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The effect of CO2-driven ocean acidification (OA) on marine biota has been extensively
studied mostly on a single stage of the life cycle. However, the cumulative and
population-level response to this global stressor may be biased due to transgenerational
effects and their impacts on physiological plasticity. In this study, we exposed adult
mussels Mytilus chilensis undergoing gametogenesis to two pCO2 levels (550 and
1200 µatm) for 16 weeks, aiming to understand if prolonged exposure of reproductive
individuals to OA can affect the performance of their offspring, which, in turn, were
reared under multiple stressors (pCO2, temperature, and dissolved cadmium). Our
results indicate dependence between the level of pCO2 of the broodstock (i.e., parental
effect) and the performance of larval stages in terms of growth and physiological rates,
as a single effect of temperature. While main effects of pCO2 and cadmium were
observed for larval growth and ingestion rates, respectively, the combined exposure
to stressors had antagonistic effects. Moreover, we found a suppression of feeding
activity in post-spawning broodstock upon high pCO2 conditions. Nevertheless, this
observation was not reflected in the final weight of the broodstock and oocyte diameter.
Due to the ecological and socioeconomic importance of mussels’ species around
the globe, the potential implications of maternal effects for the physiology, survival,
and recruitment of larvae under combined global-change stressors warrant further
investigation.
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INTRODUCTION

The ocean is a natural sink for carbon dioxide (CO2);
however, the increase of anthropogenic emissions is changing
the ocean chemistry by lowering the seawater pH, and causing a
reduction in the availability of carbonates (CO3

2−) and biogenic
calcium carbonate (CaCO3), a process widely known as ocean
acidification (OA; Caldeira and Wickett, 2003; Feely et al., 2009;
Gattuso and Hansson, 2011).

OA has been reported as a potential problem for calcifying
organisms, limiting the production of biogenic calcium carbonate
forms (Omega-� aragonite and calcite) and promoting their
dissolution (e.g., Langdon et al., 2000; Caldeira and Wickett,
2003; Langdon and Atkinson, 2005; Kleypas et al., 2006;
Hiebenthal et al., 2013). In the last decades, most of the research
efforts studying OA have focused on its effects on marine biota
(e.g., Gattuso and Hansson, 2011; Parker et al., 2013), reporting
that early stages (embryos and larvae) of mollusks would be
more sensitive to this global stressor (e.g., Kurihara, 2008; Gazeau
et al., 2010; Waldbusser et al., 2014). However, most studies
have focused on a single life stage, suggesting an acute exposure
response at high pCO2 levels, without considering the effect of
OA as a chronic process that can impact the biology of species
throughout its life history (Welch and Munday, 2017) and modify
the phenotypic traits of the offspring. This inheritance process
is known as transgenerational plasticity and on occasion can
constitute an adaptive mechanism transferred from parents to
offspring exposed to particularly rigorous or stressful conditions,
especially during gametogenesis process (Hamdoun and Epel,
2007; Byrne, 2011; Munday, 2014).

Different studies have been carried out on the effect of
high pCO2 on the offspring of mollusks, suggesting a positive
carryover of pCO2. For instance, a recent study where adults
of the clam Ruditapes philippinarum were exposed to high
pCO2 levels demonstrated an improvement in the offspring’s
growth performance (Zhao et al., 2017). Similarly, larvae of
the oyster Saccostrea glomerata grew to larger sizes and at a
faster rate than those from lines reared under low CO2-control
conditions (Parker et al., 2012). Similarly, adult oysters and
their larvae have shown the same performance and higher
capacity to modulate extracellular pH upon OA scenarios (Parker
et al., 2015). The mussel Mytilus edulis not only increased
the calcification performance in larvae stages reared at high
pCO2 levels (Thomsen et al., 2017), but also changed their
shell ultrastructure as an adaptive response, by precipitating
only calcite, the more resistant form of CO3

2− (Fitzer et al.,
2014). Nevertheless, transgenerational effects are not always
positive. For instance, Hettinger et al. (2012) showed in Olympia
oyster that OA was transmitted strongly across life stages
and determined a deleterious impact manifested once larvae
metamorphose and settle.

In a changing-ocean scenario, the interaction among multiple
biotic and abiotic factors (Harley et al., 2006), and the organisms’
response to a combination of stress factors could be additive,
antagonistic, or synergistic (Crain et al., 2008; Todgham and
Stillman, 2013). The evidence of transgenerational plasticity
in physiological performance in mollusks exposed to multiple

stressors under OA scenarios is relatively scarce. Studies that
exposed adults to additional factors in OA regimes indicate more
sensitive larvae in the clam Mercenaria mercenaria, the scallop
Argopecten irradians (Griffith and Gobler, 2017), and S. glomerata
(Parker et al., 2017a) exposed to food limitation (Griffith and
Gobler, 2017; Parker et al., 2017a), harmful algae (Griffith and
Gobler, 2017), and low-salinity stress (Parker et al., 2017b).

