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Aim: Red wine is usually ingested as an unmixed drink. However, mixtures of wine with
juices and/or sucrose (mixed wine) are becoming more and more popular and could
be ingested at either cold or hot temperature. Although the temperature effects on
the cardiovascular system have been described for water and tea, with greater energy
expenditure (EE) and lower cardiac workload with a colder drink, little information is
available on the impact of temperature of alcoholic beverages on alcoholemia and
cardiometabolic parameters. The purpose of the present study was to compare the
acute cardiovascular and metabolic changes in response to mixed wine ingested at a
cold or at a hot temperature.

Methods: In a randomized crossover design, 14 healthy young adults (seven men
and seven women) were assigned to cold or hot mixed wine ingestion. Continuous
cardiovascular, metabolic, and cutaneous monitoring was performed in a comfortable
sitting position during a 30-min baseline and for 120 min after ingesting 400 ml of mixed
wine, with the alcohol content adjusted to provide 0.4 g ethanol/kg of body weight and
drunk at either cold (3◦C) or hot (55◦C) temperature. Breath alcohol concentration was
measured intermittently throughout the study.

Results: Overall, alcoholemia was not altered by drink temperature, with a tendency
toward greater values in women compared to men. Early responses to mixed wine
ingestion (0–20 min) indicated that cold drink transiently increased mean blood pressure
(BP), cardiac vagal tone, and decreased skin blood flow (SkBf) whereas hot drink did
not change BP, decreased vagal tone, and increased SkBf. Both cold and hot mixed
wine led to increases in EE and reductions in respiratory quotient. Late responses
(60–120 min) led to similar cardiovascular and metabolic changes at both drink
temperatures.

Conclusion: The magnitude and/or the directional change of most of the study
variables differed during the first 20 min following ingestion and may be related to
drink temperature. By contrast, late changes in cardiometabolic outcomes were similar
between cold and hot wine ingestion, underlying the typical effect of alcohol and sugar
intake on the cardiovascular system.
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INTRODUCTION

Consumption of alcoholic beverages on a daily basis or during
festive events can vary broadly in terms of type of drinks and
pattern of intake but also with the temperature at which fluids are
ingested. In 2015, a Swiss national survey assessing the evolution
of attitudes to addictions showed that nearly 60% of alcohol
consumed in Switzerland is in the form of wine (Marmet and
Gmel, 2016). As a drink, red wine is generally consumed without
being mixed or in combination with fruit juice or sugar and can
then be drunk either at cold temperature (iced wine “sangria”)
during summer times or at hot temperature (mulled wine) during
winter times. In scientific studies, red wine is usually ingested
at ambient temperature but the comparison of the biological
effects of a cold versus hot alcoholic beverage, to the best of our
knowledge, has never been studied in humans.

Previous studies from our lab have examined the
cardiovascular and/or metabolic responses to water or tea
ingestion at different temperatures. We demonstrated that,
compared to body–temperature water, ingestion of 500 ml of
cold tap water (3◦C) reduced the workload to the heart through
vagal tone activation (Girona et al., 2014) and that both cold
distilled and tap water increased energy expenditure (EE) by
about 3% (Brown et al., 2006; Girona et al., 2014). Recently,
we showed that ingestion of 500 ml of Yerba Mate tea served
cold (∼3◦C), in contrast to hot (∼55◦C), decreased heart rate
(HR), skin blood flow (SkBf), and increased baroreflex sensitivity
(BRS). Furthermore, resting EE increased by 8% with cold tea,
suggesting that the rise in thermogenesis is not just related to the
cold drink temperature but to the interaction of cold with some
of the bioactive ingredients in the tea (Maufrais et al., 2018).

Regarding the acute cardiovascular responses to alcohol,
studies have reported that ethanol at relatively moderate doses
(0.3–1.0 g/kg body weight) induced transient alterations in the
cardiovascular system through changes in cardiac autonomic
regulation (van de Borne et al., 1997; Spaak et al., 2008, 2010;
Buckman et al., 2015) in healthy normotensive subjects. A recent
publication from our lab has shown in healthy young subjects that
alcopops (a combination of alcohol and sugar) given at 10◦C led
to a small decrease in blood pressure (BP), greater decreases in
total peripheral resistance (TPR) and BRS, and greater increases
in HR and cardiac output (CO), compared with alcohol alone
(Maufrais et al., 2017).

Although the impact of drink temperature has been described
for common drinks like water and tea, there is a lack of studies
in humans addressing the role of the drinking temperature
of alcoholic beverages, in particular those made from mixed
wine (e.g., “sangria” or “mulled wine”), on cardiovascular
and metabolic responses. Our study was designed to test
several hypotheses. First, as meal temperature may affect gastric
emptying (Sun et al., 1988; Mishima et al., 2009) and thus alcohol
absorption and elimination, we tested whether the temperature of
mixed wine would affect alcoholemia. Second, as ethanol (Abdel-
Rahman et al., 1987) and cold water (Girona et al., 2014) have
opposite effects on HR, we tested whether cold mixed wine can
offset the tachycardic effects of ethanol and sugar. Finally, as
both ethanol and heat are known vasodilators, we tested whether

ethanol-induced vasodilation was potentiated by the ingestion
of hot beverage. To this aim, we studied in young adults the
interaction of drink temperature and alcohol ingestion on the
acute cardiovascular and metabolic responses to mixed wine,
consumed either cold (3◦C) or hot (55◦C).

