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An information-theoretic approach to numerically determine the Markov order of discrete

stochastic processes defined over a finite state space is introduced. To measure

statistical dependencies between different time points of symbolic time series, two

information-theoretic measures are proposed. The first measure is time-lagged mutual

information between the random variables Xn and Xn+k, representing the values of

the process at time points n and n + k, respectively. The measure will be termed

autoinformation, in analogy to the autocorrelation function for metric time series, but

using Shannon entropy rather than linear correlation. This measure is complemented

by the conditional mutual information between Xn and Xn+k, removing the influence

of the intermediate values Xn+k−1, . . . ,Xn+1. The second measure is termed partial

autoinformation, in analogy to the partial autocorrelation function (PACF) in metric

time series analysis. Mathematical relations with known quantities such as the entropy

rate and active information storage are established. Both measures are applied to

a number of examples, ranging from theoretical Markov and non-Markov processes

with known stochastic properties, to models from statistical physics, and finally, to a

discrete transform of an EEG data set. The combination of autoinformation and partial

autoinformation yields important insights into the temporal structure of the data in all test

cases. For first- and higher-order Markov processes, partial autoinformation correctly

identifies the order parameter, but also suggests extended, non-Markovian effects in the

examples that lack the Markov property. For three hidden Markov models (HMMs), the

underlying Markov order is found. The combination of both quantities may be used as an

early step in the analysis of experimental, non-metric time series and can be employed

to discover higher-order Markov dependencies, non-Markovianity and periodicities in

symbolic time series.

Keywords: EEG microstates, information theory, entropy, mutual information, Markovianity, stationarity

1. INTRODUCTION AND BACKGROUND

Information theory occupies a central role in time series analysis. The concept of entropy provides
numerous important connections to statistical physics and thermodynamics, often useful in the
interpretation of the results (Kullback, 1959; Cover and Thomas, 2006). Despite the large number
of available measures, there is no generally accepted systematic procedure for the analysis of
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symbolic time series, although collections of theory and
methods are readily available (Daw et al., 2003; Mézard and
Montanari, 2009). In metric time series analysis however, a
hierarchical set of analyses and tests has been established
by Box and Jenkins (Box and Jenkins, 1976). The seminal
work by these authors deals with autoregressive and moving
average processes, some of the most prominent Markov
processes across many fields of science (Häggström, 2002). The
result is a standardized procedure for analyzing continuous
valued, discrete time stochastic processes (Box and Jenkins,
1976). The procedure addresses the impressive complexity of
possible stochastic processes by combining semi-quantitative,
visual analysis steps with a number of rigorous statistical test
procedures. The first step in Box-Jenkins analysis is the visual
and statistical assessment of the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) of the data. In
particular, the order of purely autoregressive processes can be
directly deduced from the PACF coefficients. For a p-th order
autoregressive process, it can be shown that PACF coefficients
for time lags larger than p are equal to zero, within statistical
limits.

Information-theoretical time series analysis is closely linked
to the theory of Markov processes, as Markov processes are
defined via their temporal dependencies. The elemental case is
a first-order Markov process (Xn)n∈Z, for which the transition
Xn → Xn+1 depends on the current state Xn only. Due
to this property, first-order Markov processes are termed
memory-less, as their past does not influence transitions to
future states. Markov processes of order M generalize this
property and have transition probabilities defined by M past
states (Xn, . . . ,Xn−M+1), thus representing finite memory effects
of the time series. Using information-theoretical methods,
memory effects and temporal dependencies can be quantified.
A more formal treatment of Markov processes follows in the
Materials and Methods section, after introducing the necessary
notation.

To assess the Markov property of a time series, and to
identify the Markov order of an empirical symbol sequence,
classical statistics derives a number of tests as detailed in the
Materials and Methods section (Hoel, 1954; Anderson and
Goodman, 1957; Goodman, 1958; Billingsley, 1961; Kullback
et al., 1962).We recently used the tests developed in (Kullback
et al., 1962) to characterize electroencephalographic (EEG)
data transformed into a symbolic time series termed microstate
sequences (von Wegner and Laufs, 2018). Using time-lagged
mutual information, we could show that the symbolic four-
state sequences still retain periodic features of the underlying
continuous EEG signal (von Wegner et al., 2017, 2018). The
aim of the present article is to introduce partial autoinformation
as a measure that is complementary to the time-lagged
mutual information function, in the same sense that the PACF
complements the autocorrelation function in classical time series
analysis of continuous random variables. In the past, we have
used the term autoinformation function (AIF) for time-lagged
mutual information, in analogy with the autocorrelation function
(ACF) of classical time series analysis (von Wegner et al., 2017).
To continue the analogy, the newly introduced measure will

be termed partial autoinformation function (PAIF), because it
answers the same question about the information content of
a symbolic time series as the partial autocorrelation function
(PACF) does about correlations. The new measure is derived
based on the analogy with the PACF and theoretical connections
with well-known functionals such as the entropy rate and
active information storage are established. Next, we apply
the AIF/PAIF approach to a number of symbolic time series
ranging from Markov and non-Markov model data with known
properties to simulated data representing physical systems
(Ising model, abstract ion channel model) and experimental
EEG microstate data. Finally, limitations and possible
applications are discussed for larger state spaces and finite
samples.

2. MATERIAL AND METHODS

2.1. Autoregressive Processes
To illustrate the motivation for this study, an exemplary
autoregressive process is used to explain the principles of
time series analysis with the (partial) autocorrelation approach.
Autoregressive (AR) processes model time series of continuous
random variables in discrete time (Box and Jenkins, 1976).
The p-th order or AR(p) process models the dependency
of Xn on its past via a linear combination of the p values
preceding Xn:

Xn = φ1Xn−1 + . . .+ φpXn−p + εn (1)

where φ1, . . . ,φp are called the autoregression coefficients and
εn represents identically and independently distributed (iid)
Gaussian noise.

