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Even at healthy states, cardiac tissue conforms one of the most representative cases of a highly
heterogeneous and composite biological medium, whose spatial complexity has for long been
known to modulate electrical conduction (Frank and Langer, 1974; Spach et al., 1981). How
to capture its intricate structural heterogeneity at a tractable cost remains an open challenge in
computational physiology and medicine, as traditional approaches such as the monodomain or
bidomain equations inherently assume that the tissue behaves as an averaged syncytium with
negligible contribution of its composite microstructure.

To overcome some of these limitations, we recently pioneered the use of fractional diffusion for
the description of cardiac conduction (Bueno-Orovio et al., 2014b). Our proposed framework took
the form

∂tV = − (−∇ ·D∇V)α/2
−

1

Cm
(Iion − Istim), (1)

where − (−∇ ·D∇V)α/2 is the so-called fractional Laplacian of real order 1 < α ≤ 2. For α = 2,
the model clearly recovers the standard monodomain equation, and could equally be extended
to the bidomain setting. The well-founded potential theory around the fractional Laplacian
allowed us to establish its biophysical interpretation, showing it represents the modulation of
the electrical field of a homogeneous conductor by the secondary electrical sources associated
with its inhomogeneities. The model further helped elucidating formerly unrelated effects of
tissue microstructure on cardiac conduction, including widespread of the action potential foot
during depolarization, action potential shortening along the activation pathway, and themodulated
dispersion of repolarization. Experimentally, the model has been supported by diffusion spectrum
imaging in ex-vivo hearts, indicating fractional diffusion metrics as indices of myocardial
microstructure (Bueno-Orovio et al., 2016), as well as by high-resolution optical mapping on
cardiac tissue preparations, demonstrating fractional scaling in the propagation of the cardiac
wavelength (Loppini et al., 2018).

In the work under comment, Ugarte et al. build and expand on these ideas to present a
two-dimensional isotropic fractional diffusion framework of complex order, of the form

∂tV = κγ

(

H
γ
x V +H

γ
y V

)

−
1

Cm
(Iion − Istim), (2)
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with operators H
γ
x and H

γ
y involving pairs of complex-conjugate

fractional derivatives defined by

H
γ
x V = −

1

2

[

(

−∂2xV
)γ /2

+
(

−∂2xV
)γ̄ /2

]

, (3)

where γ = α + jβ is the complex fractional order, and γ̄ its
complex conjugate. The authors’ interpretation of their complex-
order model newly builds on potential theory, which connects
potential distributions over fractal domains and the complex-
order fractional Laplacian. Indeed, the inclusion of the imaginary
part β implies that cardiac tissue must satisfy a discrete-
scale fractal structure (self-similarity at discrete scales). Whilst
such a self-similarity could perhaps be arguable for the main
volumetric constituents of cardiac tissue (cardiomyocytes), other
components might very well exhibit a fractal structure (e.g.,
microvasculature). Importantly, such a complex-order fractional
framework holds a great potential for consideration of structural
remodeling, shall the associated structures (e.g. fibrotic clefts) are
proved to have a fractal nature.

However, an important limitation of Ugarte et al. (2018) is
that their proposed model is not consistent with the fractional
Laplacian in which the authors base their analysis. Taking β = 0
for simplicity, Equations (2), (3) then reduce to

∂tV = −κα

(

(

−∂2xV
)α/2

+

(

−∂2yV
)α/2

)

−
1

Cm
(Iion − Istim),

(4)
known as a fractional Riesz operator (fractional derivatives
independently applied in each spatial coordinate). Conversely,
under two-dimensional isotropic conditions, the fractional
Laplacian model given by Equation (1) becomes

∂tV = −κα

(

−∂2xV − ∂2yV
)α/2

−
1

Cm
(Iion − Istim), (5)

where for clarity the same notation κα has been used for
the equivalent diffusion coefficient. Comparing (4) and (5),

FIGURE 1 | Impact of fractional diffusion operators on cardiac conduction for decreasing order α. Activation maps for central domain stimulation are shown (5 ms

separation isochrones). (A) Fractional Laplacian (Bueno-Orovio et al., 2014b). (B) Fractional Riesz operator (Ugarte et al., 2018). Diffusion coefficients were optimized

to match standard diffusion conduction velocity at the center of 5 cm fiber strands. Ionic term: Fenton–Karma (modified Beeler–Reuter) dynamics; domain size:

5× 5 cm; space discretisation: 512× 512 points; time resolution: 0.025 ms.

it becomes evident that the proposed fractional model is
only equivalent to the fractional Laplacian under the standard
diffusion case, given by α = 2.

The implications of these subtle but important discrepancies
on cardiac conduction are exemplified in Figure 1. Simulations
illustrate isotropic conduction for both models under decreasing
fractional order α, with ion dynamics described for simplicity
by Fenton and Karma (1998). Whereas the fractional Laplacian
(Figure 1A) correctly replicates for all α the circular propagation
patterns observed on isotropic cardiacmonolayers as the simplest
yet inhomogeneous in-vitro model of cardiac tissue (Badie and
Bursac, 2009; Bian et al., 2014; Molitoris et al., 2016), the
fractional Riesz operator (Figure 1B) induces increasingly larger
curvature artifacts on wavefront conduction for decreasing α.
Such curvature artifacts indeed translate into the results of Ugarte
et al. (2018), as evidenced by their square-like spiral wavefronts
and rotor trajectories. Given the well-known curvature-related
modulation of conduction velocity and therefore wavefront-
waveback interactions (Fast andKléber, 1997; Comtois andVinet,
1999; Comtois et al., 2005; Kadota et al., 2012), their results on
vulnerability to re-entry and associated rotor biomarkers thus
must be cautiously interpreted.

It is nevertheless relevant to note that more squared
propagation patterns have been reported in both optical mapping
(Koura et al., 2002; de Diego et al., 2011) and computational
(He and Liu, 2010) studies. This was however under marked
anisotropic conduction, not accounted in the isotropic model
by Ugarte et al. (2018). In addition, fractional Riesz operators
have been also used in modeling electrical propagation (Liu et al.,
2013, 2015; Zeng et al., 2014). Such works, more centered in
numerical analysis than in gaining physiological insights, might
be additionally contributing to spreading the inconsistencies
between these two types of fractional diffusion operators. Finally,
a too coarse spatial resolution for atrial dynamics compared to
previous studies (Wilhelms et al., 2013) could also contribute
to partially unresolved re-entrant patterns. Although minimized
by the high-order approach on which the authors base their

Frontiers in Physiology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 1386

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Bueno-Orovio Curvature and Fractional Wavefront Propagation

numerical methods (Bueno-Orovio et al., 2014a), allowing
considerably larger space steps than traditional stencils, this
aspect certainly deserves further consideration.

As previously discussed, the ideas presented in Ugarte
et al. (2018) hold a great potential for advancing the field
of fractional diffusion applied to cardiac tissue, in order to
promote our understanding of the role of tissue microstructure
and structural remodeling in modulating wavefront propagation.
However, this contribution raises awareness on the definition
of suitable fractional diffusion models, exemplifying that simply
recovering standard diffusion for a specific value of the
considered tissue parameters is not a sufficient condition for
realistic cardiac conduction. In this regard, frameworks that
are consistent with the fractional Laplacian (Bueno-Orovio

et al., 2014b; Cusimano et al., 2015; Cusimano and Gerardo-
Giorda, 2018) seem a more suitable modeling approach to
correctly capture the characteristic electrotonic loading of cardiac
tissue.
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