948; Shannon and Weaver, 1963; Liang et al.,
1998). Moreover, mutual information is defined as:

M (X,Y) = H (Y) −H (Y|X) = H (X) −H(X|Y)

where H(X|Y) and H(Y|X) are the two conditional entropies
that capture the relationship between sequences X and
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FIGURE 4 | Illustration of an orchard cube.

Y (Liang et al., 1998). M (X,Y) presents the remaining
information between sequence X and the information shared
between X and Y. The output state of X is determined by Y if
M (X,Y) =H(X) (Liang et al., 1998). Hence, we can use this
measure to find the causality relationship between genes.

The mutual information and Shannon entropy measures are
assumption-free methods measuring unknown and complex
associations; however, they have the limitation of overestimating
the regulation relationships leading to possible failures, such
as the inability to differentiate indirect regulators from direct
ones, as cited by Liu et al. (Liu et al., 2016). To overcome
this limitation, we combined the mutual information measures
with the conditional causality test we proposed as an important
mechanism to extract the regulatory rules. As mentioned
previously, the conditional causality test can differentiate indirect
regulators from direct ones and is complementary to the mutual
information measures.

Orchard Cube
A data cube is used to store precomputed measures for
data mining. Many familiar genetic time series data are
multidimensional, containing genes, time steps, and samples.
Analysing multidimensional data could run into performance
bottlenecks but precomputing a data cube can release
performance bottlenecks by providing scalable mechanisms
for fast access to the summarized data (Han et al., 2012). To

infer the activators and inhibitors, we extend the data mining
technique of bottom-up computation (BUC), which is an
algorithm for the computation of sparse cubes from the Apex
cuboid downward (Han et al., 2012) to a prefix tree type of cube,
as shown in Figure 4. We call this cube the orchard cube because
it looks like an orchard containing many fruit trees.

Each branch or link above ground on the tree is a
regulatory function. Every node on a branch is a component
of the regulatory function. Because regulatory functions are the
knowledge we are looking for, we call them fruit. The gene
nodes on the ground are called seeds. The training data are
called fertilizers as they help the trees to grow larger (more
confidence and; hence, more of certain functions). The reason
we propose this type of cube is that we can distribute the
computational costs to multiple computing threads or a cloud
computing environment. The precomputing cube can be stored
in any distributed database. The data training of every target
gene is independent, which means we can distribute some target
genes to a different computer to build their tree structures and
then assemble all the distributed trees as an orchard forest.
The network inference process is separated from the process
of constructing cubes and has different pruning strategies. The
separation between network inference and cube construction
allows further development of scalable methods to extract genetic
networks effectively and efficiently from comparatively fewer
updates of the cube. Meanwhile, the cube can be consistently
improved by integrating it with more time series data.
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FIGURE 5 | Sample nodes and measurement.

The nodes underground are analytical data that contain all
possible regulatory functions for the target gene unless the NULL
hypothesis rejects them. The nodes above ground comprise
the extracted regulatory functions that have been mined from
the nodes underground. Hence, if we define the collection of
regulatory functions of a target gene as Ù̀ and the analytic data

part as

˘

U, then Ù̀∈

˘

U.

Pairwise Dimensions
Each node contains four dimensions, i.e., four major groups
of measures. Each dimension represents a potential regulatory
function of the target gene. The four dimensions are denoted
as TT, TF, FT, and FF, as shown in Figure 5, and are defined as
follows:

• TT is when the target gene’s state is TRUE, the current
conditional gene state is TRUE, and all upstream conditional
gene states are fixed;

• TF is when the target gene’s state is TRUE, the current
conditional gene state is FALSE, and all upstream conditional
gene states are fixed;

• FT is when the target gene’s state is FALSE, the current
conditional gene state is TRUE, and all upstream conditional
gene states are fixed;

• FF is when the target gene’s state is FALSE, the current
conditional gene state is FALSE, and all upstream conditional
gene states are fixed;

All nodes under Ground-2 will have prefix gene states.
For example, conditional gene, G4, of target gene G1 at
Ground-3 has its two upstream gene states fixed, i.e., G1(0)
and G2(0), therefore, the four dimensions of the node
G4 are TT (G1|!G1&!G2&G4), TF (G1|!G1&!G2&!G4), FT
(!G1|!G1&!G2&G4) and FF (!G1|!G1&!G2&!G4). Each dimension
has a factor, also called a function statement, which represents the
potential gene regulatory function. Dimensions TT and FT, FT
and FF are two pairwise dimensions. The minimum confidence
measures between TT and FT, FT and FF are error measures. The
pairwise dimensions have the following characteristics:

P(TT) = 1− P(FT) and P(TF) = 1− P(FF)

For the pair dimensions, if we define one dimension to be the
confidence measure that will have an impact on the target gene,
the other dimension is then regarded as an error measure. This
definition is equivalent to the definition of the essential Boolean
state xi that must match the requirements of

f
(

x1, . . . xi−1, 0, xi+1, . . . , xn
)

6= f
(

x1, . . . xi−1, 1, xi+1, . . . , xn
)

for all x1, . . . xi−1, xi, xi+1, . . . , xn, where f is a Boolean function
and xi is a Boolean state (Fauré et al., 2006). The output of f is a
Boolean value.