The linear dependencies created by Equation (1) can be
quantified by the time autocorrelation function (ACF). The ACF
coefficients ρk of a stationary stochastic process Xn are defined as:

ρk = C
(

Xn+k,Xn

)

(2)

where C(X,Y) =
∑

i
(Xi−µX)(Yi−µY )

σXσY
denotes Pearson’s

correlation coefficient. The ACF coefficients describe the linear
correlation between process values at two different time steps
Xn and Xn+k, without taking into account the effect of
the intermediate time steps Xn+k−1, . . . ,Xn+1. However, Xn

could be correlated with Xn+k directly, independent of the
intermediate values, or the correlation between Xn and Xn+k

could be conveyed via the intermediate values and vanish when
conditioned on these intermediates. To distinguish these cases,
the PACF performs amultivariate regression ofXn+k on all values
Xn+k−1, . . . ,Xn and finally records the conditioned or partial
correlation between Xn and Xn+k, removing the effect of the
intermediate values:

ϕkk = C
(

Xn+k,Xn | Xn+k−1, . . . ,Xn+1

)

. (3)

Continuous-valued, discrete time AR processes can be
systematically assessed using the combination of the
autocorrelation function and the PACF (Box and Jenkins, 1976).
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We here present an example using a third-order autoregressive
process that is parametrized by:

Xn = 0.85Xn−1 − 0.2Xn−2 + 0.1Xn−3 + εn (4)

with AR coefficients φ1 = 0.85, φ2 = −0.2 and φ3 = 0.1.
Figure 1 shows the ACF/PACF analysis of a simulated sample
path (N = 105 samples). The left panel, Figure 1A shows the
exponentially decaying ACF. Though the analytical form of the
ACF can be expressed in terms of the three AR coefficients,
visual analysis does not allow to deduce the order of the AR
process or the magnitude of the coefficients. The right panel,
Figure 1B shows the PACF whose zero-lag coefficient ϕ00 = 1,
by definition. The following three values ϕ11−33 directly reflect
the relative magnitude and sign of the AR coefficients φ1−3.
Thus, through PACF analysis, the AR(3) structure of the process
can be conjectured from visual analysis already. In practice, the
statistical significance of each coefficient can also be assessed
quantitatively. In Figure 1, confidence intervals (α = 0.05) are
shown in blue.

The classical Box-Jenkins approach to time series analysis
considers the magnitude of ACF and PACF coefficients to guess
the statistical structure of the data (Box and Jenkins, 1976). For
a pure autoregressive process of order p, the PACF coefficients
ϕkk vanish for k > p. In case of a pure moving average
process, the expected value of the ACF coefficients ρk are zero
for k > p. For mixed (ARMA) processes, the model orders
cannot be determined visually. Although the pure AR model
order can be deduced from the decay of the PACF, and the
PACF coefficients ϕkk can be expressed in terms of the AR
coefficients φk, the exact value of the AR coefficients φk cannot
be derived visually, with the exception of a few simple low-order
cases.

2.2. Information Theory
Information theory is rooted in mathematical statistics and
uses entropy as one of its main concepts (Kullback, 1959).
Entropy characterizes the shape of probability distributions
and thereby, the amount of uncertainty or surprise
associated with samples generated from the distribution.
This section summarizes the concepts and definitions
needed to derive the PAIF, more extensive treatments can
be found in classical and more recent monographs (Kullback,
1959; Cover and Thomas, 2006; Mézard and Montanari,
2009). Connections of the PAIF with other information-
theoretical quantities are derived in the first paragraph of
the Results section. Logarithms are computed as log2, such
that all information-theoretical quantities are measured
in bits.

We here consider stochastic processes (Xn)n∈Z, i.e., sequences
of random variables Xn, where each Xn takes values in some
finite alphabet of L different symbols S = {s0, . . . , sL−1}.
In practice, we deal with finite samples of the underlying
process, (Xn)n=0,...,N−1. In the following, contiguous data blocks
starting from index n, and covering the past k values of the
process,

(

Xn,Xn−1, . . .Xn−k+1

)

will be termed k-histories and are
written as

X(k)
n =

(

Xn,Xn−1, . . .Xn−k+1

)

. (5)

Denoting a specific realization of the random variableXi as xi, the
joint probability distribution of k-histories is given by

P(X(k)
n ) = Pr

(

Xn = xn,Xn−1 = xn−1, . . .Xn−k+1 = xn−k+1

)

.

where xi ∈ S, for all i = n − k + 1, . . . , n. In the following, the

compact notation P(X
(k)
n ) will be used.

The information content of a random variable X with
possible values xi ∈ S and associated probabilities P(X =

FIGURE 1 | Partial autocorrelation analysis of a real-valued autoregressive process. (A) The AR(3) structure of the data cannot be deduced visually from the shape of

the ACF, though the exponential decay can be parametrized exactly by the three AR coefficients. (B) Removing the effect of intermediate values, the PACF coefficients

directly reflect the AR(3) structure as well as the magnitude and sign of the AR coefficients. Confidence intervals (α = 0.05) for the absence of correlations are shown

in blue.
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xi) = pi is measured by the Shannon entropy H(X) =
−

∑

i pi log pi (Kullback, 1959). The information content of the

joint distribution representing the k-history X
(k)
n is measured by

the joint entropy, which is defined as (Kullback, 1959; Cover and
Thomas, 2006):

HX(n, k) : = H(X(k)
n ) (6)

= −
∑

X
(k)
n

P(X(k)
n ) log P(X(k)

n ) (7)

where the sum runs over all possible values of Xn =
xn, . . . ,Xn−k+1 = xn−k+1. The expression HX(n, k) contains
the time parameter n, such that the expression for HX(n, k)
can be used even in the case of non-stationary processes,
whose statistical properties may depend on n. Under time-
stationary conditions, the entropy is obtained by averaging
over all time points and the resulting entropy will be
abbreviated

Hk =
〈

HX(n, k)
〉

n

where 〈·〉n denotes time averaging.
Adding information about the value of another random

variable Y reduces the uncertainty about X, in case X and Y
are statistically dependent. If X and Y are independent, the
entropy of X does not change with the additional information
about Y . To measure the influence of Y on X, conditional
entropy is defined as H(X | Y) = H(X,Y) − H(Y).
In the following, two conditional entropy terms will be
used.