MATERIALS AND METHODS

Subjects
Fourteen healthy young Caucasian subjects (seven men and
seven women) were recruited among students at the University
of Fribourg. The mean (± standard deviation) age of the
participants was 22.4 ± 2.1 years, weight 63.9 ± 6.7 kg, and
body mass index 21.8 ± 2.6 kg/m2. We excluded participants
with Asian ancestry because of possible intolerance to alcohol,
abstainers, chronic drinkers, or those being intolerant to alcohol.
All subjects were healthy, weight-stable with no metabolic,
cardiovascular, or intestinal diseases. None of the participants
was taking drugs, vitamins, or supplements during the previous
7 days that could interfere with the cardiovascular or metabolic
control.

Before enrollment in the study, the participants completed a
questionnaire regarding their medical history and lifestyle, and
familiarized themselves with the experimental procedures and
equipment. All participants were instructed to refrain from heavy
exercise and from taking caffeinated drinks and alcohol on the
day before each experiment. Women were only tested during
the follicular phase (days 6–13) of their menstrual cycle. All
participants gave written informed consent in accordance with
the Declaration of Helsinki. This study was carried out with the
approval of the Swiss ethics committee on research involving
humans (Canton de Vaud, CER-VD, protocol 2016-01916).

Study Design
The study design is presented in Figure 1. All studies took place
in an air-conditioned (21–23◦C) laboratory dedicated for human
metabolic measurements and started at ∼8:30. Every participant
attended two sessions (separated at least by 2 days) according to a
randomized crossover design. The randomization was performed
by using a random sequence generator1. On the day of the
experiment, to avoid alcohol consumption on an empty stomach,
participants were instructed to take at∼7:30 a light standardized
snack provided by us, consisting in one cereal bar (Farmer Soft
raspberry, 77 kcal, 13 g carbohydrates, Migros, Switzerland) and
33 cl of ice tea light flavor lemon (33 kcal, 8 g carbohydrates,
Migros, Switzerland) providing 110 kcal in total. Upon arrival
at the laboratory and after anthropometric measurements (see
below), the participants were seated in a comfortable armchair
and the cardiovascular monitoring equipment was connected.
After reaching cardiovascular and metabolic stability (usually
around 15–20 min), a 30-min baseline measurement was
conducted. To standardize the pace of drinking, a volume of
400 ml of mixed wine was poured into two thermos glasses
of 200 ml each, with instructions to consume each glass over

1https://www.randomizer.org/

Frontiers in Physiology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 1334

https://www.randomizer.org/
https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01334 September 24, 2018 Time: 15:52 # 3

Sarafian et al. Comparing Cold/Hot Mixed Wine

FIGURE 1 | Study design indicating the time at which measurements of breath alcohol concentration (BrAC) and thermographic pictures were done.

a 4-min period. The drinks were served at either 3 or 55◦C.
Cardiovascular and metabolic monitoring continued for another
120 min post-drink ingestion. Subjects were permitted to watch
neutral documentaries on a flat TV screen and were instructed to
relax and avoid movements throughout the measurements.

Drink Preparation
In a pilot study conducted in our laboratory, we chose the
ingredients of the mixed wine after hedonic evaluation by
volunteers from our university staff. Both cold and hot drinks
were prepared with the same ingredients (red wine, fruit juice,
sucrose, distilled water, and spices) at room temperature. The
red wine (Viña Albali, Tempranillo 2012, Denner, Switzerland,
containing 13% alcohol per volume) was given at 3.84 ml/kg
body weight, corresponding to a volume of wine between 204.6
(21.3 g of ethanol) and 286.5 ml (29.8 g of ethanol) for our lightest
(53.2 kg) and heaviest (74.5 kg) subjects, respectively, providing
0.4 g ethanol/kg of body weight for all participants. In addition
to the red wine, 90 ml of fruit juice (Sarasay Exotic Island,
total carbohydrates 15 g/100 ml, Migros, Switzerland), 21.5 g of
sucrose, and spices (0.07 g of cloves, 0.3 g of star anise, and 0.6 g of
cinnamon) were mixed and diluted in distilled water up to a total
volume of 400 ml. The spices were infused (30 min) in the liquids
at room temperature under agitation and then the drinks were
stored in the fridge 1 day before the test at 2–3◦C. On the morning
of the test for the hot condition, the mixed wine was hermetically
sealed with a cap to prevent loss of liquid by evaporation and
maintained into a water bath set at 55◦C for 15–20 min to reach
the set temperature. At this temperature, no change in volume
was observed. Changes in volume or alcohol content are not
expected since the boiling temperature of pure ethanol is higher
than 75◦C at the altitude of Fribourg (630 m) and is even higher
when mixed with water. For the cold condition, the drink was
taken out of the refrigerator a few minutes before ingestion and
its temperature was checked.