Orchard Cube Pruning
Constructing the cube requires building an optimal tree-type data
structure from all possible combinations of all related genes up to
a maximum depth. The computational cost grows exponentially.
However, it is endurable because all precomputed genes will not
go to next level to avoid redundant computations. For example,
we have three genes, A, B, C, and the conditional probability
of gene A and gene B regulating the expression of C is p(C|A,
B). Because p(C|A, B) is equal to p(C|B, A), the branch for
precomputing p(C|B, A) is not processed from the main tree.
Hence, the computational cost of constructing the entire cube is
affordable.

Before the initial pruning, we use Pearson’s Chi-square test
(Plackett, 1983) to test the NULL hypothesis that a target gene
is independent of the gene selected as the conditional gene. All
genes in GRNs apart from the target gene will be tested using
this criterion to remove unrelated genes from Ground-2 when
the p-value is over 0.05. This procedure reduces unnecessary root
branches.

The Chi-square test only answers the question of whether
or not a conditional gene can be associated with the target
gene but fails to answer the question of whether or not it has
a direct or indirect association because the principle of ‘guilt-
by-association’ does not differentiate gene regulation from an
indirect association (Childs et al., 2011). The only purpose for
applying the Chi-square test is to find all potentially related genes.
Because the number of associated genes with each target gene
is lower than, or equal, to the total genes, the computational
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cost of processing each target gene can be reduced dramatically;
however, this process is uneven.

The Algorithm to Construct the Orchard Cube
To build the orchard cube, we use the step-by-step algorithm
below:

1. All genes are potential target genes; hence, we put all the
genes as seeds on the ground level and partition them into N
trees.N is the total number of genes. Because the construction
of all trees is partitioned and parallel we explain the further
steps for one tree only. The result is an orchard cube type
of data structure that contains all precomputed measures, as
discussed previously.

2. With target gene i, we first use the Chi-square test to test the
NULL hypothesis of the target gene, against all other genes, for
no relationship between them, as discussed previously.

3. We look through all potential regulatory genes and calculate
all measures for the four dimensions, i.e., the TT, TF, FT, and
FF, as discussed previously.

4. If the current underground level is lower than a value named
maxK denoting the maximum underground level the tree
can penetrate into, all potential regulatory genes, exclude the
current gene and the genes that are already in the higher levels,
will go to the next level.

5. In the next level, we repeat steps 3 and 4 until the current level
is equal tomaxK or all related genes are processed.

6. If the current level is equal to maxK or all relevant genes
are processed, the construction of the current tree is then
completed.

7. If all target genes have been processed, we then output the
cube.

Inferences of Fundamental Boolean Networks
The second phase is to mine fundamental Boolean functions
from a cube type database structure. Figure 6 presents a
schematic diagram of fundamental Boolean network inference.

As outlined in Figure 6, to infer FBNs we need to extract all
essential measures, as explained previously, from a set of training
data. The precomputed measures are then stored in a cube
type database structure so the end users can generate different
strategies to mine fundamental Boolean functions from the cube.
Themined FBNs are then used to reconstruct time series to either
trace the Boolean attractors or to verify the network generated by
comparing the reconstructed time series data with the original
training data.

Using the proposed orchard cube, we can infer interactions
between the genes in the GRNs by filtering each tree’s
underground part based on the criteria listed below:

1. The conditional causality test value should be>1 or equal to 1.
2. The mutual information test should be equal to 1 or between

a threshold and 1 when the time series data contain noise.
3. Discard the functions if they are matched with the following

patterns because they are not essential states.

f iaj (A&B&C) = f iaj (A&B&!C) or

f idj (A&B&C) = f idj (A&B&!C)

4. The confidence measure value should be greater than a
threshold, e.g., 0.7, to include some functions that contain
noise. However, this criterion should be varied according to
the noise level of the data.

5. Sort all functions remaining after step 4 by the mutual
informationmeasure, error measure, support measure and the
number of genes input. Ideally, we want to keep the rules that
have a more substantial support value with minimum errors.