Farming of Chilean mussels (Mytilus chilensis) is one of
the leading industries in mussel production worldwide (FAO,
2014). Nevertheless, a significant problem for the mussel
farming industry is the cadmium concentrations that regularly
exceed the European standard (Figueroa, 2008; Sernapesca,
2015), which can lead to a rejection of global exports (Codex
Alimentarius Commission [CAC], 2009). In the global change
context, OA and temperature can modulate the sensitivity to
trace-metal toxicity (Sokolova and Lannig, 2008; Nikinmaa,
2013; Ivanina and Sokolova, 2015). A synergistic effect of
enhanced cadmium toxicity has been reported from experiments
combining temperature, acidification, and cadmium as stressors
for the scallop Adamussium colbecki (Benedetti et al., 2016) and
the mediterranean mussel Mytilus galloprovincialis (Nardi et al.,
2017).

Considering that variations in larval development can
substantially impact the recruitment of mollusks (Calabrese et al.,
1977; Machado and Lopes-Lima, 2011), hence the renewal and
persistence of natural banks, the objective of this study was to
assess the transgenerational carryover effect of OA in M. chilensis.
Adult mussels conditioned for 4 months under current and
projected future pCO2 levels were exposed to the interaction of
temperature and sub-lethal concentrations of dissolved cadmium
as additional stressors in a full cross-factorial design. The
physiological traits considered as response variables in our study
were egg diameter, larval size, and ingestion rates (IRs) in both
larvae and adult mussels. Since feeding processes during early life
stages of marine invertebrates are likely to be more sensitive to
OA than in adults (e.g., Findlay et al., 2008, 2010), the influence
of OA on feeding may explain observed impacts on these
physiological traits and on other energy dependent processes
including calcification (Vargas et al., 2013), and therefore it
was considered a highly relevant physiological traits in our
study.

MATERIALS AND METHODS

Animal Collection
Adult specimens of the Chilean mussel, M. chilensis (67 ± 3 mm
in shell length), were obtained from culture ropes (5 m
depth) at a mussel-farming center located in Vilupulli, Chiloé,
southern Chile (42◦ 35’ 35”S; 73◦ 47’ 18”W) during November
2015. The mussels were transported under wet conditions to
the experimental laboratory at the University of Concepción’s
Marine Biology Research Station in Dichato (Chile) and
acclimatized for 3 weeks in 30 cm × 40 cm tanks filled
with filtered seawater (0.1 µm + UV, pH = 8.1 ± 0.01,
temperature = 13 ± 0.01◦C, and salinity = ∼31 psu) and
constant aeration. Throughout this acclimation period, mussels
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were fed daily with a phytoplankton suspension at saturation
level (∼40 × 106 cell mL−1, Phytogold-S, Castillo et al., 2017).
Seawater was carefully renewed every 2 days.

Seawater pCO2 Manipulation and
Carbonate System Monitoring
To obtain the two different levels of seawater pCO2
(550–1200 µatm), dry air with pure CO2 was blended into
each target concentration using mass flow controllers (MFCs)
for both air and CO2. For each experimental tank, temperature,
pH, and salinity were monitored every day while total alkalinity
(TA) was measured every 10 days (Table 1). Samples for pH
were collected in 50 mL syringes, avoiding formation of bubbles
during collection and handling of the sample, and immediately
transferred to a 25 mL thermostated closed cell at 25.0 ± 0.1◦C
for standardization (DOE, 1992; Torres et al., 2013), using a
Metrohm R© 713 pH-meter with a glass combined double junction
Ag/AgCl electrode (Metrohm model 6.0258.600). Samples for
TA were stored in 500 mL borosilicate bottles (Pyrex, Corning R©)
and poisoned with 50 µL of saturated HgCl2 solution and
with ground-glass stoppers lightly coated with Apiezon L R©

grease. TA was determined using the open-cell titration method
(Dickson et al., 2007), by using an automatic Alkalinity Tritrator
Model AS-ALK2 Apollo SciTech. The AS-ALK2 system was
equipped with a combination pH electrode (8102BNUWP,
Thermo Scientific, United States) and temperature probe
for temperature control (Star ATC probe, Thermo Scientific,
United States) connected to a pH-meter (Orion Star A211
pH meter, Thermo Scientific, United States). All samples were
analyzed at 25◦C (±0.1◦C) with temperature regulation using
a water-bath (Lab Companion CW-05G). The accuracy was
controlled against a certified reference material (CRM, supplied
by Andrew Dickson, Scripps Institution of Oceanography, San
Diego, CA, United States) and the TA repeatability was 2–3 µmol
kg−1 in average. Temperature and salinity were measured
using an Oakton SALT 6 + handheld salinity meter with probe
(Salt6+, Oakton R©, accuracy: ±1% and ±0.5◦C, respectively).
Temperature and salinity data were used to calculate the rest
of the carbonate system parameters (e.g., pCO2, CO3