Anthropometric and Body Composition
Measurements
Prior to testing and after the subjects voided their bladder, body
weight and height were measured using a mechanical column
scale with integrated stadiometer (Seca model 709, Hamburg,

Germany) to the nearest 0.1 kg and 1 mm, respectively. Body
composition [body mass index, body fat mass (FM), fat-free mass
(FFM), and total body water] was assessed non-invasively by
multi-frequency bioelectrical impedance analysis (Inbody 720,
Biospace Co., Ltd., Seoul, Korea) on the preliminary visit and on
each testing day.

Cardiovascular Recordings
Cardiovascular recordings were performed non-invasively using
the Task Force Monitor (CNSystems Medizintechnik, Graz,
Austria). Cardiac intervals were recorded continuously by
electrocardiography to compute HR. Stroke volume (SV) was
assessed by impedance cardiography as previously described
(Maufrais et al., 2018). Continuous BP was recorded from either
the index or middle finger of the left hand every 10 min and
was automatically calibrated to oscillometric brachial BP on
the contralateral arm measured every 5 min. The left hand
with the continuous BP cuff rested on a comfortable cushion
at heart level on a height adjustable table. CO and TPR were
then determined by calculation from SV, HR, and oscillometric
brachial BP signals. High frequency (HF: 0.15–0.40 Hz) power
components of RR intervals (HF_RRI) were assessed to have
an index of parasympathetic activity (Pagani et al., 1997). Data
given in absolute values (ms2) were analyzed after natural
logarithmic transformation (HF_RRI_LN). BRS was determined
from spontaneous fluctuations in BP and cardiac interval using
the sequence method (Bertinieri et al., 1985).

Metabolic Recordings
Energy expenditure and respiratory quotient (RQ) (both derived
from oxygen consumption and carbon dioxide production) were
measured non-invasively and continuously using a ventilated
hood indirect calorimeter (Quark RMR, Cosmed, Rome, Italy)
as described previously (Miles-Chan et al., 2015). After an initial
resting period of 15–20 min to allow gas exchange values to
reach a steady state, resting EE was measured over a 30-min
baseline period. The hood was removed during wine ingestion
and then placed back over the subjects for a further 120 min
after the drink. During breath alcohol concentration (BrAC)
measurements, the hood was not removed but slightly shifted
up to allow BrAC measurement. Metabolic data during and
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1 min following breath alcohol measurement were excluded from
analysis to avoid artifacts and allow the re-equilibrium of gases in
the hood.

Cutaneous Blood Flow and Skin
Temperature
Skin blood flow was assessed continuously on the back on the
right hand by laser speckle contrast imager (LSCI) (PeriCam PSI
System, Perimed). The head of the LSCI was placed at 12 cm
above the skin, with a defined region of interest of 4 × 4 cm area
of skin for all subjects. Routine verification for LSCI was made
with the calibration box supplied with the device according to the
procedure described by the manufacturer. Skin hand temperature
was assessed by the infrared camera FLIR E6 (FLIR Systems)
which was positioned on a fixed adjustable support and placed at
a distance of 25 cm from the subject’s hand. Three thermographic
pictures of the right hand were made at different time points
(Figure 1). Thermic pictures were analyzed at specific regions of
interest as described previously (Maufrais et al., 2017) using the
FLIR Tools software (version 6.1, FLIR Systems).

Breath Alcohol Concentration
As BrAC correlates highly with the concentration of alcohol in the
blood (Jones and Andersson, 2003; Hey and Haslund-Vinding,
2006), we used a breath ethylometer (Model 6820, Dräger SA,
Germany) to estimate alcoholemia without the stress of blood
sampling, at various time points, at baseline and at 20, 40, 80, and
120 min post-drink. Each subject made a prolonged exhalation
for 5 s into the tube of the alcotest and duplicate measurements
were made. Average of these two recorded values were used for
the analysis. At the end of the experiment, subjects were given a
small snack and BrAC was determined to ensure that the subjects
left the lab well below the Swiss legal limit of 0.5h.

Visual Analog Scale
Participants’ subjective ratings of perceived sensations after
alcohol ingestion (early and late thermal sensations, comfort,
and drunkenness) were done at the end of the experiment by
completing three items on a visual analog scale (VAS). The scale
consisted in a continuous horizontal line that measured 10 cm
in length and was anchored by words that described extremes
sensations (Hayes and Patterson, 1921). The scale ranged from 0
on the left (very cold, not comfortable at all, and not drunk at all)
to 10 on the right (very hot, extremely comfortable, and extremely
drunk). Participants completed the scales by placing a single
vertical line through each horizontal line and VAS score was
calculated by measuring, to the nearest millimeter, the distance
from the left edge to the mark placed by the subjects along the
scale. VAS were presented to the participants at the very end of
the test and only 10 of 14 VAS were collected because its use was
introduced into the protocol after the study had begun.