6. The total number of fundamental Boolean functions for each
type (activation or inhibition) of a gene is a limited to Fn
based on different experimental requirements. However, in
this study, we take Fn to be 5.

Reconstruction of Time Steps
The model, formulae and orchard cube we introduced in the
previous section provide a complete mechanism to calculate the
next gene state at time t + 1 by giving the gene state at time t.
Therefore, we can reconstruct the time steps to any length by
giving the initial gene state at time t = 0. The following list gives
the primary usages of applying the model to reconstruct time
steps:

Verify the reconstructed time series data against the original
time series. The regulatory functions are a subset of the analytic
data. If the functions are correct, we should be able to reconstruct
time steps with the same initial states as the original time
series. Because the asynchronous Boolean model produces an
undetermined result, the reconstructed time series data might be
different from the training time series data. Hence, we focus on
demonstrating the FBM using synchronous Boolean schema only
in this paper.

Reconstruct the hidden layers between the observed time
steps. In short time series data, the gaps between observed time
steps are very sparse. We can use the reconstructed time series
to reveal the hidden layers by giving the initial Boolean state
and keeping on generating the next time step based on the
previous time step until the latest generated time step is identical
to the next observed time step. By giving the two observed states
Sobserved1 and Sobserved2 , we reconstructed the time series data, as
follows:

Sreconstructed = S1, S2 . . . Sk, Sobserved1 = S1 and Sobserved2 = Sk

The states between S1 and Sk are then denoted as missing time
steps or hidden layers.

RESULT AND DISCUSSION

There are three main steps to verify the proposed logical
model: (i) the specification of the updating schema of the
model; (ii) the definition of the parameters of the model;
(iii) the extraction of a regulatory network. As discussed in
section Background, there is twomain Boolean updating schema:
synchronous and asynchronous based on the treatment of time.
For the sake of simplicity, we apply the synchronous updating
scheme to test the model. The parameters for the fundamental
Boolean model are the protein decay, which, by default, is
1; the updating time step for each subfunction (fundamental
Boolean function) is 1; the parameter of confidence of each
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FIGURE 6 | Schematic diagram of FBN modeling and network inferences: (1) discrete expression data into Boolean time series; (2) construct orchard cubes in parallel

to generate analytical data and store all precomputed measures; (3) mine potential regulatory rules for all target genes through the constructed orchard cube based on

some criteria; (4) generate the fundamental Boolean network; (5) use the generated network to reconstruct the input time series by giving the initial states of all original

inputs and; (6) verify the reconstruction time series with the original series, if necessary, to gain confidence in the results.

subfunction is extracted using the methodology we proposed.
To extract the fundamental Boolean network, we implemented
an R package, namely FBNNet (Fundamental Boolean Network
toolset, a prototype version is available at https://github.com/
clsdavid/FBNNet_Lincoln), which can build an Orchard type of
cube and mine FBNs from the cube. The FBNNet tool can find
attractors under the two main Boolean updating schema and
plot a static regulatory graph as well as a dynamic regulatory
graph. The following paragraphs describe the main experiment
we conducted.

Experimental Design and Dataset
The experiments conducted and described here intend to prove
the concept of the new Boolean Model, i.e., the FBM. Figure 7
outlines the experiment design as a benchmark to compare
the results generated via BoolNet (Müssel et al., 2010) with
those consequently reconstructed from the new R package,
FBNNet. The BoolNet package was demonstrated in the tutorial

of (Hopfensitz et al., 2013) and the study of Ruz et al. (2014).
The advantage of the BoolNet package over other existing tools,
such as GINsim (Gonzalez et al., 2006), BooleanNet (Albert et al.,
2008) and BN/PBN toolbox in Matlab, is the support of all
three network types. FBNNet is a new R package that we have
implemented for testing the concept of the FBM, and it has been
fully integrated with the algorithms and concepts we introduced
in section Methods.

Many new algorithms can be verified using the simulated
datasets derived from several known regulatory networks, and
the results can be compared with other known regulatory
networks. In this paper, we propose to use the mammalian
cell cycle network listed in Figure 8, to generate test data. The
mammalian cell cycle networks have been well demonstrated
in (Hopfensitz et al., 2013). Naturally,The regulation of the
mammalian cell cycle leads to the reproduction of the genome
of a cell either in Synthesis or S phase and its division involves
two daughter cells (Mitosis, or M phase); and the M phase
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FIGURE 7 | Experiment design of evaluating the Fundamental Boolean network inference. The blue arrows represent the processes using BoolNet and brown arrows

represent the processes using our FBNNet tools. The green arrows represent the evaluation process. (A) We use the BoolNet script loadNetwork.R to load

pre-defined networks from files and then generate the time series and networks. (B) We use the time series generated from BoolNet and the new R package, FBNNet,

to generate FBNs. (C) We reconstruct the time series via the FBM. (D) To evaluate the FBM, we rebuild the BoolNet type network based on the reconstructed time

series; and (E) we evaluate the FBN inference methods by comparing the generated time series and the generated BoolNet type of network with the original time

series and network that were generated in step A.

itself contains four different sub-phases (prophase, metaphase,
anaphase, and telophase) (Fauré et al., 2006). The S andM phases
involve two gap phases, namely G1 and G2 (Fauré et al., 2006).

