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Extracellular vesicles (EV) are at the center of an intense activity of investigation, both
for their possible employment as biomarkers of ongoing pathologic processes and for
their broad range of biological activities. EV can promote tissue repair in very different
pathologic settings, including hindlimb and myocardial ischemia. Importantly, the exact
mode of action of EV is still partly understood, since they may act by modulating
growth factors and cytokines, signaling pathways, and by transferring non-coding RNAs
to target cells. However, the term EV identifies cell derived, enveloped particles very
heterogeneous in size, composition, and biogenesis. Therefore, part of the controversies
on the biological effects exerted by EV is a consequence of differences in methods of
separation that result in the enrichment of different entities. Since technical challenges
still hamper the highly specific sorting of different EV subpopulations, up to now only
few investigators have tried to verify differences in the biological effects of specific EV
subtypes. This review summarizes the current state of the art on the comprehension
of mechanisms involved in EV biogenesis and release, which is a prerequisite for
understanding and investigating the impact that pathology and drug therapy may exert
on the secretion and composition of EV. Finally, we described both the mechanism
involved in the modulation of EV secretion by drugs commonly used in patients affected
by heart failure, and how pathophysiological mechanisms involved in heart disease
modify EV secretion.

Keywords: extracellular vesicles, exosomes, non-coding RNA, miRNA, heart failure, pharmacological therapy

INTRODUCTION

Extracellular vesicles (EV) are gaining momentum as potential biomarkers and for their broad
range of biological activities. Indeed, a large body of literature, generated by independent
laboratories, has shown, over the last few years, that EV can promote tissue repair in very
different pathologic settings, ranging from cutaneous wound healing and bone regeneration
to hindlimb and myocardial ischemia. Consistently, it is now generally accepted that stem
cells and cell based therapies act, at least in part, through the release of EV (see Chen
et al., 2017). However, the exact mode of action of EV is still object of intense investigation.
Indeed, EV may act by modulating growth factors and cytokines (e.g., IGF, SDF1, NGF,
and HGF), signaling pathways (e.g., Akt, ERK, Wnt/β-catenin, Hippo/YAP, and STAT3),
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and miRNA (e.g., miR-21, -23a, -125b, and -145) (Shabbir et al.,
2015; Zhang et al., 2016; Fatima et al., 2017). Moreover, the
coordinated action of these EV components has been shown
to regulate stem cell proliferation and differentiation, stimulate
angiogenesis, regulate epithelial to mesenchymal transition,
reduce fibrosis and apoptosis (reviewed in Fatima et al., 2017).

Extracellular vesicles play a relevant role in the regulation
of immunity, where they promote both immune stimulation
and suppression (see Robbins and Morelli, 2014 for review),
in a broad range of physiological and pathological conditions.
With regard to immune stimulation, EV can both trigger T
cell activation, acting directly as antigen-presenting vesicles, and
elicit an indirect, dendritic cell (DC)-mediated, effect (Nolte-’t
Hoen et al., 2009; Robbins and Morelli, 2014). Conversely, the
mechanisms of the immunosuppressive function of EV, which
have been experimentally exploited in the cardiac transplantation
field to reduce cardiac allograft rejection, are still under scrutiny
(Peche et al., 2003; Robbins and Morelli, 2014).

Given their complex mechanism of action and broad effects,
EV are also involved in the pathogenesis of distinct pathological
conditions, including inflammatory, autoimmune, and infectious
diseases (Robbins and Morelli, 2014) as well as neurodegenerative
or prion-related diseases, where they may enhance the spreading
of toxic proteins or aggregates through the brain (Guo et al., 2016;
Xiao T. et al., 2017).

Nonetheless, the term EV is a very general one that embraces
cell derived, enveloped particles very heterogeneous in size,
composition, and biogenesis. Therefore, part of the controversies
on the biological effects exerted by EV is a consequence of
differences in methods of separation that result in the enrichment
of different entities. Specifically, EV have been divided into broad
categories, mainly depending on their size and biogenesis (i.e.,
microvesicles (MVs), apoptotic bodies, and exosomes). While the
first two bud from the plasma membrane, exosomes derive from
multivesicular bodies (MVB) (Maas et al., 2017). Importantly,
although both MVs and exosomes can transfer their cargo to
recipient cells, influencing their behavior (Antonyak and Cerione,
2015), a large body of recent literature is focusing on exosomes,
the smallest EV. However, only few investigators have tried
to verify differences in the biological effects of these subtypes,
possibly as a consequence of the difficulties in sorting with
high specificity the different EV populations (Kanada et al.,
2015).

Aim of this review is to discuss the impact that drugs and
comorbidities exert on the biogenesis and function of EV, with
particular reference to the cardiovascular system.

EXOSOMES AND MICROVESICLES:
WHAT ARE THEM?

Although cell derived vesicles have been described in the mid 20th

century, their biological function was initially only marginally
understood, and they were considered to be mostly “cell dust”
or a system of “trash disposal” (Laberge et al., 2018). It was only
recently that the role played by EV as a primary mechanism of
intercellular communication has emerged, mainly for their ability

to transfer macromolecules, including proteins and RNA, among
cells (Valadi et al., 2007; Al-Nedawi et al., 2009).