2−) and
the saturation stage of omega aragonite (�aragonite) and calcite
(�calcite). Analyses were performed using CO2SYS software

for MS Excel (Pierrot et al., 2006) set with Mehrbach solubility
constants (Mehrbach et al., 1973) refitted by Dickson and Millero
(1987). The KHSO4 equilibrium constant determined by Dickson
(1990) was used for all calculations.

Preliminary Toxicity Experiment
(Experiment 1#)
A preliminary experiment was carried out to determine the levels
of cadmium selected for the transgenerational carryover and
multiple-driver experiment. Broodstock were induced to spawn
through heat shock technique (Bayne, 1976). Two females and
two males were effectively spawned per experiment. The gametes
were homogenized and arranged in densities of 10 oocytes L−1 in
the different treatments and then, we have added a concentration
of spermatozoids maintained at the same pCO2 condition of
the corresponding broodstock. Larvae were obtained following
Ruiz et al. (2008) and Toro et al. (2012). A larval culture was
performed at initial density of 10 larvae mL−1 in 1 L acid-washed
borosilicate bottles (Duran Schott R©) during 21 days, and at two
pCO2 levels: (i) present conditions in the mussel farming area
(control: 550 µatm, n = 3) and (ii) the worst case scenarios (IPCC
A2 emission scenario) predicted for 2100 (1200 µatm, n = 3;
Meinshausen et al., 2011; Figure 1). Present pCO2 conditions
were established based on a time-series analysis of data collected
by an oceanographic buoy deployed by the Center for the Study of
Multiple Drivers on Marine Socio-Ecological Systems (MUSELS)
in the same mussel-farming site1 (Vargas et al., 2017). We have
assumed the projections for 2100 in this coastal waters, as the
additive effect of the difference expected for the open ocean in
equilibrium with the projected atmospheric levels (from∼400 to
1000 µatm = 600 µatm), which for coastal waters (550 µatm)
corresponds to an average value between 1150 and 1200 µatm.
During this larval rearing experiment, seawater was renewed
every two days (0.1 µm + UV) using pre-equilibrated pCO2
water. Temperature was controlled by a thermoregulated bath
(15◦C) and larvae fed daily ∼3.0 µg chlorophyll a (Chl-a) L−1

(∼400.000 cells mL−1) of Isochrysis galbana.
After the 21 days rearing, a 24-h bioassay was performed

to assess feeding rates of larvae (see section “Ingestion Rate

1www.ceazamet.cl

TABLE 1 | Seawater characteristics (mean ± SD) used to rear both adult and larval stages of M. chilensis during the experimental period.

CO2 system parameters Experimental treatments (nominal levels of pCO2)

550 (Exp 1#) 1200 (Exp 1#) 550 (Exp 2#) 1200 (Exp 2#) 550 (Exp 2#) 1200 (Exp 2#)

pH at 25◦C (pH units) 7.80 ± 0.03 7.50 ± 0.03 7.80 ± 0.05 7.50 ± 0.04 7.75 ± 0.05 7.44 ± 0.03

pH in situ (pH units) 7.95 ± 0.03 7.63 ± 0.03 7.94 ± 0.05 7.60 ± 0.04 7.95 ± 0.06 7.62 ± 0.04

Temperature (◦C) 15.00 15.00 15.00 15.00 11.00 11.00

Salinity (psu) 29.00 29.00 30.00 30.00 30.00 30.00

TA (µmol kg−1) 2135.60 2156.51 2270.90 2252.50 2270.90 2252.50

pCO2 in situ (µatm) 493.81 ± 35.98 1114.84 ± 85.25 528.57 ± 69.53 1134.14 ± 108.02 514.07 ± 75.91 1151.55 ± 108.00

[CO32−] in situ (µatm kg−1) 109.09 ± 6.37 56.44 ± 3.83 118.13 ± 10.9 61.57 ± 5.15 104.76 ± 11.25 51.71 ± 4.47