To generate the experimental data, firstly, we used the
command loadNetwork from BoolNet to load the cell cycle
network specified in the text files: cellcycle.txt, as shown in
Figure 8. Secondly, we use the method generateTimeSeries of
BoolNet to generate 1024 noiseless sample data with 43 time
steps for the cell cycle network, with all default settings, i.e., the
parameter type is synchronous, the parameter noiseLevel is 0, and
the parameter perturbations is 0. Each sample contains the same
10 mammalian cell cycle genes, i.e., CycD, Rb, E2F, CycE, CycA,
p27, Cdc20, Cdh1, UbcH10, and CycB, as the study conducted
by Hopfensitz et al.(2013). The generated 1024 sample data are
the dataset used for this experiment. Each sample contains 43
time steps in sequence. All the initial states of the 1024 samples
are unique containing the complete combination of 210 changes.
Hence, the number of genes that are expressed in each sample is
variant.

Because the proposed Boolean rule definition is very
different from the traditional Boolean rules, i.e., intuitive
rules vs compressed rules (not intuitive) as discussed in
section Background, we cannot compare it with other networks
generated by other tools directly as it would not be a fair

comparison. Hence, the best way to evaluate the generated FBNs
is to use them to reconstruct time series data with the same initial
states and then compare with the training time series data. The
reason is that under the synchronous model if the generated
network is correct, the network should be able to produce the
same time series data as the training time series data with the
same initial states.

The evaluation matrix for the time series comparison we
have adopted is ER (Error rate), AR (Accurate rate), MMR
(Mismatched rate) and PMR (Perfect matched rate). The matrix
is defined as follows:

ER =

∑n
i= 1 num of unmatched state per sample(i)

n

AR =

∑n
i= 1 num of matched state per sample(i)

n
= 1− ER

PMR =
Num of 100% matched sample matrixes

n

MMR =
Num of unmatched sample matrixes

n
= 1− PMR

where n is the total number of samples. Time series data here
are referred to a list of sample matrixes, and each sample matrix
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FIGURE 8 | Known mammalian cell cycle networks provided by BoolNet.

contains gene states (Boolean value). Hence, a sample data means
a sample matrix in this paper.

FBN of Cell Cycle and Its Validation
The FBN for the sample genes and the FBN for the cell cycle genes
were inferred via the R package FBNNet, as shown in Table 1.

As shown in Table 1, three primary parameters are bound
with this novel FBN, and they are confidence (Equation 5),
protein decay (Equation 6) and time step. The two parameters,
time step and protein decay, were configured to 1 to match
the way of generating the experimental data via the method
generateTimeSeries of BoolNet. The method generateTimeSeries
of BoolNet does not provide a configurable parameter for protein
decay but has a default value of 1 (time step), embedded inside its
logic.

A significant difference from other existing Boolean models
is that the inferred FBN splits the Boolean functions of
the mammalian cell cycle into the domain of activation and
inhibition intuitively as shown in Table 1. Each gene could be
regulated by multiple activation rules or inhibition rules at the
same time. The result in Table 1 shows that the uncertainty of the
process can be incorporated into the model. All FBM functions
have the parameter confidence of 1, means the result is extremely
accurate. To verify the result, we used the initial states from
the training time series dataset to regenerate the same size data
set using the novel concept of FBM (Equation 7) under the
synchronous updating schema (same as the schema when the
training dataset is generated). The regenerated dataset, then, is
compared with the training time series dataset.

As shown in Table 2, all reconstructed time series data from
the mammalian cell cycle network are identical to the pre-
generated time series data with 100% in both AR and PMR.
100% of AR and PMR means all regenerated time series data
are matched with the training time series dataset. Hence, we
believe the inferred FBN cell cycle network with the proposed
FBM is an alternative way to represent the mammalian cell cycle
network but provides more information to draw insights into the
activation and inhibition pathway of the mammalian cell cycle
network.