As anticipated, the term EV comprises different entities
that differ in size, composition, and biogenesis. Specifically,
three broad categories have been identified: exosomes, that
are ≈30–100 nm in size and originate intracellularly from the
MVB; MVs (also named ectosomes or microparticles), whose
size ranges from ≈200 to 1,000 nm and arise via a direct
budding of the plasma membrane; and apoptotic bodies, that
are 1,000–5,000 nm in size and are generated as a consequence
of programmed cell death. In recent years, it has become
apparent that the picture is more complex than previously
thought and that the overlap in size distribution among different
EV types impairs our ability to separate them merely on
physical basis (Tkach et al., 2018). Indeed, according to opinion
leaders, the most popular methods of exosome purification (i.e.,
ultracentrifugation, 200 nm filtration, and precipitation) actually
co-isolate different types of EV (Tkach and Thery, 2016).

EXOSOME BIOGENESIS AND SORTING
OF EXOSOMAL CARGO

Concerning the biogenesis of EV, it involves, for every subtype,
the negative curvature of cellular membranes (i.e., bending
the membrane away from the cytoplasm). While exosomes are
first released within the MVB as intraluminal vesicles (ILV),
larger EV are directly pinched off the plasma membrane. The
negative curvature of the cellular membranes can be initiated by
different mechanisms, that are divided into endosomal sorting
complex required for transport (ESCRT)-dependent and ESCRT-
independent.

Endosomal Sorting Complex Required
for Transport, ESCRT
In the early 2000’s, a molecular machinery responsible for the
negative bending of cell membranes (i.e., ESCRT) was identified.
It comprises about 30 proteins, assembled in five functional
units that are required for: cargo recognition (ESCRT-0), its
sequestration into endosomal microdomains (ESCRT-I and II),
the constriction of the neck of the nascent vesicle (ESCRT-
III), and finally, membrane scission and ESCRT disassembly
(promoted by the Vps4 complex) (Furthauer, 2018). A further
support to membrane budding is provided by the interaction
of syndecans and sintenin with Alix, an auxiliary component
of the ESCRT complex (Baietti et al., 2012). In this pathway,
that is particularly relevant for the regulation of the turnover of
membrane proteins, ubiquitination of transmembrane proteins is
required for their recognition and sorting by ESCRT-0, -I, and -II
complexes (Urbanelli et al., 2013; Colombo et al., 2014).

However, other sorting mechanisms are in place too.
Specifically, cytosolic proteins can be recruited to late endosomes
by a microautophagy-like mechanism, which is distinct from
chaperone-mediated autophagy, and requires hsc70, and ESCRT-
I and -III (Sahu et al., 2011). Importantly, several molecules,
including the pigment cell-specific type I integral membrane
protein PMEL and CD63 in melanocytes (van Niel et al., 2011),
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and the class II major histocompatibility complex (MHC) in DCs
(Buschow et al., 2009), can be inserted into ILV following ESCRT
independent pathways.

Lipid Dependent Mechanisms
Ceramide production induced by neutral sphingomyelinase 2
(nSMase 2) is an important ESCRT-independent mechanism
involved in ILV formation, possibly as a consequence of the
ability of members of this family of lipids to cause membrane
curvature (Trajkovic et al., 2008). However, the hypothesis that
ceramide acts only by bending the membrane may be too
simplistic (Kajimoto et al., 2013). Indeed, ceramide is at the center
of the sphingolipid metabolism, where it acts as either a product
or a precursor for several metabolites, including sphingosine-
1-phosphate (S1P). Many of these metabolites have complex
biological effects that are usually referred to as “sphingolipid
rheostat” (see discussion later) (Newton et al., 2015). Specifically,
it has been recently shown that the continuous activation
of the inhibitory G protein (Gi) coupled S1P receptors on
MVB is required for cargo sorting into ILV destined to the
exosomal pathway. Conversely, inhibition of S1P production
reduces CD63, CD81, and flotillin in ILV (Kajimoto et al.,
2013). Intriguingly, a reciprocal role for ceramide and S1P on
autophagy induction and mTOR pathway modulation has been
described (Taniguchi et al., 2012). This finding is consistent
with the concept that exosome secretion and the autophagy
lysosome pathway are coordinated mechanisms and is reinforced
by the observation that lysosome inhibition increases EV release
(Baixauli et al., 2014; Miao et al., 2015). How these two different
fates are regulated is still an area of investigation. Indeed, MVB
are not a homogenous population, and it has been suggested that
different subpopulations of MVB exist, with some (e.g., those rich
in cholesterol) that are targeted for exocytosis.

Another lipid-dependent mechanism that is involved in the
biogenesis of exosomes relies on the activity of phospholipase
D (PLD). Upon stimulation with ionomycin, this enzyme
is relocated from the plasma membrane to intracellular
compartments and its activity correlates with the extent of
exosome secretion (Laulagnier et al., 2004).