�calcite 2.70 ± 0.16 1.71 ± 0.10 2.91 ± 0.27 1.51 ± 0.13 2.57 ± 0.28 1.27 ± 0.11

�aragonite 1.40 ± 0.09 0.88 ± 0.06 1.83 ± 0.17 0.96 ± 0.08 1.62 ± 0.17 0.80 ± 0.07
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FIGURE 1 | Schematic of Experiment #1, used to determine the feeding
response of 21 days old larvae rearing under two pCO2 levels (gray: 550 µatm
and dark: 1200 µatm), adding nominal concentrations of dissolved cadmium
(Cd+2: 0–0.01–1 and 10 µg L-1) in a 24-h bioassay. Four replicates were
considered for ingestion rate estimates (n = 4).

Experiments”) and exposed to a nominal concentration of
dissolved cadmium Cd+2: 0, 0.01, 1, and 10 µg L−1 added to
each pCO2 level. Four replicates were considered for IR estimates.
We have considered these ranges based on natural concentrations
observed in coastal environments along the Chilean coast and a
realistic polluted scenario (Neff, 2002).

Transgenerational Carryover and
Multiple Driver Experiment
(Experiment 2#)
Spawned adult mussels were stabilized for 1 week under
acclimation conditions (see above), and then moved into one of
two pCO2 levels (550 and 1200 µatm). Mussels were kept in eight
25 L tanks with five specimens each (mean density = 0.2 ind
L−1). Temperature was increased to 15◦C to promote gonadal
development (Lagos et al., 2012b). After 16 weeks of incubation
at these nominal pCO2 levels, each group of adult mussels
was induced to spawn maintaining the same low and high
pCO2 conditions. Fertilization and larval stages from each
group were reared at the pCO2 treatments, thus completing a
full cross-factorial design (2 × 2 × 2); i.e., two pCO2 levels
(550–1200 µatm), two nominal concentrations of dissolved Cd+2

(0–10 µg L−1), and two temperature levels representing the
spring–summer environmental range at the mussel farming site
(11–15◦C; Figure 2).

Fertilization and larval rearing were carried out in
1 L borosilicate bottles (three replicates per group, initial
density = 10 ind mL−1). Seawater was renewed every 2 days and
larval stages were fed daily at ∼3.0 µg Chl-a L−1 (∼400.000 cells
mL−1) of I. galbana.

Subsamples of hydrated oocytes were collected from each
pCO2 treatment and preserved in a 3% phosphate buffered
formalin solution for egg-diameter measurements using an
inverted microscope. At days 4, 8, and 11, subsamples of current
larvae rearing were also collected and fixed in 70% ethanol for
measurements of shell length and larval growth estimates. At
days 4 and 11, individuals were also collected for larval feeding
experiments.

Finally, spawned broodstock were returned to the culture
tanks and maintained at the same pCO2 conditioning levels
for three weeks, in order to compare the total weight (g), the
metabolically active tissue (g), and IR for both treatments after
this recovery time post-spawning.

Ingestion Rate Experiments
Ingestion rates were measured as Chl-a removal using a static
system the experimental procedure outlined by Coughlan (1969).
Clearance and ingestion-ratios calculations were conducted
according to Frost (1975) and modified by Marin et al. (1986).
For larval stages, 25 individuals were collected and transferred to
200 mL acid-washed polycarbonate bottles (0.13 ind mL−1) filled
with the corresponding treatment of pCO2 levels, temperature,
Cd+2 concentration, and subsequently fed with I. galbana
(∼3.0 µg Chl-a L−1). Three control bottles without larvae and
four bottles with larvae for each corresponding treatment were
incubated for approximately 20 h and periodically rotated by
hand to avoid particle sedimentation. Similar procedures were
followed for adult mussels, which were individually incubated
for 4 h in 2 L baskets with around 3 mL of dry food (∼7.0 µg
Chl-a L−1).

Ingestion rate was estimated as the change in food
concentration as indicated by Chl-a concentration. Upon
incubation, 100 mL subsamples were filtered (0.7 µm) and
extracted in acetone 95% at dark before the measurement
on a TD 700 Turner fluorometer (Strickland and Parsons,
1968). For adult feeding estimates, total wet weight (TW) and
buoyant weight (BW) were determined with an analytical balance
(±0.01 mg) to estimate the metabolically active tissue (TW–BW;
Lardies et al., 2017). IR in adult mussels was standardized per
metabolically active tissue (µg Chl-a g−1 h−1) and for larvae
(ng Chl-a larva−1 h−1). Negative IRs were not included in
our statistical analyses, and we always used a minimum of two
replicates.