The first term is a finite approximation to the entropy rate
of the stochastic process X. The entropy rate hX of a process
quantifies the amount of surprise about the next symbol Xn+1

emitted by the process, given knowledge about its past values

X
(k)
n . The theoretical or analytical value hX is defined via an

infinitely long history

hX = lim
k→∞

H(Xn+1 | X(k)
n ).

Whenworking with finite experimental data samples, the entropy
rate has to be estimated from finite k-histories (Runge et al., 2012;
Barnett and Seth, 2015; Faes et al., 2015; Xiong et al., 2017):

hX(n, k) = H(Xn+1 | X(k)
n ). (8)

Using the definition of conditional entropy, hX(n, k) can be
computed from joint entropies as:

hX(n, k) = H(Xn+1,X
(k)
n )−H(X(k)

n ) (9)

= H(X
(k+1)
n+1 )−H(X(k)

n ). (10)

Following the notation used for Shannon entropy, the time-
stationary expression for the entropy rate will be denoted hk =
〈

hX(n, k)
〉

n
.

The second conditional entropy term used is the two-point

conditional entropy H(Xn+k | Xn), that measures the amount of
information about Xn+k contained in Xn.

Next, mutual information between two random variables is
defined as I(X;Y) = H(X) − H(X | Y) and measures the
information shared between both variables. Mutual information
will be used to compute two quantities that are useful in
characterizing symbol sequences.

First, active information storage (AIS) (Lizier et al., 2012)
is complementary to the entropy rate. While the entropy rate
measures how much information (or surprise) is contained in

Xn+1, despite knowledge of its k-history X
(k)
n , AIS measures the

amount of common (or shared) information between Xn+1 and
its k-history. The active information storage term for a history of
length k is defined as

aX(n, k) = I(Xn+1;X(k)
n ) (11)

and the stationary expression is ak =
〈

aX(n, k)
〉

n
.

For computational implementation, active information
storage is decomposed into joint entropy terms:

I(Xn+1;X(k)
n ) = H(Xn+1)−H(Xn+1 | X(k)

n )

= H(Xn+1)+H(X(k)
n )−H(Xn+1,X

(k)
n )

= H(Xn+1)+H(X(k)
n )−H(X

(k+1)
n+1 ).

The second mutual information term used is I(Xn+1;Xk), and
yields an estimate of the statistical dependency between the
random variables Xn and Xn+k. In a recent publication, we used
the term autoinformation function (AIF) to denote the set of
time-lagged mutual information terms computed for a number
of time lags (vonWegner et al., 2017). The name AIF was derived
from the formal analogy with the autocorrelation function (ACF)
for metric time series. We defined the AIF coefficient at time lag
k as:

αX(n, k) = I(Xn+k;Xn) (12)

= H(Xn+k)−H(Xn+k | Xn) (13)

= H(Xn+k)+H(Xn)−H(Xn+k,Xn) (14)

and the stationary term is αk =
〈

αX(n, k)
〉

n
. Rather than using

linear correlation to measure the dependency between two time
points, as the ACF does, the AIF employs mutual information
between the random variables at time points n and n + k.
The measure is symmetric, i.e., I(Xn;Xn+k) = I(Xn+k;Xn) and
therefore does not contain directional information. In analogy
to the autocorrelation function, division of all coefficients by
αX(n, 0) normalizes the AIF to αX(n, 0) = 1. The computational
cost is independent of the time lag k, as all entropies are computed
from one-dimensional (H(Xn+k), H(Xn)) and two-dimensional
(H(Xn+k,Xn)) distributions.

Finally, the definition of partial autoinformation, the central
concept of this work, is based on the concept of conditional
mutual information which includes a third random variable
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Z, on which the mutual information between X and Y is
conditioned:

I(X;Y | Z) = H(X | Z)−H(X | Y ,Z). (15)

The information-theoretical match for the PACF should
estimate the two-point dependency between Xn and Xn+k,
while removing the influence of the intermediate variables

X
(k−1)
n+k−1

= (Xn+k−1, . . . ,Xn+1). This is achieved by computing
the conditional mutual information (Equation 15) between Xn

and Xn+k, given X
(k−1)
n+k−1

.
We therefore define the PAIF coefficient πX(n, k) at time

lag k as:

πX(n, k) = I(Xn+k;Xn | Xn+k−1 . . .Xn+1) (16)

= I(Xn+k;Xn | X(k−1)
n+k−1

). (17)

Using the definition of conditional mutual information in terms
of conditional entropies, and the expression of conditional
entropy in terms of joint entropies, the computation of πX(n, k)
can be reduced to the estimation of joint entropies:

πX(n, k) = H(Xn+k | X(k−1)
n+k−1

)−H(Xn+k | X(k−1)
n+k−1

,Xn) (18)

= H(Xn+k,X
(k−1)
n+k−1

)−H(X
(k−1)
n+k−1

)−H(Xn+k,X
(k)
n+k−1

)

+H(X
(k)
n+k−1

) (19)

= H(X
(k)
n+k

)−H(X
(k−1)
n+k−1

)−H(X
(k+1)
n+k

)+H(X
(k)
n+k−1

).(20)

The stationary expression is

πk = hk−1 − hk

= −Hk−1 + 2Hk −Hk+1.