Furthermore, both PLD and phospholipase C (PLC) are
involved in the production of diacylglycerol (DAG), which
regulates several checkpoints of the vesicle secretory pathway
(Alonso et al., 2011; Mazzeo et al., 2016). Diacylglycerol
kinase (DGK) can convert DAG into phosphatidic acid,
which can induce a negative membrane curvature and
is a precursor of bis(diacylglycero)phosphate (BDP)
(Kooijman et al., 2003). The latter or other substrates could
be converted into Lysobisphosphatidic acid (LBPA) or
bis(monoacylglycero)phosphate (BMP) by phospholipase
A2 (PLA2) (Amidon et al., 1996). BMP, which increases its
concentration in late endosomes/MVB (Subra et al., 2007),
promotes the formation of ILV-like structures at low pH,
interacting with Alix (Matsuo et al., 2004). Finally, BMP binds
the chaperone Hsp70 (Kirkegaard et al., 2010) and seems to
be critically involved in regulating the levels of cholesterol
transported in endosomes (Chevallier et al., 2008).

Tetraspanins
An additional, ESCRT-independent mechanism of ILV formation
is provided by proteins of the tetraspanin family (that include
CD9, CD63, CD81, CD82, and CD151). An increasing amount
of evidence supports this notion, as suggested by both: the
ability of cells in which the ESCRT has been silenced to
release CD63 positive EV, and the reduced ability of DCs of
CD9 knockout mice to promote exosome secretion (Stuffers
et al., 2009; Chairoungdua et al., 2010; Andreu and Yanez-
Mo, 2014). Tetraspanins are palmytoilated proteins characterized
by four transmembrane domains and the ability to organize
membrane domains (named tetraspanins-enriched domains,
TEM), clustering and interacting with a large number of
distinct transmembrane and cytosolic proteins, cholesterol and
gangliosides (Andreu and Yanez-Mo, 2014). They can regulate
membrane shape (Grove, 2014), mostly promoting (or inhibiting,
as in the case of CD82) membrane bending and regulating
actin polymerization (Bari et al., 2011). Additionally, tetraspanins
have been involved in sorting the intracellular cargo toward
EV. Specifically, β-catenin, Wnt11, and PMEL, as well as matrix
metalloproteases, such as CD10, and MHC-I and -II molecules
have been shown to be sent to EV in a tetraspanin dependent
fashion (Andreu and Yanez-Mo, 2014). Furthermore, by studying
the interactome of EV pulled down employing antibodies against
the C-terminal regions of both tetraspanins (CD9, CD81, and
CD151) and tetraspanin-associated immunoglobulin superfamily
receptors (ICAM-1, VCAM-1, and EWI-2), it was shown that
≈45% of the proteins annotated as exosomal indeed were part of
the interactome of CD81 and/or EWI-2 (Perez-Hernandez et al.,
2013).

RNA Sorting Mechanisms
A special mention deserves the mechanism that regulate RNA
sorting into EV. Indeed, several studies confirmed that the RNA
content of parental cells is significantly different from that of
cell-derived vesicles, pointing to a selective sorting of target
RNA species to the EV (Ratajczak et al., 2006; Skog et al.,
2008; Nolte-’t Hoen et al., 2012). Deep sequencing experiments
performed on DC derived EV have shown that the majority of
extracellular RNA consists of small (<200 nucleotides) RNAs.
Most of these are non-coding RNAs, distinct from microRNA and
large intervening non-coding RNAs, and represent transcripts
or cleavage products overlapping with protein coding regions,
repeat sequences, or structural RNAs. It has been suggested that
some of these could play a role in the specific sorting of regulatory
RNAs into the EV (Nolte-’t Hoen et al., 2012). A broader picture
was obtained by analyzing the extracellular RNA released by
glioblastoma stem cells. In this setting, authors have shown that
MV RNA content is more similar to that of the parent cell,
while the exosomal one is more distinct (Wei et al., 2017). With
regard to miRNA, bioinformatics and mutagenesis analyses have
demonstrated that EXOmotifs regulate both their binding to
hnRNPA2B1 and their loading into exosomes, upon sumoylation
(Villarroya-Beltri et al., 2013). Additionally, Annexin-2, a protein
that is found with high abundance in exosomes, binds miRNA
in a Ca2+ dependent fashion. The role played by this protein
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in sorting miRNA into exosomes is provided by silencing
experiments that showed a decrease in the amount of miRNA
loaded into exosomes, without modifying their expression profile
(Hagiwara et al., 2015). It has been additionally suggested that
selective sorting of RNAs to EV could depend on their affinity
to ceramide and sphingosine rich raft like structures present
in MVB (Kosaka et al., 2010; Janas et al., 2012, 2015). This
property may be either mediated by binding of target RNA to
hnRNPA2B1 or consequent to hydrophobicity given directly by
specific RNA sequences or by enzymatic modifications, such as
miRNA methylation or tRNA isoprenylation (Janas et al., 2012,
2015).

MICROVESICLE BIOGENESIS

Somewhat less understood and investigated are the mechanisms
that regulate plasma membrane budding and MV biogenesis.
While, as for exosomes, the ESCRT complex is involved in the
biogenesis of MV, MV production and release can also be induced
by calcium signaling and ATP and lipid mediated mechanisms.
Exosomes and MVs differ also in the mechanisms involved in
protein and RNA sorting.

ESCRT
Although the biogenesis of exosomes and that of MVs are
distinct processes, they both share part of the same molecular
mechanisms. Indeed, one component of ESCRT-I (i.e., TSG101),
that is hijacked by HIV to promote the release of viral particles,
can be recruited to the plasma membrane by arrestin domain-
containing protein 1 (ARRDC1) to promote, together with VPS4,
MV release (Nabhan et al., 2012). Importantly, these ARRDC1-
mediated MVs lack the endosomal markers CD63 and LAMP1
(Nabhan et al., 2012).