Regarding FBNs, Figure 9 present the regulatory graph of
the cell cycle network. The graph is generated by integrating
the mined FBNs with the R package visNetwork (see online
documentation http://datastorm-open.github.io/visNetwork/).

As shown in Figure 9, the internal relationships between
genes are displayed. Hence, we can explore how these genes
activated and inhibited other genes by tracing the input genes
and the target genes via activators and inhibitors. The FBN of cell
cycle contains three type of connections in the domains of gene
activation, gene inhibition and protein decay.

Attractors
Attractors are defined as recurrent cycles of states (Hopfensitz
et al., 2013), which are of particular interest in Boolean modeling.
When a network reaches an attractor, it entraps a cycle most
of the time until external perturbations happen to alter some
essential genes’ production to let the network get out of the
entrapment.With the simplest synchronous assumption, we yield
2 attractors as shown in Figure 10. One is a stable attractor, and
the other is cycle attractor. The attractors are equivalent to the
findings that have been reported in (Fauré et al., 2006; Hopfensitz
et al., 2013). Hence, the FBN of the cell cycle can produce the
same attractors as other Boolean models did.

The first attractor is a simple attractor with only Rb, p27
and Cdh1 active, and is associated with the phase G0 or cell
quiescence (Fauré et al., 2006). The CycD represents the whole
cdk4/6-Cyclin D complex, and cdk4/6 is a cyclin-dependent
kinase (cdk) partners.

The richness of the proposed model was its dynamic networks
that provided a complete trajectory of gene activation, inhibition
and protein decay. Figure 11 presents the dynamic trajectories
of attractor 2, which explicitly display internal mechanism of
gene regulation under the domains of gene activation, inhibition
and protein decay. The presence of CycD lead to other seven
stable dynamical cycles; each cycle is made of a sequence of
seven successive states (attractor 2). The hidden pathways of the
attractor 2 are not clear with any conventional Boolean model
and related networks. However, with the proposed model and
type of networks, the pathways of the attractor 2 are explicitly
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TABLE 1 | Inferred FBN cell cycle network.

Fundamental Boolean Network with 10 genes

Genes involved:

CycD, Rb, E2F, CycE, CycA, p27, Cdc20, Cdh1, UbcH10, CycB

Multiple Transition Functions for CycD with decay value=1:

CycD_1_Activator: CycD = CycD (Confidence: 1, TimeStep: 1)

CycD_2_Inhibitor: CycD = !CycD (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for Rb with decay value=1:

Rb_1_Activator: Rb = !CycD&p27&!CycB (Confidence: 1,

TimeStep: 1)

Rb_2_Activator: Rb = !CycD&!CycE&!CycB&!CycA

(Confidence: 1, TimeStep: 1)

Rb_3_Inhibitor: Rb = CycD (Confidence: 1, TimeStep: 1)

Rb_4_Inhibitor: Rb = CycB (Confidence: 1, TimeStep: 1)

Rb_5_Inhibitor: Rb = CycA&!p27 (Confidence: 1,

TimeStep: 1)

Rb_6_Inhibitor: Rb = CycE&!p27 (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for E2F with decay value=1:

E2F_1_Activator: E2F = !Rb&!CycA&!CycB (Confidence: 1,

TimeStep: 1)

E2F_2_Activator: E2F = !Rb&p27&!CycB (Confidence: 1,

TimeStep: 1)

E2F_3_Inhibitor: E2F = Rb (Confidence: 1, TimeStep: 1)

E2F_4_Inhibitor: E2F = CycB (Confidence: 1, TimeStep: 1)

E2F_5_Inhibitor: E2F = CycA&!p27 (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for CycE with decay value=1:

CycE_1_Activator: CycE = !Rb&E2F (Confidence: 1,

TimeStep: 1)

CycE_2_Inhibitor: CycE = !E2F (Confidence: 1, TimeStep: 1)

CycE_3_Inhibitor: CycE = Rb (Confidence: 1, TimeStep: 1)

Multiple Transition Functions for CycA with decay value=1:

CycA_1_Activator: CycA = !Rb&E2F&!Cdc20&!UbcH10

(Confidence: 1, TimeStep: 1)

CycA_2_Activator: CycA = !Rb&CycA&!Cdc20&!UbcH10

(Confidence: 1, TimeStep: 1)

CycA_3_Activator: CycA = !Rb&CycA&!Cdc20&!Cdh1

(Confidence: 1, TimeStep: 1)

CycA_4_Activator: CycA = !Rb&E2F&!Cdc20&!Cdh1

(Confidence: 1, TimeStep: 1)

CycA_5_Inhibitor: CycA = Rb (Confidence: 1, TimeStep: 1)

CycA_6_Inhibitor: CycA = Cdc20 (Confidence: 1,

TimeStep: 1)