For the first two coefficients πX(n, 0) and πX(n, 1), there are no

intermediate values X
(k−1)
n+k−1

to condition on. Analogous to the
PACF algorithm, we set πX(n, 0) = αX(n, 0) and πX(n, 1) =
αX(n, 1). The computational load increases exponentially with

history length k, as the discrete joint distribution P(X
(k−1)
n+k−1

) over

L labels has Lk−1 elements.
The computation of the quantity of interest, the PAIF

coefficients, is visualized in Figure 2. Above, the relationships
between the quantities discussed here are shown as an
information diagram, a special form of a Venn diagram. AIF
coefficients are represented by the intersection of the two dark
gray circles which represent H(Xn+k) and H(Xn), respectively.
In the scheme below, where each element of the time series
Xn is visualized as a square box, the AIF coefficients represent
the shared information between Xn+k and Xn, without taking

into account the effects of X
(k−1)
n+k−1

(light gray areas in the
information diagram above and the symbolic sequence below).
The PAIF corresponds to the part of I(Xn+k;Xn) that does not
intersect with the lower circle, representing the intermediate

values H(X
(k−1)
n+k−1

). The area that represents the PAIF is shown
in dark blue in the information scheme.

FIGURE 2 | AIF/PAIF analysis. The information diagram above illustrates the

partition of the total data entropy. The intersection of the two dark gray circles,

representing Hn and Hn+k , respectively, corresponds to the AIF coefficient

I(Xn+k;Xn) (light blue area). It measures the shared information between the

time points n and n+ k, while ignoring the intermediate variables. The PAIF

coefficients are represented by the dark blue sub-area of I(Xn+k;Xn) that
results from excluding all elements that belong to the intermediate values

H(Xn+k−1, . . . ,Xn+1), shown in light gray color in the Venn diagram and the

symbolic time series below.

2.3. Markovianity Tests
A discrete Markov process (Xn)n∈Z of order M is defined via the
property

P(Xn+1 | X(M+k)
n ) = P(Xn+1 | X(M)

n ) (21)

for all positive integers k ≥ 0. In words, the transition
probabilities from Xn to the state Xn+1 depend on theM-history
of Xn, whereas inclusion of more values from the process’ past,
beyond Xn−M+1, does not convey further information about the
transition probabilities.

General tests for the Markov property of low orders have
been introduced in the 1950s and further tests for many
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special cases are still being developed today. Early works
used analytical expressions for the distribution of symbol
counts, given a certain Markov structure, and developed
likelihood ratio tests for the cases of known (Bartlett, 1951)
and unknown (Hoel, 1954) transition probabilities. Further
developments included χ2 tests for hypotheses about the
time-stationarity of transition probabilities, direct comparisons
of different Markov orders (Anderson and Goodman, 1957;
Goodman, 1958), as well as parameter estimation methods
and tests for continuous time Markov processes (Billingsley,
1961). Using close relationships between χ2 statistics and
information-theoretical expressions, test statistics based on
Kullback-Leibler metrics were summarized as a monograph
and in a practice-oriented article containing many numerical
examples by Kullback (Kullback, 1959; Kullback et al., 1962).
Further approaches include the application of the Akaike
information criterion to optimize the order estimate for a discrete
Markov chain (Tong, 1975) as well as data compression oriented
algorithms (Merhav et al., 1989) and extensive surrogate data
tests (Pethel and Hahs, 2014). The results of the PAIF method
developed here is compared to the Markov order test presented
in van der Heyden et al. (1998). The latter test compares finite
entropy rate estimates (hX(n, k)) of the data to be tested with
surrogate statistics obtained from M-order Markov surrogates

with the same transition probabilities P(Xn+1 | X(M)
n ) as the data.

The algorithm for the computation of the surrogates is given in
detail in (van der Heyden et al., 1998) and is summarized in
the following section 2.4. This test will be termed conditional
entropy test. In this article, surrogate statistics for each test data
set are computed from n = 100 surrogate sequences for each
Markov orderM = 0, . . . , 5. The Markov order identified by the
conditional entropy test is taken to be the value M for which all
hX(n, k) lie within the α = 0.05 confidence interval defined by
the surrogates.

We recently published our Python implementation of the
Markovianity tests of order 0-2 as well as symmetry and
stationarity tests as given in Kullback et al. (1962), in article
form (von Wegner and Laufs, 2018), and as open-source code.
Although the code is part of an algorithm to process EEG
microstate sequences, the tests can be exported and applied
generically.

2.4. Markov Surrogate Data
A Markov process of order M is also defined via its transition

probabilities P(Xn+1 | X
(M)
n ), where the probability to go into

state Xn+1 is conditioned on the M-history X
(M)
n . To synthesize

a Markov process of order M, using the same transition
probabilities as the underlying experimental time series (Xn), the
empirical M-order transition matrix is estimated first. To this
end, all contiguous tuples of length (M + 1) taken from the
time series, i.e., tuples of the form (Xn−M+1, . . . ,Xn,Xn+1) are
considered. The maximum likelihood estimate for the transition
probability P(Xn+1 | X(M)

n ) based on this sample is given by

p̂ML(Xn+1 | X(M)
n ) = #(Xn+1,X

(M)
n )

#(X
(M)
n )

where #(·) denotes the number of times a specific outcome occurs
in the empirical sequence (Xn) (Anderson and Goodman, 1957;

van der Heyden et al., 1998). For instance, #(X
(M)
n ) is the number

of realizations (Xn = xn, . . . ,Xn−M+1 = xn−M+1). While

counting the tuples, the joint distribution of X
(M)
n is recorded at

the same time.
Following van der Heyden et al. (1998), the first M values of

each surrogate Markov sequence are initialized with a sample

from the joint distribution X
(M)
n . From there, we have a M-

history X
(M)
n for every subsequent value Xn+1. The value of Xn+1

is chosen according to the transition probabilities p̂ML(Xn+1 |
X
(M)
n ) and the given M-history. Given a specificM-history X

(M)
n ,

there are L transition probabilities q0, . . . , qL−1, where qi =
p̂ML(Xn+1 = si | X(M)

n ). The distribution of the state Xn+1 = si is
sampled correctly using a pseudo-random number r, uniformly
distributed on the unit interval, r ∼ U[0,1], and the condition
∑i−1

l=0 ql ≤ r <
∑i

l=0.
We recently published a Python implementation for first-

order Markov surrogates in the open-source package described
in von Wegner and Laufs (2018), and have included theM-order
Markov surrogates in the Github repository associated with this
paper.