Additionally, it has been shown that ESCRT components can
be found in the plasma membrane too, where they can form
oligomeric complexes (Welsch et al., 2006). However, the ability
of these molecules to promote the formation of MVs with the
same mechanism that is observed in ILV biogenesis is uncertain
(Yang and Gould, 2013).

Calcium Mediated Processes
Increased intracytoplasmic calcium levels, either employed as
second messenger of different signal transduction pathways or
occurring as a consequence of cell apoptosis and necrosis, can
activate calcium sensitive proteins involved in MV biogenesis.
Specifically, gelsolin, a ubiquitous actin binding protein that
can remodel the actin cytoskeleton (Li et al., 2012) and calpain,
a family of cysteine protease that modulate the function of
their substrates by performing “limited proteolysis” (Ono et al.,
2016), can act in synergy to promote cytoskeleton detachment
and membrane blebbing (Miyoshi et al., 1996). Moreover, the
activities of enzymes involved in regulating plasma membrane
asymmetry, such as aminophospholipid translocase (that
transports phosphatidylserine and phosphatidylethanolamine
from the outer layer to the inner layer) and lipid scramblase (that
promotes the movement of lipids across the cell membrane)

are modulated in opposite fashions by calcium, resulting
in loss of plasma membrane asymmetry and exposure of
phosphatidylserine (Piccin et al., 2007). Furthermore, Annexin-
2, a protein involved in calcium induced exocytosis has been also
shown to promote MV release (Zhang W. et al., 2013).

ATP and Lipid Mediated Mechanisms
Upon stimulation of P2X7 purinergic receptors by ATP released
in the extracellular space, the acid sphingomyelinase is rapidly
activated and translocated to the outer layer of the plasma
membrane, where it cleaves sphingomyelin, increasing the efflux
of cholesterol and membrane fluidity, thus facilitating membrane
shedding (Bianco et al., 2009).

Membrane Targeting and Protein
Crowding
Protein sorting to nascent EV is thought to depend on
the presence of anchors [i.e., protein myristoylation,
phosphatidylinositol-4,5-bisphosphate (PIP2)-binding domains,
phosphatidylinositol-(3,4,5)-trisphosphate-binding domains]
that promote their association with the plasma membrane
compartment (Shen et al., 2011). However, a second signal
provided by the higher-order oligomerization of surface proteins
seems to be required for their secretion within MV. Intriguingly,
the presence of an endosomal targeting domain was not efficient
in promoting protein secretion via EV, in this experimental
model (Shen et al., 2011). A corollary to this observation is that
membrane targeted proteins that form higher-order oligomeric
complexes can be secreted into EV. Indeed, tetraspanins, that can
be found as TEM also in the plasma membrane, can interact with
the cytoskeleton via ezrin/radixin/moesin proteins, and can be
thus released into MVs (Sala-Valdes et al., 2006; Yang and Gould,
2013; Andreu and Yanez-Mo, 2014).

Last, protein lateral confining and crowding mechanisms can
bend membranes and may provide a biophysical explanation for
EV formation (Stachowiak et al., 2012; Derganc and Copic, 2016).

RNA Sorting Mechanisms
As opposed to what was shown for exosomes, results obtained
with next-generation sequencing suggest that the selection of the
cargo may be, in this case, less stringent. Indeed, the RNA content
of MV more closely resembles the parental cell one (Wei et al.,
2017).

SECRETION OF EXOSOME AND MV

A relevant question in EV biology is whether their secretion is
constitutive or regulated. By understanding the mechanisms that
regulate the secretion of EV, we could gain better insights into
how ischemia and pharmacological therapies may impact on their
release.

Regulation of Exosome Release
Once formed, ILV are released into the extracellular space,
following the fusion of MVB or endosomal membranes with
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the plasma membrane, with a process that is regulated by
the same mechanisms that control the trafficking of carrier
vesicles. Specifically, transport, docking and fusion of vesicles
to the plasma membrane are governed by the coordinated
action of the cytoskeleton, of small GTPases of the Rab family,
tethering factors, and soluble N-ethylmaleimide-sensitive factor
attachment proteins -SNAP- and their receptors -SNARE-. More
than 60 Rab proteins are encoded by the human genome. Each
family member has a peculiar subcellular localization and is
involved in distinct intracellular transport steps (Wandinger-
Ness and Zerial, 2014). Of these, only Rab11, Rab27, Rab35,
and possibly Rab22a, are validated regulators of exosome release
(Colombo et al., 2014; Wang T. et al., 2014). Intriguingly, since
Rab35, Rab11, and Rab27 are associated with early, recycling, and
late endosomes, respectively, it has been hypothesized that they
regulate the secretion of different subsets of exosomes. Differing
in their origin, these subsets of exosomes are expected to express
distinct markers, reflecting their sub cellular source (Colombo
et al., 2014). Noteworthy, Rab proteins not directly involved in
the exosome secretory pathways can be found within the vesicles,
potentially reflecting a mechanism for the regulation of the
correct intracellular levels and sub cellular localization of specific
isoforms (Blanc and Vidal, 2017). With regard to the mechanisms
regulating membrane fusion, SNAP and SNARE proteins, such as
YKT6, VAMP7, VAMP3, and syntaxin-1a have been shown to be
crucial for this process (Fader et al., 2009; Gross et al., 2012; Koles
et al., 2012).