Data Processing
Cardiovascular, metabolic, and cutaneous variables were first
processed per minute and averaged over 5 min. Then, data

were averaged over 15 min intervals during the baseline pre-
drink period. After drink ingestion, data were averaged every
10 min for the first 20 min, and then every 20 min until the
end of test. For all the variables, the changes from baseline
were calculated as the absolute values averaged over 10 and
20 min intervals from which was subtracted the 30 min of
baseline measurement, and are presented as deltas (1). Relative
to baseline, early responses were averaged over 0–20 min and late
responses over 60–120 min post-drink and are presented as deltas
(i.e., average of absolute between 0–20 and 60–120 min post-
drink periods, respectively, minus the average over the 30-min
baseline period). CO was computed as the product of SV and HR.
Mean arterial BP (MBP) was calculated from brachial diastolic
BP (DBP) and systolic BP (SBP) measured from the right arm
as follow: MBP = DBP + 1/3(SBP−DBP). TPR was calculated as
MBP/CO. Double product (DP) was calculated as the product of
HR and SBP and provides valuable information about the oxygen
consumption of the myocardium (van Vliet and Montani, 1999).
Cardiac power output (CPO) was calculated as MBP × CO/451
(Fincke et al., 2004). Mean BrAC between 20 and 120 min post-
ingestion (BrAC[20−120] min) was calculated as the area under the
concentration–time curve (AUC) divided by 100 min, with AUC
computed by the trapezoid method.

Statistical Analysis
All values are reported as mean± SEM unless otherwise specified.
Statistical analysis was performed using statistical programs:
(i) Statistix version 8.0, Analytical Software, St. Paul, MN,
United States and (ii) GraphPad Prism, version 7, GraphPad
software, Inc., La Jolla, CA, United States. Testing for normal
distribution was performed using D’Agostino and Pearson
Omnibus normality test. Statistical analysis was performed
by two-way ANOVA for repeated measures with time and
temperature (cold and hot) as within-subject factors. When
significant differences were found, the effects of each drink
temperature over time were analyzed by comparing values at
each time point over the post-drink period with the basal
values recorded before drinking. Dunnett’s multiple comparison
post hoc testing was used to test for changes over time from
baseline levels. Difference in BrAC data between drink conditions
was tested by using Student’s paired t-test. Sex differences
in BrAC for each drink condition were assessed by Student’s
unpaired t-test. For all tests, significance was set at p < 0.05 (two-
tailed). Pearson and Spearman correlation analysis were used to
determine the association between mean BrAC[20−120] min and
body composition measurements.

RESULTS

Breath Alcohol Concentration and
Correlation With Body Composition
Time course of mean BrAC (h) after cold and hot wine
ingestion in 14 subjects is presented in Figure 2. Firstly, the
time to peak ethanol concentration was similar after both drink
temperatures and was attained after 20 min post-ingestion.
BrAC[20−120] min were similar after cold (0.33 ± 0.01h) and
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FIGURE 2 | (A) BrAC over time after alcohol ingestion in the 14 subjects.
(B) BrAC data were separated by sex (seven men: solid lines and seven
women: dotted lines) for both drink temperatures of ingestion (blue lines: cold
wine; red lines: hot wine). Area under the concentration–time curve for BrAC
between 20 and 120 min post-drink ingestion, i.e., mean BrAC[20-120] min (h)
was indicated according to sex and drink conditions, with corresponding
p-values computed by unpaired t-test. All data are mean ± SEM. #p < 0.05
significant difference between men and women (unpaired t-tests).

hot (0.32 ± 0.01h; p = 0.68) wine ingestion when pooling all
14 subjects (Figure 2A) or when analyzing results from men
or women separately. However, when separating data by sex,
BrAC[20−120] min was significantly higher in women compared
to men after cold wine (0.37 ± 0.02h vs. 0.30 ± 0.02h,
respectively; p = 0.037), with a tendency toward greater values in
women in response to hot wine (0.35± 0.02h vs. 0.30± 0.01h;
p = 0.068; Figure 2B). Assessment of body composition in
our participants revealed that compared to men, most of
the women have lower FFM, whether those parameters were
expressed in absolute (p < 0.0001) or when adjusted by body
weight (p < 0.01). In addition, women had higher body FM

and percent body fat (p < 0.05 and p < 0.01, respectively)
than men.

Correlation analyses between mean BrAC over the 20–
120 min post-drink period and parameters of body composition
are presented in Figure 3. No correlation was found between
BrAC and body weight in either drink condition. However,
BrAC[20−120] min tended to be negatively correlated with FFM
and percent FFM, and seemed positively associated with FM and
percent body fat.

Cardiovascular Responses
Cardiovascular, metabolic, and thermic parameters at baseline
are summarized in Table 1 and were similar between the two
experimental sessions. Time course of changes (left panels A–D)
and mean changes over 0–20 min and 60–120 min post-drink
periods (right panels E–H) for cardiovascular and metabolic
variables are shown in Figures 4A–H, 5A–H, 6A–H. Ingestion of
mixed wine at two different temperatures (cold and hot) resulted
in significant interaction effects (time × wine temperature,
p < 0.05) for all cardiovascular parameters except for CPO and
EE. The differences due to drink temperature were mostly seen
during the early period (0–20 min) whereas the late responses
(60–120 min) were similar between the two conditions.