CycA_7_Inhibitor: CycA = !E2F&!CycA (Confidence: 1,

TimeStep: 1)

CycA_8_Inhibitor: CycA = Cdh1&UbcH10 (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for p27 with decay value=1:

p27_1_Activator: p27 = !CycD&!CycE&!CycB&!CycA

(Confidence: 1, TimeStep: 1)

p27_2_Activator: p27 = !CycD&!CycA&!CycB&p27

(Confidence: 1, TimeStep: 1)

p27_3_Activator: p27 = !CycD&!CycE&!CycB&p27

(Confidence: 1, TimeStep: 1)

p27_4_Inhibitor: p27 = CycD (Confidence: 1, TimeStep: 1)

(Continued)

TABLE 1 | Continued

p27_5_Inhibitor: p27 = CycB (Confidence: 1, TimeStep: 1)

p27_6_Inhibitor: p27 = CycA&!p27 (Confidence: 1,

TimeStep: 1)

p27_7_Inhibitor: p27 = CycE&!p27 (Confidence: 1,

TimeStep: 1)

p27_8_Inhibitor: p27 = CycE&CycA (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for Cdc20 with decay value=1:

Cdc20_1_Activator: Cdc20 = CycB (Confidence: 1,

TimeStep: 1)

Cdc20_2_Inhibitor: Cdc20 = !CycB (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for Cdh1 with decay value=1:

Cdh1_1_Activator: Cdh1 = Cdc20 (Confidence: 1,

TimeStep: 1)

Cdh1_2_Activator: Cdh1 = !CycA&!CycB (Confidence: 1,

TimeStep: 1)

Cdh1_3_Activator: Cdh1 = p27&!CycB (Confidence: 1,

TimeStep: 1)

Cdh1_4_Inhibitor: Cdh1 = !Cdc20&CycB (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for UbcH10 with decay value=1:

UbcH10_1_Activator: UbcH10 = !Cdh1 (Confidence: 1,

TimeStep: 1)

UbcH10_2_Activator: UbcH10 = Cdc20&UbcH10 (Confidence: 1,

TimeStep: 1)

UbcH10_3_Activator: UbcH10 = UbcH10&CycB (Confidence: 1,

TimeStep: 1)

UbcH10_4_Activator: UbcH10 = CycA&UbcH10 (Confidence: 1,

TimeStep: 1)

UbcH10_5_Inhibitor: UbcH10 = Cdh1&!UbcH10 (Confidence: 1,

TimeStep: 1)

Multiple Transition Functions for CycB with decay value=1:

CycB_1_Activator: CycB = !Cdc20&!Cdh1 (Confidence: 1,

TimeStep: 1)

CycB_2_Inhibitor: CycB = Cdh1 (Confidence: 1, TimeStep: 1)

CycB_3_Inhibitor: CycB = Cdc20 (Confidence: 1,

TimeStep: 1)

TABLE 2 | Experimental results for reconstructed time series data.

Network Number

of

samples

Number

of time

steps

ER AR PMR MMR

Cell cycle 1,024 43 0 100% 100% 0

displayed. For example, in Figure 11, the CycD deactivates Rb
and p27. The Rb, in turn, activates E2F, which is a family
of dimeric transcription factors. As a consequence, the E2F
activates CycE and CycA. The activation of CycE and CycA
continually maintains the inhibition of Rb and p27. Moreover,
Cdh1 is another critical element, which is an activator delegating
the APC, an essential E3 ubiquitin ligase. The present Cdh1
dissociates the CycB directly and keeps inhibiting UbcH10. Rb
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FIGURE 9 | Cell Cycle FBN. The light blue elliptical icons represent genes; the orange box icons represent inhibition functions, and the light green box icons represent

activation functions. The dark blue arrows represent activation, dark red arrows represent inhibition, and gray arrows represent protein decay.

phosphorylates E2F, CycA, and CycE, and the promotion of
p27 enhances Cdh1. Rb continues to be activated without the
interruption of CycB, CycA, CycE, and CycD. The UbcH10 at the
time step of 3 is inhibited as the consequence of protein decay
(see the gray dash arrow line) because none of its activation and
inhibition functions has an impact on it.

As shown through the demonstration of the proposed model
with the mammalian cell cycle, we demonstrate that we could use
the proposed orchard cube to infer the GRNs of the mammalian
cell cycle. The outcome shows that if the network inferred was
100% correct, the reconstructed time series should match 100%
with the original training dataset. However, this assumption was
based on the degree of completeness of the initial training dataset
when used with the synchronous Boolean schema.