Exosomes can be released both in a constitutive and in a
regulated fashion. With regard to upstream regulators of exosome
secretion, it has been shown that the interaction between DCs
and antigen specific CD4+ T lymphocytes can stimulate exosome
release. Other triggers are represented by increased intracellular
calcium levels, depolarization or neurotransmitter stimulation
of neurons and glial cells (Colombo et al., 2014). Moreover,
stressors able to induce p-53 can promote exosome secretion
by upregulating the expression of its target gene TSAP6 (alias
STEAP3), a multiple transmembrane protein involved both in
iron homeostasis and Toll Like Receptor 4 mediated signaling
(Lespagnol et al., 2008; Zhang et al., 2012).

Although considered to be a primary regulator of MV release,
ADP ribosylation factor 6 (ARF6) promotes exosome secretion
via its effector PLD2, an enzyme that regulates the cellular
levels of phosphatidic acid, interacting with syntenin and Alix
(Ghossoub et al., 2014). In line, DGK too, that metabolizes DAG
to phosphatidic acid, promotes exosome secretion, in T cells
(Alonso et al., 2011).

Other mechanisms of modulation of exosome secretion that
have been described more recently are mediated by purinergic
receptors, heparanase and ISGylation. The first ones (specifically
P2X7 or P2Y12), are stimulated by extracellular ATP, and have
been recently recognized as a relevant stimulus for exosome
release (Drago et al., 2017). The second one is an enzyme
that promotes angiogenesis and metastatic spread in many
cancers, and can regulate the syntenin/Alix pathway by tailoring
syndecans (Roucourt et al., 2015). ISGylation, instead, describes
a mechanism of post-translational protein modification that
leads to the covalent binding of target proteins to ISG15, an

interferon induced ubiquitin-like protein. Recent data indicate
that Interferon-I may reduce exosome secretion by promoting the
ISGylation and degradation of TSG101 (Villarroya-Beltri et al.,
2016).

Last, hypoxia is a prominent inducer of exosome release via
HIF1α/HIF2α, both in the cancer and non-neoplastic settings
(King et al., 2012; Kucharzewska et al., 2013; Zhang W. et al.,
2017; Panigrahi et al., 2018).

Regulation of MV Release
While exosomes have been studied mainly in unstimulated cells,
MV have been mostly analyzed following the application of
specific stimuli (Colombo et al., 2014). However, recent data
indicate that both mechanisms of constitutive and stimulated MV
release exist, although the composition of MV released in these
two different conditions can change (Drago et al., 2017).

Platelet derived MV (pMV) deserve a special mention, since
they are the most abundant MV found in the circulation and exert
procoagulant and proinflammatory functions (Badimon et al.,
2016). Formation of pMV can be induced by a large number
of stimuli, some of which shared with other cell types. Exercise
training, heat stress, shear stress, cyclic strain, cardiac stress have
all been shown to elicit pMV and MV release (Miyazaki et al.,
1996; Augustine et al., 2014; Letsiou et al., 2015; Wilhelm et al.,
2017). Moreover, different agonists have the ability to promote
the release of MV. Among these, we should mention ATP or
ADP stimulation, possibly in the presence of lipopolysaccharide
priming, acting on either P2X7 or P2Y12 purinergic receptors,
can lead to a raise in the intracellular Ca2+ levels, promoting
cytoskeleton remodeling and MV release (Kahner et al., 2008;
Bianco et al., 2009; Gulinelli et al., 2012; Colombo et al., 2014;
Takenouchi et al., 2015; Drago et al., 2017). Furthermore, other
proinflammatory (e.g., TNFα) and procoagulant factors (e.g.,
thrombin), together with reactive oxygen species can all induce
MV release (Sapet et al., 2006; Szotowski et al., 2007). Last,
hypoxia, via HIF1α- and HIF2α-induced Rab22a expression,
has been associated with MV secretion (Wang T. et al., 2014).
However, many variables can influence the response to the same
stimulus, such as the cell type, the subject gender, age, and
comorbidities.

IMPACT OF DRUGS AND DISEASES ON
EXOSOME RELEASE

As anticipated, drugs and comorbidities can influence the
mechanisms of biogenesis and release of exosomes and MV, thus
influencing this mechanism of intercellular communication.

Cardiovascular Diseases and
Comorbidities
Table 1 summarizes evidence of the association between the
release of EV (both MVs and exosomes) and: cardiovascular
risk factors (e.g., diabetes, hypertension, and sleep apnea),
atherosclerosis and its complications. Furthermore, both the cell
types involved in EV release and target cells are shown.
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TABLE 1 | Evidence of EV release in pathologic conditions.

Pathological
condition

Type of EV
released

Releasing cell Known mechanism of
release

Effect

Type 1 diabetes Microparticles Endothelial cells (Jansen et al.,
2013a), platelets (Ishida et al.,
2016), leukocytes, SMC
(Chiva-Blanch et al., 2016), and
podocytes (Lytvyn et al., 2017;
Munkonda et al., 2018).