Statistical Analyses
Two-way ANOVA was used to evaluate larvae IR tests
(preliminary toxicity experiment) and one-way ANOVA
for adult TW, MT, and oocyte diameter (transgenerational
experiment). Interaction between transgenerational carryover
(adult pCO2 exposure) and multiple drivers (pCO2, temperature,
Cd+2) on larval growth (shell length) were tested by factorial
nested ANCOVA with larval age (i.e., culture time) as covariate
and a factorial nested ANOVA for IRs adding larval age
as a factor. Factors analyzed were nested in adult pCO2
exposure. When the analysis showed significant interactions,
multiple comparisons were carried out using Tukey’s a
posteriori HSD test on each factor that showed significant
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FIGURE 2 | Schematic of Experiment #2, used to investigate the combined consequences of transgenerational effect and multiple stressors on M. chilensis larvae:
pCO2 (gray: 550 µatm and dark: 1200 µatm), temperature (11–15◦C), and cadmium (Cd0: 0 µg L-1 and Cd10: 10 µg L-1). (A) Adult acclimatization in two
pCO2 levels. (B) Schematic of larvae rearing (see section “Materials and Methods” for further details).

differences using a Bonferroni correction. Assumptions of
normality and homoscedasticity for the ANOVA’s test were
evaluated using the Kolmogorov–Smirnov and Bartlett tests,
respectively (Zar, 2010), and square-root transformation
was applied when necessary (Supplementary Material).
All analyses were carried out using Statistica version 7.0
software.

RESULTS

Preliminary Toxicity Experiment
(Experiment 1#)
The results of our acute physiological response experiment
with 21-days-old larvae evidenced that IRs were not
significantly different among pCO2 treatments, but the
24-h exposure to 10 µg L−1 Cd+2 significantly reduced the
IR in larval stages from both pCO2 levels (Figure 3 and
Table 2).

Transgenerational Carryover and
Multiple Driver Experiment
(Experiment 2#)
Physiological Response of Adult Mussels
Conditioning Upon High pCO2
The statistical comparison of the biological response in adult
mussels conditioned under high pCO2 is shown in Table 3.
Adult mussels conditioned during 4 months at two pCO2
levels did not exhibit significant post-spawning differences
in either total weight (Figure 4A) or metabolically active
tissue (Figure 4B). However, mean IR in the control group
(550 µatm) was significantly higher than under high pCO2
conditions (1200 µatm; Figure 4C), which in turn suggests

FIGURE 3 | Ingestion rate (mean ± SD) of M. chilensis larvae reared for 21
days under two pCO2 levels (550 and 1200 µatm) and exposed to four
nominal concentrations of dissolved cadmium in a 24-h bioassay.

TABLE 2 | Results of two-way ANOVA for testing variation in ingestion rates in
M. chilensis larvae reared for 21 days under two different pCO2 levels (550 and
1200 µatm) and exposed to nominal concentrations of dissolved cadmium (Cd+2:
0, 0.01, 1, and 10 µg L−1) in a 24-h bioassay.

Variable Factor F d.f./d.ftotal p-value Tukey post hoc
comparisons

Ingestion pCO2 0.41 1,24 0.53

Cd+2 6.43 3,24 <0.01 10 6= all

pCO2 × Cd+2 0.71 3,24 0.55

Bold values represent statistically significant p-value.

a metabolic depression and lower capacity for post-spawning
recovery in adult mussels. In both cases, oocyte diameters were
not significantly different from the pCO2 treatment exposure of
broodstock (Figure 4D).

Frontiers in Physiology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1349

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01349 October 15, 2018 Time: 12:45 # 6

Diaz et al. Transgenerational Effects on Mussel Physiology

TABLE 3 | Statistical results of one-way ANOVA of adult mussels at the end of the
experiment: total wet weight (g), metabolically active tissue (g), ingestion rate, and
oocyte diameter (µm) after 4 months exposure to two pCO2 levels (550 and
1200 µatm).

Variable Factor F d.f./d.ftotal p-value Tukey post hoc
comparisons

Total wet weight pCO2 4.50 1,13 0.61

Metabolically active
tissue

pCO2 2.86 1,7 0.13

Ingestion rate pCO2 15.18 1,6 <0.01 550 6= 1200

Oocyte diameter pCO2 1.43 1,126 0.23

Bold values represent statistically significant p-value.