The cell cycle FBN reveals the internal gene activation,
inhibition and protein decaymechanism. Although the generated
new Boolean cell cycle network is very different from any
other Boolean network, it still can generate the same attractors
as others such as in the study of Fauré et al. (2006), which
means our proposed Boolean model is a new extension of the
conventional Boolean models. Compared with the traditional
Boolean cell cycle network as in the study of Hopfensitz
et al. (2013), our network splits a complex rule into multiple
rules under the domain of activation and inhibition and
provides more insights into the dynamics of the pathways
than those given by others. With FBN, a node is associated
with multiple rules under two types (activation and inhibition
type). The protein decay is also considered as a link of
gene transition; and hence, the FBN contains three type of

FIGURE 10 | Synchronous attractors of the cell cycle fundamental Boolean

model.

links: activation, inhibition and protein decay (as shown in
Figure 11). This new feature can facilitate scientists to develop
pharmaceutical agents by analyzing the related fundamental
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FIGURE 11 | The dynamic trajectory of attractor 2. The underscore mark “_” indicates the time step that the gene was located.

Boolean network and simulating the perturbation due to
drugs.

We also show the dynamic trajectories for the attractor 2. The
main advantage was that it illustrated the relationships in the
domains of activation, inhibition, and protein decay to facilitate
scientists in understanding the intrinsic genetic regulations. The
downside was that the FBN might contain too many links.
Comparing the rules shown in Table 1 and the original rules in
Figure 8, our network might contain too many rules, but all of
these rules are extracted from our data-driven model with an
outstanding confidence value. Hence, the FBN of the cell cycle
is fine-grained, and the original Boolean network as shown in
Figure 8 is coarse-grained. Besides, we could limit the number
of rules per type (activator and inhibitor). However, reducing the
number of rules per type might reduce the correctness of the
inferred network.

The current version of FBNNet was implemented as a
prototype for the proposed FBM using pure R language without
any performance optimization enhanced. Hence, to generate the
experimental results, it requires approximately 200 s with parallel
computing and 530 s without parallel computing. The machine
we used to experiment is a laptop, which is made by AcerTM, a
model of Aspire V 17 Nitro. The R does not provide the facility
of parallelisation directly, and we have to use other packages,
namely, “parallel,” “foreach,” and “doParallel” to do the parallel

computing. The performance of these packages are unknown,
and they may not provide the real power of parallel computing
as good as C or C++. However, they are good enough to prove
the concept of the proposed novel Boolean model. BoolNet uses
C to speed up its performance in constructing the cell cycle
network, and hence, is faster than the current version of FBNNet.
In contrast, our method is used to derive the intuitive activation
and inhibition pathways and hence requires more computational
times. In addition, the proposed orchard cube is used to store
all precomputed measures for all potential fundamental Boolean
functions in case we need to mine FBN from short time series
data. Hence, it requires more time to process and keep as many
potential rules as possible.

Finally, we proposed a way to reconstruct any missing time
steps by estimating all fundamental Boolean functions’ TRUE or
FALSE values affecting their target genes by verifying the input
states to be matched with the requirements of the functions. The
time interval between time steps was a parameter of the proposed
model and should reflect the assumption that all related genes
should have completed their biological reactions; for example,
transcription from DNA to mRNA, and translation from mRNA
to protein. If we fix the time interval for all genes the FBM, then, is
a synchronic Boolean model. If all genes have their time interval
defined, the FBM then is an asynchronous Boolean model. The
proposed Boolean model, therefore, can be used to reconstruct
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the missing time steps using either a synchronous scheme or
an asynchronous scheme. However, because the results from the
asynchronous Boolean model are nondeterministic, we cannot
use the reconstructed time series to verify the generated output
correctly under the asynchronous Boolean model.

CONCLUSIONS

In this paper, we studied the characteristics of enzyme activation,
enzyme inhibition and protein decay as well as the advantages
and disadvantages of the conventional Boolean models and
then proposed a novel data-driven Boolean model, namely the
Fundamental Boolean Model (FBM), to draw insights into gene
activation, inhibition, and protein decay. The FBM separated
the activation and inhibition functions from conventional
Boolean functions, and this separation will facilitate scientists in
finding answers to some fundamental questions, such as how a
modification of one gene affects other genes at the expression
level. We introduced a new data-driven method to infer FBNs.
The new method contains two different parts: the first part was
to construct an orchard cube to store all precomputed measures
for all potential fundamental Boolean functions; the second part
was to infer FBNs from the constructed orchard cube by filtering
each tree’s underground part, based on the criteria discussed
previously. Dynamic FBNs could show the significant trajectories
of genes to reveal how genes regulate each other over a given
period. This new feature could facilitate further research on
drug interactions to detect the side effects of the use of a newly
proposed drug. The protein decay issue is also a function of the
proposed model (Equation 6), and hence, there is three type of
links for the FBNs; and this feature makes the networks unique
over other Boolean models.