Within the first 20 min post-drink, MBP was transiently
increased after cold wine compared to hot wine (+4.4 ± 0.9 vs.
+1.1± 0.6 mmHg, respectively; p < 0.01, Figure 4E). Then, MBP
returned around baseline values for both drink conditions. In
the first 10 min after cold ingestion, we observed a significant
short-lasting drop in HR below baseline (−3.1 ± 1 beats min−1;
p < 0.05), while HR instantly increased after hot wine
(+3.5 ± 0.7 beats min−1; p < 0.05). Twenty minutes after
ingestion of either drink temperature, HR gradually increased

TABLE 1 | Baseline cardiovascular and metabolic data recorded before wine
ingestion in 14 subjects.

Cold wine Hot wine p-value

SBP (mmHg) 108.0 ± 2.4 105.8 ± 1.7 NS

MBP (mmHg) 80.8 ± 1.9 79.1 ± 1.6 NS

DBP (mmHg) 67.4 ± 1.9 65.9 ± 1.6 NS

Heart rate (beats min−1) 62.1 ± 1.9 62.3 ± 3.0 NS

DP (mmHg beats min−1) 6695 ± 216 6578 ± 311 NS

Stroke volume (ml) 82.1 ± 2.5 81.4 ± 1.9 NS

Cardiac output (l min−1) 5.07 ± 0.16 5.03 ± 0.18 NS

TPR (mmHg min l−1) 16.2 ± 0.7 16.0 ± 0.6 NS

Cardiac power output (watt) 0.91 ± 0.03 0.88 ± 0.04 NS

Baroreflex sensitivity (ms mmHg−1) 23.7 ± 2.0 23.1 ± 2.1 NS

HF_RRI_LN (ln ms2) 6.59 ± 0.25 6.76 ± 0.28 NS

Energy expenditure (kJ min−1) 4.55 ± 0.15 4.55 ± 0.15 NS

Respiratory quotient 0.85 ± 0.01 0.83 ± 0.01 NS

Skin blood flow (AU) 40.1 ± 1.5 42.8 ± 2.2 NS

Hand temperature (◦C) 34.0 ± 0.4 33.7 ± 0.5 NS

Data are mean± SEM. Systolic blood pressure (SBP), mean blood pressure (MBP),
diastolic blood pressure (DBP), double product (DP), total peripheral resistance
(TPR), and natural logarithmic transformation of high-frequency power components
of RR intervals (HF_RRI_LN). NS, not significant; AU, arbitrary units.
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FIGURE 3 | Correlation analysis for seven men ( , N) and seven women (#, 1) between mean BrAC[20-120] min after cold (left panels, blue symbols) and hot (right
panels, red symbols) wine ingestion and body weight (A), fat-free mass in kg (B), percent fat-free mass (C), fat mass in kg (D), and percent body fat (E). Regression
lines (—), equations of the linear regressions, correlation coefficients (r), and p-values were obtained for 14 subjects.
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FIGURE 4 | (A–D) Time course of the changes in MBP, heart rate (HR), cardiac output (CO), and total peripheral resistance (TPR) presented as delta (i.e., absolute
changes relative to baseline levels). (E–H) Mean responses averaged over 0–20 and 60–120 min post-drink periods presented as delta (i.e., average over 0–20 and
60–120 min post-drink minus the average over the 30-min baseline period, respectively). Drinks: cold wine ( , ); hot wine (N, ). Values are mean ± SEM. Symbols
for ANOVA analysis: †, time effect; @, temperature effect; and $, time × temperature interaction effects. ∗Significant difference over time from baseline values.
#Significant difference between drink conditions (cold vs. hot). The level of significance for all symbols was mentioned as follows: one symbol (p < 0.05), two
symbols (p < 0.01), and three symbols (p < 0.001).
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above baseline levels and remained elevated until the end of test.
Correlation analysis indicated no association between changes in
MBP and changes in HR over the first 0–10 min after cold wine
(r = 0.19, p = 0.52; Figure 7). In addition, the changes in HR were
not correlated to subjects’ body weight for both drink conditions.
The time course of the changes in CO was very similar to the
one of HR, with a sustained increase during the late phase. In
the first 10 min after cold wine ingestion, TPR showed an initial
rise above baseline (+1.42 ± 0.25 mmHg min l−1; p < 0.05)
while TPR was unchanged with hot wine. Over time, systemic
resistance fell below baseline levels for both drink conditions but
the decline in TPR was detected earlier with hot wine (t = 20
min) than with cold wine (t = 50 min) (Figure 4D). Both
drink temperatures increased DP and CPO above baseline, but
DP tended to be more elevated with hot wine over 0–20 min
average (p = 0.058; Figure 5E). Autonomic responses differed
significantly between drink conditions (p < 0.001) within the
first 20 min following wine ingestion but not in the second
hour (Figures 5G,H). Shortly after drinking hot wine, BRS
and HF_RRI_LN significantly dropped below baseline levels
and remained low during the entire post-drink period. On the
contrary, BRS and HF_RRI_LN were both increased in the first
20 min after cold wine (Figures 5C,D) and then, progressively
decreased below baseline, reaching values of the hot condition.