Physiological Response of M. chilensis Larvae Upon
Transgenerational Effect and Multiple Stressors
Statistical comparisons of the effect of multiple stressors on larval
growth (shell length) and IRs under experimental conditions are
shown in Tables 4, 5. Larval shell length (Figures 5A–D) was
significantly different from broodstock conditioned to different
pCO2 levels, with larger larvae resulting from broodstock
exposed to high pCO2 condition, and larval stages cultured
upon low pCO2 levels. Moreover, the parental effect conditioned
the response of mussel larvae upon contrasting pCO2 and
temperature conditions (Table 4). Post hoc analysis indicated
evidence of larger shell sizes in offspring from broodstock

exposed to high pCO2 levels, and larval rearing under high
temperature and low pCO2 treatment.

On the other hand, cadmium had a non-significant effect on
larval size. A greater shell length in those larvae reared at low
pCO2 and non-Cd+2 additions was evidenced from the factorial
interactions. The interactions between pCO2 with temperature
and Cd+2 were non-significant in shell length of progeny.

Ingestion rates in larvae were also significantly related to pCO2
exposure in broodstock, and their interaction with temperature
and Cd+2. No differences were found in relation to larval rearing
at changing pCO2 conditions as observed in the preliminary
experiment on IRs (Figure 6). Post hoc tests showed lower
IRs in the offspring of high-pCO2 adults when reared at 11◦C
(Figure 6A) and an increase of IRs in larvae from adults
conditioned under control pCO2 levels and without Cd+2

exposure. Multistressor interactions only indicated significant
differences between temperature and larvae culture age, showing
a higher IR in 11-days-old larvae reared at 15◦C (Figure 6B),
the rest of the treatment combinations showed non-significant
differences (Figure 6).

DISCUSSION

Our results indicate that combinations of different stressors
found in the coastal ocean may interact antagonistically as far as

FIGURE 4 | Biological response of adult mussels under two pCO2 conditions (550 and 1200 µatm): (A) total wet weight, (B) metabolically active tissue,
(C) ingestion rate, and (D) oocyte diameter, after 4 months of experimental rearing in two pCO2 levels (550 and 1200 µatm; mean ± SD) and 3 weeks of
post-spawning recovery (mean ± SD).
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TABLE 4 | Results of nested ANCOVA: effect of adult M. chilensis pCO2 exposure (550 and 1200 µatm) on the shell length (µm) of larvae reared under multiple
stressors: pCO2 (550 and 1200 µatm), temperature (11 and 15◦C), and cadmium (0 and 10 µg L−1).

Variable Factor F d.f./d.ftotal p-value Tukey post hoc
comparisons

Shell length Broodstock 29.45 1,1423 <0.01 550 6= 1200

pCO2 (Broodstock) 4.43 1,1423 0.04 550 (1200) 6= All

T◦ (Broodstock) 4.88 1,1423 0.02 15◦ (1200) 6= 11–15◦ (550)
15◦ (550) 6= 11◦ (1200)

Cd+2 (Broodstock) 2.66 1,1423 0.10

pCO2 × T◦ 2.17 1,1423 0.14

pCO2 × Cd + 2 16.78 1,1423 <0.01 0 (550) 6= all

T◦ × Cd+2 0.00 1,1423 0.94

Bold values represent statistically significant p-value.

TABLE 5 | Results of nested ANOVA: effect of adult M. chilensis pCO2 exposure (550 and 1200 µatm) on feeding response of larvae reared under multiple stressors:
pCO2 (550 and 1200 µatm), temperature (11 and 15◦C), and cadmium (0 and 10 µg L−1).

Variable Factor F d.f./d.ftotal p-value Tukey post hoc comparisons

Ingestion Rate Broodstock 6.42 1,60 0.01 550 6= 1200

pCO2 (Broodstock) 0.002 1,60 0.96

Age (Broodstock) 1.20 1,60 0.28

T◦ (Broodstock) 7.07 1,60 <0.01 11 (1200) 6= all

Cd+2 (Broodstock) 4.06 1,60 0.05 0 (550) 6= 0 (1200)
0 (550) 6= 10 (1200

pCO2 × age 0.15 1,60 0.70

pCO2 × T◦ 0.32 1,60 0.58

pCO2 × Cd+2 3.42 1,60 0.07

Age × T◦ 10.03 1,60 < 0.01 4 (11◦) 6= 10 (11◦)
10 (15◦) 6= all

Age × Cd+2 0.088 1,60 0.77

‘ T◦ × Cd+2 0.199 1,60 0.66

pCO2 × age × T◦ 2.74 1,60 0.10

pCO2 × age × Cd+2 0.069 1,60 0.794

pCO2 × T◦ × Cd+2 3.97 1,60 0.051

Age × T◦ × Cd+2 0.46 1,60 0.499

pCO2 × age × T◦ × Cd+2 0.68 1,60 0.41

Bold values represent statitiscally significant p-value.

the physiology of mussels is concerned, with the parental effect
being a significant factor in the physiological performance of
mussel larvae, and temperature being a key variable that affects
both the growth and feeding of offspring. The specific global
change stressor (OA), which is maintained in the broodstock
evidently, has important consequences for adult energy budgets
and the physiological performance of their offspring.