The proposed FBM is a data-driven model, and the FBM
functions are extracted from a particular type of data cube.
Hence, the knowledge about the connectivity among genes are
not needed but can be used to verify the generated result. To
prove the concepts of the FBM and FBNs, we implemented an
R package called FBNNet, which has successfully demonstrated
that FBNs can be inferred from time series data. The R package
provides a tool to draw FBNs, either in the static mode, as shown
in Figure 9, or in the dynamic mode, as illustrated in Figure 11.

The dynamic trajectory of gene activation, gene inhibition
and protein decay activities of the attractor 2 is deciphered in
Figure 11 confirmed that the proposed FBM could explicitly
display the internal connections between genes separated by the
connection types of activation, inhibition, and protein decay. We
demonstrated the novel concepts of the FBM and the proposed
method to infer the proposed FBNs with the mammalian cell
cycle networks. The demonstration shows that the method could

be used to infer GRNs, with a high degree of accuracy, from the
time series data generated from the pre-known Boolean networks
via the existing R package, BoolNet.

There was a need to search all related genes and to calculate
all relevant measures for all associated gene combinations up
to some depth, to infer FBNs. This requirement could end with
the NP-hard problem (Non-deterministic Polynomial acceptable
problems), i.e., there is no known polynomial algorithm so that
the time to find a solution grows exponentially with predefined
problem size, as mentioned in Liu et al. (2016). However, with
the design of the orchard cube, the cost was endurable because
the design of the orchard cube was embedded within parallel
computations. With the power of computational clouds, even
large GRNs can be derived from the method we proposed.
Moreover, the construction of the orchard cube was separated
from the inference of FBNs; hence, we can use a different strategy
to mine the regulatory network without the need to rebuild the
cube. Therefore, the computational cost can be split into the
construction of an orchard cube and network inference. During
the experiments we conducted, we found the construction of
an orchard cube consumed the most computational cost. In
other words, if we had the orchard cube constructed already, the
computational cost for inferring FBNs from the orchard cube is
minor and affordable.
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LIST OF ABBREVIATIONS AND NOTATIONS

General Terminology Abbreviations

APC Anaphase-promoting complex

BUC Bottom-up computation

Cdks Cyclin-dependent kinases (Cdk1, Cdk2 and so on)

CKI Cyclin-dependent kinase inhibitor

CycD Cdk4/6-Cyclin D complex

CycE Cdk2/Cyclin E complex

CycA Cdk2/Cyclin A complex

Cdc20 Cell-division cycle protein 20

Cdh1 Epithelial cadherin (E-cadherin), a classical member of the

cadherin superfamily

CycB Cdk1/Cycline B complex

DNA Deoxyribonucleic acid

E2F A family of transcription factors (TF) that act as transcriptional

regulators of G1–S transcription

GRNs Genetic regulatory networks

GF Growth factor

NP Nondeterministic Polynomial, a computational complexity class

NP-hard A class of problems in computational complexity

(Non-deterministic Polynomial acceptable problems)

p27 A member of Kip/Cip family, a group of CKIs

R R statistic script programming language

RNA Ribonucleic acid

Rb Retinoblastoma protein

SI Supplementary information

UbcH10 Cancer-related E2 ubiquitin-conjugating enzyme1

Model Terminology Abbreviations

AR Accurate rate

ER Error rate

FBM Fundamental Boolean model

FBNs Fundamental Boolean networks

MMR Mismatched rate

PMR Perfect matched rate

Boolean Function Notations

& Logical And connector

| Logical Or connector

! Logical negation symbol

Boolean Model Notations

¬ A negation operator that changes a Boolean function from TRUE

to FALSE or vice versa

×, ∩ Logical And operator

+ logical Or operator

τ An incremental variable presenting the number of time steps that

have been processed

ϑ The decay period to reflect the fact that the attenuation or

enhancement of the expression of mRNA requires time

σ
t
i

The Boolean state of gene σi at time t

σ
t+1
i

The Boolean state of gene σi at time t + 1.

la (i) The total number of fundamental Boolean functions activating the

target gene σi .

ld (i) The total number of fundamental Boolean functions deactivating

the target gene σi .

f iak A fundamental Boolean function of activation

f i
dk

A fundamental Boolean function of inhibition

P[[x]] A Boolean function that takes a uniform distributed random

number, µ, and an output of 1 if µ < x and 0 otherwise.
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