Hyperglycemia (Jansen et al.,
2013a; Lytvyn et al., 2017).

Endothelial dysfunction (Jansen
et al., 2013a; Ishida et al., 2016),
procoagulant effect (Sabatier
et al., 2002), inflammation
(Jansen et al., 2013a), and kidney
fibrosis (Munkonda et al., 2018).

Exosomes Islet-derived mesenchymal stem
cells (Rahman et al., 2014) and
mesangial cells (Barutta et al.,
2013).

Unclear (Rahman et al., 2014;
Wang X. et al., 2014) and
hyperglycemia (Barutta et al.,
2013).

Autoimmunity (Rahman et al.,
2014).

Type 2 diabetes Microparticles Endothelial cells (Feng et al.,
2010; Tramontano et al., 2010;
Jansen et al., 2013a), platelets,
monocytes (Nomura et al., 2009),
and adipocytes (Eguchi et al.,
2015).

Apoptosis (Tramontano et al.,
2010) and hyperglycemia
(Jansen et al., 2013a).

Endothelial dysfunction (Feng
et al., 2010) and procoagulant
effect (Sabatier et al., 2002).

Exosomes Cardiomyocytes (Wang X. et al.,
2014; de Gonzalo-Calvo et al.,
2017), and CD34+ PBMNC
(Mocharla et al., 2013).

Unclear (Wang X. et al., 2014),
exposure to elevated VLDL and
IDL (de Gonzalo-Calvo et al.,
2017), and hyperglycemia
(Mocharla et al., 2013).

Anti-angiogenesis (Wang X. et al.,
2014) and impaired
proangiogenic effects (Mocharla
et al., 2013).

Hypertension Microparticles Platelets, endothelial cells, and
monocytes (Preston et al., 2003;
Nomura et al., 2009; Cordazzo
et al., 2013).

Elevated systolic and diastolic
pressure (Preston et al., 2003)
and Angiotensin II (Cordazzo
et al., 2013).

Procoagulant effect (Cordazzo
et al., 2013).

Exosomes Cardiomyocytes (Pironti et al.,
2015) and macrophages
(Osada-Oka et al., 2017).

Mechanical stretching (Pironti
et al., 2015) and Angiotensin II
(Osada-Oka et al., 2017).

AT1R transfer (Pironti et al.,
2015).

Sleep apnea
syndrome
(intermittent hypoxia)

Microparticles Platelets (Bikov et al., 2017). Hypoxia (Bikov et al., 2017). Procoagulant effect (Bikov et al.,
2017).

Exosomes Endothelial cells (Khalyfa et al.,
2016).

Hypoxia (Khalyfa et al., 2016). Increased permeability and
endothelial cell dysfunction
(Khalyfa et al., 2016).

Atherosclerosis Microparticles Endothelial cells (Buendia et al.,
2015), SMC (Leroyer et al., 2007),
leukocytes (Chironi et al., 2006),
and platelets (Leroyer et al.,
2007).

TNFα (Heathfield et al., 2013;
Buendia et al., 2015) and
oxidized LDL (Fu et al., 2017).

Smooth muscle cell
pro-calcificant activity (Buendia
et al., 2015), thrombogenic effect
(Leroyer et al., 2007), and
endothelial dysfunction (Brodsky
et al., 2004; Fu et al., 2017).

Exosomes Visceral adipose tissue-derived
adipocytes (Xie et al., 2018),
platelets (Srikanthan et al., 2014),
CD4+ T cell (Zakharova et al.,
2007), mature DCs (Gao et al.,
2016), endothelial cells (Zhan
et al., 2009), and vascular SMC
(Kapustin et al., 2015).

High fat diet (Xie et al., 2018),
activated platelets (Srikanthan
et al., 2014), T cell activation
(Zakharova et al., 2007), DC
maturation (Gao et al., 2016),
oxidized LDL and
homocysteine (Zhan et al.,
2009), and increased
extracellular calcium,
PDGF-BB, TNFα (Kapustin
et al., 2015).

Foam cell generation and M1
phenotype macrophage transition
(Xie et al., 2018), reduced
expression of scavenger receptor
CD36 (Srikanthan et al., 2014),
TNFα stimulation (Gao et al.,
2016), cholesterol accumulation
in monocytes and TNFα secretion
(Zakharova et al.,
2007),monocyte activation via
TLR4 (Zhan et al., 2009), and
vascular calcification (Kapustin
et al., 2015).

Plaque rupture and
acute thrombosis

Microparticles Endothelial cells (Schiro et al.,
2015), leukocytes (Mallat et al.,
1999; Rautou et al., 2011;
Sarlon-Bartoli et al., 2013), and
SMC, platelets (Rautou et al.,
2011).

Apoptosis (Mallat et al., 1999)
and cell activation (Rautou
et al., 2011).

Endothelial cell apoptosis, matrix
degradation, neoangiogenesis,
and procoagulant activity (Rautou
et al., 2011).

(Continued)

Frontiers in Physiology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 1394

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01394 September 27, 2018 Time: 16:29 # 7

Cesselli et al. Drug and Pathology Impact EV

TABLE 1 | Continued

Pathological
condition

Type of EV
released

Releasing cell Known mechanism of
release

Effect

Exosomes Platelets (Tan et al., 2016) and
SMC (Kapustin and Shanahan,
2016).