Our results demonstrated that oocyte size in both pCO2 levels
were smaller (∼2 µm) than reported by Lagos et al. (2012b)
for M. chilensis but within the range reported by Ockelmann
(1965) for a number of bivalves. No effect in oocyte size from
broodstock exposed to high pCO2 levels was observed. Similar
results have been observed in transgenerational studies in the sea
urchin Strongylocentrotus droebachiensis (Dupont et al., 2013),
the clam M. mercenaria, the scallop A. irradians (Griffith and
Gobler, 2017), and the oyster S. glomerata (Parker et al., 2017a).

We report the effect of OA on the post-spawning recovery
of organisms due to their high-energy demand. The weight of

the broodstock was similar in both pCO2 levels (wet weight and
metabolically active tissue), but the feeding performance was
substantially higher in specimens exposed to control pCO2 levels.
Kurihara et al. (2013) found a delayed reproductive phenology
in sea urchin Hemicentrotus pulcherrimus and reduced energy
intake in futuristic pCO2 levels. In the copepod Acartia steueri,
egg production rates decreased significantly under high pCO2
(Kurihara et al., 2004), whereas in the marine shrimp Palaemon
pacificus, egg production was suppressed but feeding was not
affected by pCO2 treatments (Kurihara et al., 2008). The effect of
OA in the post-spawning recuperation of adult organisms could
determine the success of the subsequent spawning period, and
consequently affect the life-history cycle as well as population
renewal. Furthermore, mussels exposed to high pCO2 for a
long time show a plastic response because they are capable of
physiologically compensating the drop in feeding rate, while
maintaining growth and tissue stable under these stressful
conditions. We hypothesize that mussels exposed to high pCO2
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FIGURE 5 | Shell length of larvae obtained from adults conditioned under two pCO2 levels (550 and 1200 µatm) after 11 days of rearing at multiple combinations of
pCO2 (550 and 1200 µatm), temperature (11 and –15◦C), and cadmium concentration (0 and 10 µg L-1): (A) larval rearing at 11◦C and (B) larval rearing at 15◦C
from parents conditioned at 550 µatm; (C) larval rearing at 11 and (D) 15◦C from parents conditioned at 1200 µatm.

levels could have experienced a drop in their respiration rates
(and/or excretion), reducing the energy expenditure via these
processes. Indeed, Navarro et al. (2013) showed that M. chilensis
reduced both the clearance/ingestion and respiration rates upon
high pCO2 conditions. In consequence, mussels could be able
to compensate the reduction in food intake by reducing their
metabolic costs in other processes (growth rates) together with
an increase in the absorption efficiency.

Our experimental approach considered an initial spawning
of adult mussels in order to homogenize the state of gonadal
development prior to reproductive conditioning under two OA
scenarios (550–1200 pCO2) and otherwise optimal conditions
of food supply and temperature. While previous experimental
studies in M. chilensis have reported conditioning periods of up
to 81 days at 15◦C (Lagos et al., 2012b), we extended this period
to ca. 4 months to be consistent with other transgenerational OA
experiments in mollusks (Parker et al., 2012, 2017a; Fitzer et al.,
2014; Griffith and Gobler, 2017; Zhao et al., 2017).

Parental effects were significant in the physiological response
of larvae upon exposure to multiple drivers. Both shell length
and IR in mussel larvae depend directly on the broodstock pCO2
exposure. In consequence, the potential effect of pCO2-driven
OA could change through different generations of mussel
populations (Duarte et al., 2014; Osores et al., 2017). Osores et al.
(2017) reported that the phenotypic plasticity in the feeding rates
was related to the environmental component, whereas the growth
rate remains independent, which in turn suggests the importance
of a genetic component. In our study, shell length was smaller
than values reported by Ruiz et al. (2008), which suggests that it
could have been attributed to differences in reared system and
food supply (Lagos et al., 2012a).