2.5. The Two-State Markov Process
The general concepts introduced above are easily applied to a
two-state, first-order Markov process that can be written as

A
p
⇋
q
B

with transition rates p and q. The self-transition rate for A → A
is 1− p, and the rate of B → B is 1− q. The complete transition
matrix T reads

T =
(

1− p p
q 1− q

)

and has eigenvalues λ0 = 1 and λ1 = 1 − (p + q). The
eigenvalue λ0 = 1 is assured by the Perron-Frobenius theorem
as T is a stochastic matrix, i.e.,

∑

j Tij = 1 for all i. The

normalized positive eigenvector to λ0 is the equilibrium or
stationary distribution pst of the process,

pst =
(

q

p+ q
,

p

p+ q

)

.

We set pA = q
p+q and pB = p

p+q . With the auxiliary functions

ϕ,ψ : [0, 1] → R defined as ϕ(x) = −x log x and ψ(x) =
ϕ(x)+ ϕ(1− x), the analytical quantitiesHpq, hpq and apq for the
2-state first-order Markov process acquire a very simple form.

The Shannon entropy of the 2-state Markov process is

Hpq = −pA log pA − pB log pB

= ϕ(pA)+ ϕ(1− pA)

= ψ(pA).
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Due to the Markov property, the entropy rate is hpq = H(Xn+1 |
Xn) and evaluates to

hpq = −pA
[

(1− p) log(1− p)+ p log p
]

− pB
[

q log q

+(1− q) log(1− q)
]

= pAψ(p)+ pBψ(q).

The Markov property reduces the full expression for information

storage I(Xn+1;X(k)
n ) to apq = I(Xn+1;Xn):

apq = −pA log pA − pB log pB

+ pA
[

(1− p) log(1− p)+ p log p
]

+ pB
[

q log q+ (1− q) log(1− q)
]

= ψ(pA)− pAψ(p)− pBψ(q).

The total entropy is conserved between active information
storage and the entropy rate:

Hpq = apq + hpq. (22)

To validate the proposed approach, these analytical results will
later be compared with numerical results of a hidden Markov
process classified as first-order Markovian by the PAIF method.

2.6. Higher-Order Markov Processes
To test the properties of the PAIF, two higher-order Markov
processes with known properties are synthesized.

The first process is a third-order Markov process denoted

MC1..M=3, with transition probabilities that depend on X
(M=3)
n .

Given L states, there are LM possibleM-histories preceding Xn+1,

such that P(Xn+1 | X(M)
n ) in matrix form has shape (LM , L). The

specific transition probabilities are random numbers fulfilling
∑

j P(Xn+1 = sj | X(M)
n ) = 1 for all M-histories X

(M)
n . Sample

paths are generated using the method described in section 2.4.
The second process will be termedMCM=3 and is constructed

in such a way that the Xn → Xn+1 transition only depends on
Xn−2. Like the first process, this process can also be classified as
third-orderMarkovian (M = 3), with the particular property that
the influence of Xn and Xn−1 vanishes.

2.7. Hidden Markov Processes
A more general class of discrete processes is represented by
probabilistic finite state machines (Crutchfield and Young, 1989),
which implement hidden Markov models (HMMs). Hidden
Markov models generate sequences of symbols defined over a
set of observable states that correspond to our measurements.
The observable symbols are emitted by a set of hidden states that
follow a Markov process, usually of first order. Each hidden state
emits the observable symbols according to its own probability
distribution defined over the observable set. It is important to
note that the sequence of emitted symbols does not necessarily
follow a Markov law.

2.7.1. Even Process
The even process is a non-Markov process with two hidden
states ({A,B}) and two observables ({0, 1}). The process scheme
is visualized in Figure 4A. The process can emit arbitrarily long
sequences of zeros by repeated self-transitions of the hidden state
A → A. With probability p = 0.5, the state A can switch to B and

hereby emit a 1, which is followed by another 1 with probability
p = 1. Thus, ones are always generated in pairs, i.e., in blocks of
even length. The procedure generates dependencies that in theory
reach into the infinite past and can therefore not be reduced to a
Markov process.

2.7.2. Golden Mean Process
Two different implementations of the Golden-mean process
are used. First, a 2-state first-order Markovian implementation
using two hidden states ({A,B}) and two observable states
({0, 1}) (Ara et al., 2016), and second, a fourth-order Markov
implementation using seven hidden ({A−G}) and two observable
states ({0, 1}) (Mahoney et al., 2016). The scheme of the 2-state
process (Figure 4B) is structurally similar to the even process,
but dynamically different. Ones are never emitted repeatedly, i.e.,
they are always preceded and followed by a zero, in contrast to
the even process. The 7-state golden mean process is a so-called
R, k-Markov process with Markov order R = 4 and cryptic order
k = 3, in our case (Mahoney et al., 2016).

2.8. Ising Model Data
The Ising model is a widely used discrete model from statistical
physics (Hohenberg and Halperin, 1977). The model describes
the ferromagnetic interaction of elementary spin variables, with
two possible values ±1, as a function of temperature and the
coupling coefficients between spins. The model can be realized
with different geometries and in many cases, shows a phase
transition at a critical temperature. We use a 2D square lattice
geometry (L = 50) and run the system for 106 time steps. Sample
paths are generated by Monte Carlo simulation using a standard
Gibbs sampling scheme (Bortz et al., 1975).

2.9. Simulated Ion Channel Data
The dynamics of a simple ion channel with one open and one
closed state is modeled as a motion of a particle in the double-
well potential V (x) = − a

2x
2 + b

4x
4, which shows two stable

local minima at x1,2 = ±
√

a
b
and one unstable local maximum at

x0 = 0 (Liebovitch and Czegledy, 1992; von Wegner et al., 2014).
The system is excited by thermal noise, as implemented by iid
Gaussian pseudo-random numbers ξn. The system is described
by von Wegner et al. (2014)

Xn+1 = Xn + (aXn − bX3
n)dt + ξn (23)

and integrated with an Euler scheme and dt = 10−3.