Metabolic and Thermic Responses
For metabolic and cutaneous parameters, the changes over time
in response to wine ingestion are shown in Figure 6. Both
cold and hot wine ingestion led to a significant increase in EE
above baseline (p < 0.05) with a tendency for EE to be more
elevated in the early phase with cold temperature (ANOVA
temperature effect, p = 0.08) compared to hot (+7.9% vs. 5.3%,
respectively; panel E), but not during the second hour of the
test. Regarding early perceived thermal sensations just after
drink ingestion, participants felt cooler after drinking cold wine
whereas they felt warmer after hot wine (VAS score 4.3 ± 0.8 cm
vs. 7.4 ± 0.5 cm, respectively; p = 0.008). Immediately after
cold wine ingestion, 6 out of 10 subjects felt a sensation of cold
that was alleviated by a blanket that was made available for
thermal comfort. Both drink temperatures led to a significant
decrease in RQ relative to baseline (p < 0.05). However, the
drop in RQ seemed more pronounced with cold wine than
hot wine (overall mean 0–120 min = −0.060 ± 0.009 vs.
−0.046± 0.004, respectively; p = 0.12) but no statistical difference
was found. Time course of the early changes in SkBf and
hand temperature differed according to the temperature of the
drinks. SkBf and hand temperature were initially and significantly
reduced after cold wine whereas they were augmented with hot
wine (p < 0.001; panels G and H). After 30 min post-ingestion, we
observed a subsequent rise in those parameters with both drink
temperatures.

DISCUSSION

Considering the lack of in vivo studies comparing the effects
of a cold versus a hot alcoholic beverage on cardiovascular and

metabolic responses, it was important to test the impact of
drink temperature on alcoholemia and on the cardiometabolic
responses to alcohol. Our major findings showed that (1) drink
temperature of mixed wine had no effect on alcoholemia; (2)
cardiometabolic responses to mixed wine mostly differed in the
early phase following ingestion. By contrast, late responses were
similar between cold and hot mixed wine ingestion, underlying
the typical effect of alcohol and sugar intake on the cardiovascular
system; (3) consuming alcohol at a hot temperature seemed to
potentiate vascular effects as it induces early vasodilation and
rapidly increases SkBf and hand temperature.

Alcohol Absorption in Response to Cold
vs. Hot Wine Ingestion
Since alcohol absorption and elimination could be dependent
on gastric emptying rate (Holt et al., 1980), we tested whether
the drinking temperature would influence BrAC responses. As
shown in Figure 2, peak BrAC at t = 20 min post-ingestion
and time course of BrAC values (n = 14; panel A) were similar
after ingestion of both cold and hot mixed wine, suggesting
that the temperature at which the alcohol was ingested did not
influence alcohol absorption. Our findings are in line with a study
(McArthur and Feldman, 1989) which reported that 360 ml of hot
(58◦C), body temperature (37◦C), and cold (4◦C) coffee infused
in the stomach had similar effects on gastric emptying. Although
the effects of meal and drink temperatures on gastric emptying
have been studied by others (Sun et al., 1988; Mishima et al.,
2009), conflicting results still exist.

The pharmacokinetics of ethanol, i.e., BrAC profile over time,
was similar for both cold and hot wine temperatures as well as
for each sex group indicating that the temperature of mixed wine
has no effect on alcoholemia. Moreover, women tended to have
higher BrAC levels in response to alcohol compared to men, as
previously reported (Frezza et al., 1990); we showed here that
this finding was independent of drink temperature. Ethanol is
distributed in free body water which represents around 73% of
FFM (Fuller et al., 1992), the solubility in fat and bones being
negligible. Because ethanol was given per kg of body weight
in our study and most women had a lower percent FFM than
men, this could explain the tendency for the correlation between
BrAC and FFM, and why women have higher BrAC levels than
men. However, body composition did not fully explain BrAC
responses. Rather, alcoholemia can also be influenced by sex
differences in gastric aldehyde dehydrogenase activity and first-
pass metabolism, both of which are reduced in women (Frezza
et al., 1990; Baraona et al., 2001).