Thrombin activation (Tan et al.,
2016) and SMC activation
(Kapustin and Shanahan,
2016).

Inhibition of PDGFRβ expression
on SMC (Tan et al., 2016) and
thrombosis (Kapustin and
Shanahan, 2016).

Acute myocardial
damage

Microparticles Endothelial cells (Stepien et al.,
2012; Zhang Y. et al., 2017),
platelets, leukocytes, and
monocytes (Stepien et al., 2012).

Ischemia (Stepien et al., 2012;
Zhang Y. et al., 2017) and
platelet activation (Stepien
et al., 2012).

Endothelial dysfunction (Zhang Y.
et al., 2017).

Exosomes Cardiomyocytes (Yang et al.,
2016) and pericardium (Foglio
et al., 2015)

Ischemia (Foglio et al., 2015;
Yang et al., 2016)

Inhibition of autophagy (Yang
et al., 2016), angiogenesis and
cardioprotection (Foglio et al.,
2015)

Atherosclerosis
Concerning atherosclerosis, a large body of literature has
shown the involvement of EV in crucial steps of its natural
history. Endothelial cell dysfunction, the earliest event in the
natural history of the disease can be promoted by endothelial
derived microparticles. Indeed, early reports showed that MVs
released by cultured endothelial cells reduce the acetylcholine
induced vasorelaxation of isolated aortic rings, increasing the
production of superoxide in target endothelial cells (Brodsky
et al., 2004). More recently, microparticles were isolated both
from the peripheral blood and atherosclerotic plaques of patients
undergoing carotid endarterectomy. In both cases, most of
the microparticles were of leukocyte origin. However, while a
large fraction of circulating EV were of platelet origin, ≈13%
of the vesicles isolated from the plaque were originated from
SMC. Functionally, microparticles isolated from both sources
expressed similar levels of tissue factor, but those of plaque
origin generated more thrombin in vitro (Leroyer et al., 2007).
Concerning atherosclerosis promoting factors, oxidized LDL and
inflammatory mediators (e.g., TNFα) were shown to induce the
release of microparticles from a broad range of cells, including
endothelial cells, SMC, leukocytes, and platelets (Chironi et al.,
2006; Leroyer et al., 2007; Heathfield et al., 2013; Buendia et al.,
2015; Fu et al., 2017). Specifically, endothelial cells exposed
to TNFα in vitro released microparticles that contained high
amounts of BMP2 triggering vascular smooth muscle cell (SMC)
calcification. Intriguingly, an identical procalcificant mechanism
characterized MVs either released by senescent endothelial cells
or isolated from patients affected by chronic kidney disease
(Buendia et al., 2015). Similarly, stimulation of endothelial
cells with oxidized LDL promoted the release of microparticles
expressing ICAM-1 that could transfer this molecule to target
endothelial cells, increasing their adhesion to monocytes (Fu
et al., 2017).

Exosomes too have been implicated in the pathogenesis of
atherosclerosis. Specifically, it has been shown that activated
CD4+ T cells release exosomes that stimulated, in vitro, the
accumulation of neutral lipids and free cholesterol, in THP-1
derived monocytes. Noteworthy, exosome-stimulated monocytes
secreted TNFα as well (Zakharova et al., 2007). Furthermore,
endothelial cells exposed to oxidized LDL or homocysteine

released exosomes containing HSP70, which, in turn, increased
the adhesion of monocytes to endothelial cells (Zhan et al.,
2009). Exosomes derived from cultured, mature DCs may also
represent an inflammatory stimulus for endothelial cells. Indeed,
TNFα, exposed on the surface of these DC-derived particles,
triggered, in target human umbilical vein endothelial cells, NFkB
activation and expression of adhesion molecules (i.e., VCAM-1
and ICAM-1). Moreover, the in vivo administration of DC-
derived particles to ApoE−/− mice worsened the atherosclerotic
lesions of the animals (Gao et al., 2016). Cultured SMC too
release exosomes in their supernatant, in a nSMase 2 dependent
fashion. The release of SMC-derived exosomes was upregulated
by calcifying conditions (i.e., in the presence of elevated
levels of calcium and phosphate) and by PDGF-BB, while the
proteomic analysis of these particles suggested their involvement
in calcification processes. Consistently, SMC-derived exosomes
could be detected in calcified arteries (Kapustin et al., 2015).
Adipocyte derived exosomes too play a role in the atherogenic
process. Specifically, visceral adipose tissue derived particles
promoted cholesterol accumulation and enhanced macrophage
foam cell formation by downregulating ATP-binding cassette
transporter mediated cholesterol efflux (via ABCA1 and ABCG1)
in RAW264.7 macrophages. Moreover, exosomes released by
visceral adipocytes of animals fed on a high fat diet (VAT-
HFD) induced the acquisition of a M1 phenotype by Raw264.7
macrophages. This process was a consequence of the activation
of NFkB in macrophages and was paralleled by the increased
secretion of proinflammatory cytokines IL6 and TNFα. In vivo
administration of VAT-HFD derived exosomes too could
exacerbate the atherosclerotic lesions of ApoE−/−mice (Xie et al.,
2018). Last, exosomes may also have a protective effect, as in the
case of those that are platelet derived and are produced during the
atherothrombotic processes. Indeed, these particles promoted the
ubiquitination of CD36, thus inhibiting both platelet activation
and oxidized LDL binding to macrophages in vitro (Srikanthan
et al., 2014).