Larval size is related to the fitness of individual offspring
in many invertebrates (Bernardo, 1996; Fox and Czesak, 2000),
including bivalves (Przeslawski and Webb, 2009; Ventura et al.,
2016). In nature, a smaller initial size could result in higher
juvenile mortality for at least two reasons. First, smaller young
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FIGURE 6 | Ingestion rate (mean ± SD) of larvae obtained from adults conditioned under two pCO2 levels (550 and 1200 µatm) after 11 days of rearing at multiple
combinations of pCO2 (550 and 1200 µatm), temperature (11 and 15◦C), and cadmium concentration (0 and 10 µg L-1): (A) larval rearing at 11◦C and (B) larval
rearing at 15◦C.

may have lower energy reserves and, and consequently would be
more sensitive to periodic food shortages in the sea (see Phillips,
2002). Second, and probably a more important effect of smaller
initial size, is that the juveniles remain small for a longer time.
Consequently, these smaller juveniles are exposed to a greater
predation risk (Rumrill, 1990; Johnson and Smee, 2012). That is,
OA can significantly affect larval survival, and at the same time
affect the broodstock fitness.

Our study also showed that larger larvae were commonly
observed when reared at low pCO2 conditions. A similar effect
has been found in other transgenerational studies in others
mollusks (Parker et al., 2012; Griffith and Gobler, 2017). Greater
larval performance under current pCO2 conditions may stem
from greater ease to calcify due to greater availability of biogenic
carbonates, which would agree with previous experimental
studies (e.g., Kurihara et al., 2007; Kurihara et al., 2008; Gazeau
et al., 2010); however, results are not directly comparable as these
studies did not consider parental acclimation in acidification.

Larval IRs did not differ among pCO2 levels in both
experiments (see Experiments #1 and #2), suggesting that
larval feeding is independent of parental acclimation. Similar
responses were described for M. edulis larvae in this pH
range, which showed feeding rates that were notably robust to

increasing seawater acidity, thus suggesting that the cost of energy
maintenance could have been supplied from other physiological
processes such as energy storage (Ventura et al., 2016). However,
our findings must be validated using a larger sample size or
comparative methodological approaches (i.e., Coulter counter, or
citometry). Typically, this kind of complex experimental design
should be assessed with a larger number of bottle replicates
(e.g., >5).

Temperature affected the physiological performance of larval
stages depending on parental exposure. From broodstock
exposed to high pCO2 conditions, we obtained larger larvae
(shell length) with higher IRs at 15◦C, which suggest that
increasing temperature can promote an increase in energy
intake. Previous studies in marine invertebrates have shown an
antagonistic relationship between OA and temperature (Byrne
and Przeslawski, 2013). Other studies have observed a positive
effect of temperature on the physiology of juvenile M. chilensis
under future OA scenarios, although using a slightly higher
temperature range (12–16◦C) than those applied in this study
(11–15◦C; e.g., Duarte et al., 2014; Navarro et al., 2016). For
instance, Duarte et al. (2014) observed an increase in calcification
and growth rate a high temperature, whereas Navarro et al.
(2016) observed an increase in clearance, absorption efficiency,
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and scope for growth in juvenile individuals. Duarte et al.
(2014) proposed this range (12–16◦C) to simulate the potential
increase in seawater temperature predicted by the IPCC (2007)
for the late 21st century. Nevertheless, these ranges of sea surface
temperature fall into the natural variability range measured
currently in a typical mussel farming area in Chiloe Island,
Southern Chile; therefore, it cannot be considered as a realistic
ocean warming study (Narvaez et al. submitted to Progress in
Oceanography).

The combined effect of broodstock exposure to high pCO2
levels and larval rearing under high cadmium concentrations
resulted in decreasing larval IRs. Poulsen et al. (1982) found
non-significant effects of similarly high cadmium concentrations
on the feeding rates and growth of M. edulis juvenile.
However, in our preliminary experiment, we found a significant
drop in IRs for 21-days-old larvae when exposed to high
cadmium concentration (10 µg L−1). Nevertheless, this cadmium
concentration is much higher than Cd concentrations found
in mussel farming areas (<1 µg Cd L−1, unpublished data by
MUSELS Research Center) and/or similar tidal inlets and fjords
in southern Chile (0.14 µg Cd L−1; Ahumada et al., 2011).

Therefore, larval performance and food intake for larval
growth is largely determined by the environmental conditions
to which brood stock were exposed during its reproductive
stage. Almost all of the parameters evaluated in this study
changed as a function of broodstock environment. However,
variation in multiple stressor scenarios has diverse effects
on the physiological plasticity of the offspring, making it
difficult to generalize as to how OA and other environmental
stressors affect offspring phenotype in marine invertebrate larvae
offspring. Finally, we hope that this kind of experimental
approach will stimulate other researchers to examine not
only phenotypic plasticity in life history, physiological traits,
and tradeoffs, but also intergenerational effects, which are
far more informative regarding the selective and evolutionary
consequences of parental effects on offspring phenotypes beyond
genetic inheritance.
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