2.10. EEG Microstate Sequences
A resting state EEG data set from a 21 year old, healthy right-
handed female during wakeful rest was selected and analyzed.
The data set is part of a larger database for which we have
reported the detailed pre-processing pipeline before (vonWegner
et al., 2016, 2017). The 30 channel EEG raw data was sampled
at 5 kHz using the standard 10 − 10 electrode configuration,
band-pass filtered to the 1 − 30 Hz range using a zero-phase
Butterworth filter with a slope of 24 dB/octave, down-sampled
to 250 Hz and re-referenced to an average reference. Written
informed consent was obtained from the subject and the study
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was approved by the ethics committee of the Goethe University,
Frankfurt, Germany. EEG microstates were identified using the
first four principal components (PCA analysis) of the data set and
the symbolic microstate sequence was obtained by competitively
fitting the microstate maps back into the EEG data set as detailed
in (von Wegner et al., 2016, 2017).

3. RESULTS

3.1. Theoretical Results: Relations
Between Measures
Using the time index n + k as a reference, the partial

autoinformation coefficients πX(n, k) = I(Xn+k;Xn | X
(k−1)
n+k−1

)
can be related to the entropy rate hX(n + k − 1, k) = H(Xn+k |
X
(k)
n+k−1

) and to active information storage aX(n + k − 1, k) =
I(Xn+k;X(k)

n+k−1
) as follows.

The entropy rate hX(n + k − 1, k) can be written as the
difference of two joint entropies of different lengths (Equation 9),

hX(n+ k− 1, k) = H(X
(k+1)
n+k

)−H(X
(k)
n+k−1

).
Next, active information storage can be expressed as the

difference of a joint entropy and the entropy rate:

aX(n+ k− 1, k) = I(Xn+k;X(k)
n+k−1

)

= H(Xn+k)−H(Xn+k | X(k)
n+k−1

)

= H(Xn+k)− hX(n+ k− 1, k).

In the stationary case, we have

H1 = ak + hk. (24)

Similar to the case presented for the 2-state Markov process, it
is observed that also in the general case, the entropy H(Xn+k) is
conserved, being the sum of active information storage and the
entropy rate. In words, the information about the future state
Xn+k is the sum of the actively stored information from time step
n up to time step n + k − 1, and the entropy rate between time
steps n+ k− 1 to n+ k.

Finally, the PAIF coefficient πX(n, k) can be written as the
difference of entropy rates for different history lengths:

πX(n, k) = I(Xn+k;Xn | X(k−1)
n+k−1

)

= H(Xn+k | X(k−1)
n+k−1

)−H(Xn+k | X(k)
n+k−1

)

= hX(n+ k− 1, k− 1)− hX(n+ k− 1, k).

Alternatively, πX(n, k) can also be decomposed into a difference
of AIS terms for two different history lengths:

πX(n, k) = I(Xn+k;Xn | X(k−1)
n+k−1

)

= H(Xn+k | X(k−1)
n+k−1

)−H(Xn+k | X(k−1)
n+k−1

,Xn)

= H(Xn+k | X(k−1)
n+k−1

)−H(Xn+k | X(k)
n+k−1

)

= H(Xn+k)−H(Xn+k | X(k)
n+k−1

)−
[

H(Xn+k)

−H(Xn+k | X(k−1)
n+k−1

)
]

= I(Xn+k;X(k)
n+k−1

)− I(Xn+k;X(k−1)
n+k−1

)

= aX(n+ k− 1, k)− aX(n+ k− 1, k− 1).

Going from line 3 to line 4, we simply added and subtracted
H(Xn+k). In words, the PAIF at time lag k is the difference
between two AIF terms with history lengths k and k − 1,
respectively.

The results can be summarized in a more compact form using
the stationary expressions:

πk = ak − ak−1 (25)

= hk−1 − hk. (26)

For stationary Markov processes, the joint Shannon entropy
Hk exists and the k-order entropy rate estimates hk converge
in the limit of k → ∞ (Cover and Thomas, 2006). Using
Equation 24, it follows that the AIS coefficients ak also converge.
Thus, limk→∞ ak − ak−1 = 0 and limk→∞ hk−1 − hk = 0. Using
Equation 25, we deduce that the PACF coefficients πk also vanish
in the large k limit:

lim
k→∞

πk = 0.

3.1.1. Markovianity
Using the Markov property defined in Equation 21, it is
straightforward to prove that for a stationary Markov process of
orderM, the PAIF coefficients vanish (πX(n, k) = 0) for k > M:

πX(n, k) = I(Xn+k;Xn | X(k−1)
n+k−1

)

= H(Xn+k | X(k−1)
n+k−1

)−H(Xn+k | X(k)
n+k−1

)

= hk−1 − hk

= hM − hM

= 0.

Let the first- and second-order finite differences of an arbitrary
discrete function fk of integer parameter k be defined as δk fk =
fk − fk−1, and δ

2
k
fk = fk+1 − 2fk + fk−1, then we get

πk = hk−1 − hk

= −δk hk
= −δ2k Hk.

Thus, the Markovianity test proposed in (van der Heyden et al.,
1998) addresses a sequence of entropy rates hk, for different
history lengths k, which is the negative first-order difference of
the sequence of Shannon entropies Hk. PAIF analysis uses the
second-order difference of the sequence of Shannon entropies
πk = −δ2

k
Hk. The advantage of the PAIF analysis is the

visual exploration of the coefficients, that are equal to zero for
k > M, exactly like in visual PACF diagnostics for metric time
series.
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3.2. Higher-Order Markov Processes
The results for the two third-order Markov processes are shown
in Figures 3A–D. The AIF and PAIF for the third-order Markov
processesMC1...M=3 is shown in Figures 3A,B, respectively. The
shape of the AIF does not reveal the third-order dependencies
by visual inspection. The PAIF, however, clearly reflects the
construction of the process, showing significant PAIF coefficients
only up to time lag k = 3.