Early Temperature-Induced
Cardiovascular and Cutaneous
Responses
Based on our results, we can distinguish early and late
cardiometabolic changes in response to different temperatures
of wine ingestion. As thermosensitive receptors have been
described in the gastrointestinal tract of man (Villanova et al.,
1997), thermal stimuli from cold and hot wine could initiate
early temperature-induced cardiovascular changes until beverage
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FIGURE 5 | (A–D) Time course of the changes in double product (DP), cardiac power output (CPO), baroreflex sensitivity (BRS), and high-frequency power
components of RR intervals (HF_RRI_LN) presented as delta (i.e., absolute changes relative to baseline levels). (E–H) Mean responses averaged over 0–20 and
60–120 min post-drink periods presented as delta (i.e., average over 0–20 and 60–120 min post-drink minus the average over the 30-min baseline period,
respectively). Drinks: cold wine ( , ); hot wine (N, ). Values are mean ± SEM. Symbols for ANOVA analysis: †, time effect; @, temperature effect; and $,
time × temperature interaction effects. See legend of Figure 4 for level of significance.
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FIGURE 6 | (A–D) Time course of the changes in energy expenditure, respiratory quotient, skin blood flow, and hand skin temperature presented as delta (i.e.,
absolute changes relative to baseline levels). (E–H) Mean responses averaged over 0–20 and 60–120 min post-drink periods presented as delta (i.e., average over
0–20 and 60–120 min post-drink minus the average over the 30-min baseline period, respectively). Drinks: cold wine ( , ); hot wine (N, ). Values are mean ± SEM.
Symbols for ANOVA analysis: †, time effect; @, temperature effect; and $, time × temperature interaction effects. See legend of Figure 4 for level of significance.
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FIGURE 7 | Correlation analysis between the changes in mean HR and the
changes in MBP during the first 10 min after wine ingestion for seven men ( )
and seven women (#). The equation of the linear regression, coefficient
correlation (r), and p-value are provided for 14 subjects.

temperature equilibrate to body temperature. In previous
studies, the equilibrium of beverage’s temperature in the
body was achieved 15–30 min after ingesting cold or warm
drinks of equivalent volumes (Sun et al., 1988; McArthur
and Feldman, 1989). Interestingly, most cardiovascular changes
observed in our study between cold and hot wine were
detected within this period, and coincided with peak BrAC
(t = 20 min).

The initial temperature-related decrease in HR, and increases
in TPR and MBP after cold wine are consistent with previous
results from our lab showing similar changes in those variables
after drinking alcopops (vodka with sugar, 400 ml at 10◦C)
(Maufrais et al., 2017). Since we did not observe any association
between mean changes in HR and changes in MBP over 10 min
post-drink, the early HR decrease after cold wine could be
the result of temperature-induced direct vagal reflex responses
rather than baroreflex activation related to the initial increase
in MBP. The immediate reduction in SkBf and skin hand
temperature observed in the extremities could be related to
the activation of thermoreceptors (temperature-sensitive afferent
neurons) in the upper gastrointestinal tract induced by internal
cooling after cold drink ingestion. Indeed, evidence of visceral
thermoreceptors in humans (Morris et al., 2017) and opposite
gastric reflexes induced by cold and hot stimuli, respectively
(Villanova et al., 1997), support the potential role of these
thermoreceptors in the modulation of HR and vasomotor activity
by fluid temperature.

By contrast, hot wine caused an immediate rise in HR that
was accompanied by a constant decrease in parasympathetic
activity indices (BRS and HF_RRI_LN) throughout the test.
Heat-activated thermoreceptors seemed to have different effects
from cold temperature on the cardiovascular system, since
visceral warming (fluid at 45◦C) caused a gastric thermoreflex in

rats (tachycardia, hypotension) (Rozsa et al., 1988). As opposed
to cold wine, the early decrease in TPR and the parallel increase
in SkBf observed after hot wine ingestion suggest an early and
sustained peripheral vasodilation, which can explain the steady
increase in skin temperature during the whole test. Therefore,
hot temperature of alcohol seems to accelerate and exacerbate the
peripheral vasodilator effect of red wine (Barden et al., 2013). It
is worth pointing out that the physical and chemical properties
of our wine should not have been altered by moderate heating
(55◦C) since wine heated at much higher temperature (75 and
125◦C) preserved its in vitro vasodilator activity in the isolated
rat and guinea pig aorta compared to wine without thermal stress
(Mudnic et al., 2011).

Late Alcohol-Induced Cardiovascular
Responses
The cardiovascular changes observed after drinking cold or hot
mixed wine were similar for all variables measured in the late
phase of ingestion (60–120 min). These late changes are in
accordance with previous studies exploring the acute effects of
alcohol, although the temperature of alcohol is rarely mentioned
in the literature and assumed to be at room temperature. After
20 min post-ingestion, when the ingested liquids should have
reached body thermal equilibrium (McArthur and Feldman,
1989), all the variables measured in our study followed the same
trend, regardless of initial drink temperature.

Alcohol, particularly in red wine, is known to have vasodilator
effects in both normotensive and hypertensive individuals
(Porteri et al., 2010; Barden et al., 2013). While ingestion of mixed
wine caused a decrease in peripheral resistance, there was little
impact on MBP, which could be explained by increases in HR
and CO. Many studies on alcohol at similar or higher doses also
do not report changes in BP (Abdel-Rahman et al., 1987; van de
Borne et al., 1997; Spaak et al., 2008), whereas others showed a
direct pressor effect of alcohol (Grassi et al., 1989; Iwase et al.,
1995). Our results showing a decrease in HR variability and BRS
are consistent with other studies reporting diminished BRS and
cardiac vagal tone indices (Abdel-Rahman et al., 1987; Koskinen
et al., 1994; Reed et al., 1999; Levanon et al., 2002; Spaak et al.,
2010; Buckman et al., 2015). Lastly, the capacity of alcohol in
vasodilating and stimulating thermogenesis may contribute to
the elevated SkBf and skin hand temperature seen in our study.