For the second process, MCM=3, the entropy dynamics can
already be estimated by visual inspection of the AIF, which shows
a clear periodicity (Figure 3C). Significant PAIF coefficients only
occur at time lags that are multiples of the Markov order, M =
3. The PAIF (Figure 3D) however, demonstrates the Markov
structure of the process in a single significant coefficient π3.

Kullback’s Markovianity tests of order 0-2 rejected the
Markovian null hypotheses for both processes, as expected
for Markov processes of order three, by construction. The
conditional entropy test correctly identified the Markov order
M = 3 in both cases.

Confidence intervals (α = 0.05) constructed from
uncorrelated surrogate time series are shown in blue. Due to their
small magnitude, they visually appear as lines.

3.3. Hidden Markov Models
Figure 4 shows the results obtained from HMM data. First, the
non-Markovian even process is analyzed. To the right of the
HMM scheme, Figure 4A shows the PAIF of a single sample path
of length n = 106. The inset shows that for all tested time lags the
PAIF coefficients lie above the iid confidence interval (blue lines).
Thus, PAIF analysis suggests that we are observing a non-Markov
process with extended memory effects.

Figure 4B shows the PAIF of the 2-state golden mean process.
The PAIF has two significant coefficients π0,π1 and decays
to zero for all other time lags. The PAIF thus classifies the
process correctly as a first-order Markov process, despite the
hidden Markov implementation. Due to the Markov property,
the process can also be represented by a transition matrix and

FIGURE 3 | AIF/PAIF analysis of two third-order Markov process samples. (A) The AIF of the MC1...M=3 process slowly decays toward zero and does not reveal the

Markov order of the process. (B) The PAIF of MC1...M=3 shows a cutoff after k = 3 coefficients, in accordance with the nominal Markov order. (C) The AIF of the

MCM=3 process has period 3 and thus hints at the memory structure of the process. (D) The PAIF of the MCM=3 process clearly identifies the Markov order of the

process by a distinct peak at the time lag corresponding to the correct model order M = k = 3.
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FIGURE 4 | Finite state machines. (A) Non-Markovian even process, Markov order M = ∞. (B) 2-state implementation of the golden-mean process, Markov order

M = 1. (C) 7-state implementation of the golden-mean process, Markov order M = 4. The Markov orders are correctly identified by the PAIF approach.

an equilibrium distribution. The associated transition matrix T is

T =
(

1
2

1
2

1 0

)

with stationary distribution pst = [ 23 ,
1
3 ]. Using these quantities,

the theoretical results from Section 2.5 can be applied. Using
finite histories (k = 2 . . . 10), entropy conservation (Equation 24)
is fulfilled with a maximum error of 7.25× 10−4, where the error
was calculated as

H1−hk−ak
H1

. Based on this analysis, the Shannon
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FIGURE 5 | AIF/PAIF analysis of 2D-Ising model data: Results for single lattice site time series (n = 106 samples) at two temperatures are shown, close to the critical

temperature Tc ≈ 2.27 (black squares), and at a higher temperature far from the critical point, T = 5.00 (black triangles). (A) The AIF is shown in log-log coordinates to

better visualize the qualitative difference between the power-law decay (linear in log-log coordinates) at the critical temperature (T = Tc), and the exponential decay at

higher temperatures (T = 3.00). (B) The PAIF for both temperatures illustrates a dominant coefficient π1. However, the inset shows significant positive PAIF

coefficients and thus, non-Markovian behavior close at the critical temperature (squares).

entropy of a single symbol is H1 = 0.919 bit, and consists of an
entropy rate of hX = 0.669 bit and active information storage of
aX = 0.253 bit.

The 7-state HMM of the golden mean process is analyzed
in Figure 4C. The fourth-order Markov structure of the
implementation is clearly reflected by the PAIF that shows four
positive coefficients. The PAIF captures the correct Markov order
although the model contains seven hidden states and emits two
observable symbols.

Kullback’s Markovianity tests of order 0–2 correctly classified
the 2-state golden mean process as first-order Markovian. The p-
values for orders 0-2 were p0 = 0.000, p1 = 0.697, and p = 0.990,
respectively. For the non-Markovian even process and the fourth-
order Markovian 7-state golden mean process, low-order (0-2)
Markovianity was correctly rejected. The conditional entropy test
correctly identified the Markov properties of all three processes,
i.e., found first- and fourth-order properties for the 2-state and
7-state golden mean processes, respectively, and an orderM > 5
for the even process.

3.4. The Ising Model
We simulated an Ising model on a 2D lattice (50 × 50 elements)
at two temperatures, (i) around the critical temperature Tc =

2
1+

√
2
≈ 2.27, and (ii) at a higher temperature T = 5.00. From

statistical physics, it is known that the system’s autocorrelation
function shows a slow, power-law decay at the critical point, and
an exponential decay far from the critical point where dynamics
are dominated by thermal fluctuations. AIF/PAIF analysis was
performed on time series of 106 samples of a randomly selected
lattice site. The results are shown in Figure 5.

In contrast to the other figures in this manuscript, the
AIF in Figure 5A is shown in log-log coordinates, to better
visualize the difference between exponential and power-law
behavior. The AIF at the critical point Tc shows an almost

linear behavior in log-log coordinates (black squares), indicating
very slow relaxation dynamics, as expected. For the higher
temperature, far from the critical point (T = 5.0, black triangles),
however, we observe a quickly decaying autoinformation trace,
in accordance with results from classical time series analysis.
Figure 5B shows the PAIF in linear coordinates, as in all other
figures. It is observed that in both cases, T = Tc,T = 5.0,
the PAIF profiles seem to be similar. We find two positive PAIF
coefficients π0,π1, and significantly smaller PAIF coefficients
for larger time lags. The inset, however, shows that at the
critical temperature (squares), the PAIF coefficients lie above
the confidence interval, demonstrating non-Markovian, long-
range memory effects where the system undergoes a phase
transition.

3.5. Simulated Ion-Channel Data
Simplified ion channel dynamics were generated by integration
of Equation 23, representing the motion of a particle in a bistable
potential, for instance an ion channel with two metastable
states corresponding to the open (O) and close (C) state,
respectively. To obtain a symbolic time series of O- and C-
states, the continuous variable Xn is thresholded at a value
of zero. Thereby, all positive values Xn > 0 are assigned
to the open state (O), and all negative values (Xn < 0)
are mapped to the close state. The AIF/PAIF analysis of the
thresholded signal simulating electrophysiological ion channel
data is shown in Figure 6. We observe a slowly decaying AIF
(Figure 6A) without any information about the Markov order
of the signal. The PAIF profile shows large coefficients π0 and
π1, followed by vanishing PAIF coefficients for k > 1. Though
Markovian dynamics are expected for the continuous dynamics,
it is not obvious that the Markov property could be detected after
thresholding.
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FIGURE 6 | Simulated ion channel data. (A) A continuous stochastic process Xn is obtained from a simulation of a double-well potential. A bistable behavior

resembling ion channel recordings is observed. (B) Thresholding the continuous variable Xn into an open state (O, Xn > 0) and a close state (C, Xn < 0) yields a

symbolic, binary process. (C) The AIF of the binary process shows a slow decay without revealing the Markov order of the process. (D) The PAIF suggests first-order

Markov dynamics by vanishing PAIF coefficients πk for k > 1.

FIGURE 7 | A 4-state resting state EEG microstate sequence. (A) The AIF shows a monotonous decay for smaller time lags k < 10. The inset shows the AIF for larger

time lags (kmax = 50) and reveals periodicities that could not be predicted at shorter time scales. (B) The PAIF indicates a mainly first-order Markovian structure but

does not allow the computation of time lags as large as the AIF due to the exponentially growing size of the associated distributions.
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3.6. EEG Microstate Sequences
The EEG microstate sequence shows a more complex behavior
than the other presented examples. Figure 7A shows the AIF
of the 4-state sequence, which seems to decay monotonously.
The inset shows further information for longer time lags up to
k = 40. We observe several periodic peaks at these time lags, an
effect that we have discussed in detail in a recent publication (von
Wegner et al., 2017). The PAIF in Figure 7B shows a dominant
coefficient π1. This finding suggests a mainly first-order Markov
mechanism, and does not hint at the periodic behavior found
in the AIF. Moreover, we observe increasing PAIF coefficients
for larger time lags (k > 8). This effect is caused by finite joint
entropy estimates, which suffer from an insufficient sample size,
given the history length k, and the size of the state space, here
L = 4.

4. DISCUSSION

In the present article, an information-theoretical approach for
the early diagnostic steps in symbolic time series analysis is
established. In close analogy to classical time series analysis
of continuous-valued random variables, a combined approach
using two different measures that estimate the dependency
between two time points is used. While autoinformation
measures the statistical dependence between Xn and Xn+k

directly, partial autoinformation removes the influence of the
segment between both time points. The names AIF and
PAIF were chosen to represent the close connection with
the ACF/PACF approach. We have recently used the AIF
to characterize stochastic processes and experimental EEG
data (von Wegner et al., 2017, 2018), and the underlying
functional can be found under the name of time-lagged mutual
information in the literature. Partial autoinformation, however,
is not found in the literature, to the best of the author’s
knowledge. Close connections to the entropy rate and the
active information storage of the process, two well-studied
information-theoretical quantities (Cover and Thomas, 2006;
Lizier et al., 2012), are found and detailed. In particular,
the newly introduced PAIF can be expressed either as the
difference of two entropy rates with history lengths k − 1 and
k, respectively, or as the difference of two active information
storage terms with different history lengths. These relationships
also assure that the PAIF coefficients approach zero in the large k
limit.

The ability of the PAIF to identify the order of a stationary
Markov process is shown analytically by re-writing the PAIF in
terms of conditional entropies. A short proof shows that the
PAIF coefficients of a stationary Markov process of order M
are zero (πk = 0) for k > M. The practical performance of
the method is validated numerically, using test data with known
Markov orders, and by comparison with the results of two other
tests (Kullback et al., 1962; van der Heyden et al., 1998). All test
examples used in this article are correctly classified by the PAIF
approach, in the same way the PACF performs for continuous
autoregressive processes. A close relationship between the PAIF

and the conditional entropy test (van der Heyden et al., 1998) is
established by re-writing both in terms of joint entropies Hk. We
found that while the conditional entropy test addresses the first-
order discrete difference ofHk with respect to k, the PAIF actually
tests the corresponding second-order discrete derivative. This
completes the goal of establishing an information-theoretical tool
analogous to classical PACF analysis.

Our experimental data examples also reveal some important
limitations of the approach. The PAIF coefficients for the 4-state
EEG microstate sequence (n = 153, 225 samples) increase for
time lags above approximately k > 8. Comparison with Markov
surrogate samples shows that this increase is due to the limited
sample size, and is not a feature of the EEG data set (data not
shown). The effect is easily understood by a simple numerical
example. If for the same data set, we wanted to compute the PAIF
coefficients for the same time lags as used in the AIF (Figure 7),
joint probability distributions with Lk bins will occur. Thus, to
extend the PAIF analysis of a L = 4-state process to k = 50,
distributions with 450 > 1030 elements have to be estimated,
clearly exceeding the length of the data sample numerous times.
The example also shows that this is an intrinsic limitation of
the approach, as it always occurs for information-theoretical
quantities involving joint entropies, and is not specific to the
PAIF introduced here.

Finally, the present article exclusively deals with discrete
stochastic processes. Future investigations should include the
corresponding quantities for continuous random variables, and
Gaussian processes in particular. For example, it has been shown
in the past that for Gaussian random variables, Granger causality
is equivalent to transfer entropy (Barnett et al., 2009). By analogy,
it can be conjectured that the PAIF and PACF approaches are
likely to be related, if not equivalent, for Gaussian processes.

It will be interesting to see further applications of the
presented approach to theoretical and experimental data and
to investigate further theoretical connections to other quantities
already in use.
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