Aside from the effects of alcohol, we should also consider
the contributory effects of the carbohydrates that were added
to the wine (35 g of carbohydrates as fruit juice and sucrose),
since we can neglect the total amount of oligosaccharides in
the Tempranillo red wine itself, which ranges from 0.075 to
0.3 g/l (Quijada-Morin et al., 2014). Carbohydrate administration
could stimulate the sympathetic nervous system activity, with
insulin being a potential mediator for this activation (Young and
Landsberg, 1982). A previous study from our lab indicated that
ingestion of water with sucrose (60 g) at 22◦C increased CO,
decreased TPR but had no impact on MBP (Grasser et al., 2014).
We have also observed that compared to vodka, the combination
of vodka (given at 0.4 g ethanol/kg) and sucrose (48 g) induced
a greater decrease in MBP and TPR as well as a greater increase
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in CO, HR, SkBf, and hand temperature (Maufrais et al., 2017),
underlying the additive effect of carbohydrates mixed with
alcohol on the measured parameters.

Metabolic Responses to Cold Versus Hot
Wine Ingestion
In our study, both drink temperatures increased resting EE
with a tendency toward a more pronounced effect with cold
(+7.9%) than hot wine (+5.3%) in the first 30 min after ingestion.
Consistent with previous studies from our laboratory (Brown
et al., 2006; Girona et al., 2014), there is a trend for cold drinks
to increase resting EE to higher levels, maybe contributing to
warming the cold fluid ingested. Compared to room- or body-
temperature water, resting EE was reported to be increased
by less than 5% after ingestion of cold (3◦C) distilled water
(Brown et al., 2006) or tap water (Girona et al., 2014). Unlike
water, which is calorie-free and has a small thermogenic effect
(Charriere et al., 2015), the higher EE increase in response to
mixed wine is possibly related to the thermogenesis of ethanol
and sugars contained in our drink. The theoretical energy
required to warm cold water from 3 to 37◦C would be 57 kJ
(400 ml × 4.186 J/g◦C × 34◦C). Despite the presence of these
energetic substrates (alcohol and sugars), the total increase in
EE during the first 30 min after cold wine was only ∼12 kJ,
which is much lower than the energy cost of warming the cold
fluid. Therefore, the warming of cold wine seems more related
to heat preservation due to thermoregulatory reflex mechanisms
leading to peripheral skin vasoconstriction to avoid heat-loss.
This assumption is consistent with the lower SkBf seen in our
study in subjects after drinking cold wine, but not hot wine.
This is in accordance with a study where compared to a fluid at
37◦C, ice slurry ingestion led to important reductions of heat loss
from the skin and greater heat storage during exercise in the heat
(Morris et al., 2016).

As previously described (Schutz, 2000), ethanol per se has
also a thermogenic effect since its energy density is 7.1 kcal/g
of ethanol. Small doses of alcohol in the form of red wine have
been shown to increase oxygen consumption (Rosenberg and
Durnin, 1978) and to enhance resting metabolic rate in social
drinkers (Klesges et al., 1994). Using the ventilated hood system,
the acute intake of alcohol at similar doses (20–30 g) was shown
to enhance metabolic rate by 4–7% over baseline in fasted subjects
(Weststrate et al., 1990; Suter et al., 1994), which is in the
range of our results. In addition to ethanol, the caloric load of
carbohydrates added to the wine can contribute to the increase
in thermogenesis, as stated elsewhere (Welle et al., 1981; Acheson
et al., 1984; Jequier, 1984).

Regarding substrate oxidation, the interpretation of our
results in relation to ethanol intake must be taken with
caution. Similar drops in RQ were observed after drinking

beer (Esteban-Fernandez et al., 2014) and alcohol ingested at
different concentrations increased O2 consumption but not
CO2 production, leading to a lower RQ (Weststrate et al.,
1990). However, this lesser RQ in response to alcohol does not
necessarily indicate an increase in lipid oxidation since ethanol
oxidizes with a RQ around 0.66 (Schutz, 2000).

CONCLUSION

We provided here a comprehensive comparison of a heated vs.
cooled alcoholic beverage effects on the cardiovascular system
and metabolism in the same healthy volunteers in a randomized
crossover design. The new findings reside in the fact that the
temperature of wine consumed had no influence on the time
course of BrAC in either sex. Women presented, however,
higher alcohol levels than men, which could be partly explained
by difference in body composition. The drinking temperature
altered mostly cardiovascular responses in a time-dependent
fashion, with fluid temperature no longer playing a role in the
late responses. Within the first 20 min after alcohol ingestion, we
identified differing cardiovascular responses that may be related
to drink temperature, with cold mixed wine inducing an initial
decrease in HR and an increase in BRS in contrast to the hot
drink. Consuming alcohol at a hot temperature seemed also
to potentiate vascular effects as it induces early vasodilation
and rapidly increases SkBf and hand temperature. The early
changes with hot mixed wine may be of clinical relevance when
associated with a meal, which in itself increases HR and promotes
vasodilation. This could be particularly true in the elderly subjects
who are prone to orthostatic and postprandial hypotension.
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