Extracellular vesicles are involved in plaque rupture.
Specifically, microparticles released by endothelial cells,
leukocytes, SMC, and platelets can promote endothelial cell
apoptosis, matrix degradation, inflammation, and intra plaque
neoangiogenesis, thus destabilizing the plaque and increasing
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thrombus formation (Mallat et al., 1999; Rautou et al., 2011;
Sarlon-Bartoli et al., 2013; Schiro et al., 2015). The clinical
relevance of this phenomenon is supported by the observation
that higher levels of circulating endothelial microparticles could
be observed in the bloodstream of asymptomatic patients with
unstable carotid artery plaques (Schiro et al., 2015). Moreover,
the levels of circulating of CD11b+CD66b+ leukocyte derived
microparticles proved to be independent predictors of carotid
artery plaque instability (Sarlon-Bartoli et al., 2013).

Exosomes too could be produced by platelets and SMC
in the context of a vulnerable plaque, contributing to the
pathophysiology of the atherosclerotic plaque by favoring
calcification and thrombosis (Kapustin and Shanahan, 2016; Tan
et al., 2016).

Myocardial Infarction
With regard to ST-elevation myocardial infarction (STEMI),
circulating microparticle levels increase acutely after the event
and are associated with microvascular obstruction (Suades et al.,
2016). Indeed, both ischemia and platelet activation trigger the
release of MVs by endothelial cells, platelets, leukocytes, and
monocytes (Stepien et al., 2012; Suades et al., 2016; Zhang Y.
et al., 2017). Importantly, the levels of endothelial and platelet
microparticles correlated with the dimension of the area at risk,
in STEMI patients (Jung et al., 2012). Functionally, circulating
microparticles isolated from infarcted patients were endowed
with procoagulant activity, and altered endothelium-dependent
vasorelaxation by impairing the endothelial nitric oxide pathway
(Boulanger et al., 2001; Morel et al., 2004).

Concerning exosomes, their levels increase in the plasma of
patients affected by both myocardial infarction and unstable
angina, few hours after the acute event. Consistently, H9c2
myocytes released, in vitro, exosomes in their culture medium
and the process was enhanced by hypoxia. Importantly, the
HIF1α target microRNA30a that is released within exosomes,
peaked after 4 h of hypoxia, was efficiently transferred to target
myocytes, inhibited autophagy, and promoted apoptosis (Yang
et al., 2016). Exosomes may also be found in the pericardial fluid
(PF) and their concentration increases after acute myocardial
infarction. These EV contain clusterin, that, in turn, promoted
the epithelial to mesenchymal transition of epicardial cells,
increasing the frequency of epicardial cells coexpressing smooth
muscle actin and the stem cell marker c-Kit. Importantly, the
in vivo administration of clusterin to infarcted mice increased
angiogenesis and ameliorated myocardial function (Foglio et al.,
2015). In line with these data, the direct proangiogenic effect
of exosomes collected from the PF has been recently shown.
Specifically, authors have shown the ability of PF derived
exosomes to restore the angiogenic capacity of endothelial
cells deprived of their microRNA content via Dicer silencing.
Furthermore, PF exosomes improved post-ischemic blood flow
recovery, in a mouse limb ischemia model (Beltrami et al., 2017).

Diabetes
In diabetes, different stimuli, such as hyperglycemia and
apoptosis, promote the release of MVs from endothelial cells,
platelets, leukocytes, SMCs, mesangial cells, and podocytes

(Tramontano et al., 2010; Barutta et al., 2013; Jansen et al., 2013a;
Chiva-Blanch et al., 2016; Ishida et al., 2016; Lytvyn et al., 2017;
Munkonda et al., 2018). Functionally, microparticles isolated
from diabetic rat plasma that originate mainly from platelets,
were able to decrease acetylcholine-induced endothelium-
dependent relaxation on carotid artery rings, ex vivo. These
effects were associated with a decreased expression of eNOS, and
with an incremented expression of caveolin-1 in target carotids
(Ishida et al., 2016). Microparticles released by endothelial
cells exposed to hyperglycemia were characterized by increased
NADPH oxidase activity and reactive oxygen (ROS) levels. When
human coronary endothelial cells were cultured in the presence
of these pathologic microparticles, they increased intracellular
ROS levels, activated p38 MAPK in a ROS dependent fashion,
and expressed the adhesive proteins ICAM-1 and VCAM-1,
thus incrementing monocyte adhesion (Jansen et al., 2013a).
Microparticles released by endothelial cells and monocytes
seem to link vascular injury with kidney disease. Indeed,
addition of microparticles released by these two cell types,
in response to TNFα stimulation, to differentiated podocytes
upregulated the production of the proinflammatory mediators
MCP-1 and interleukin-6, in vitro (Eyre et al., 2011). In turn,
proximal tubule epithelial cells, cultured in the presence of
podocyte derived microparticles, activated p38 MAPK, and TGFb
signaling, promoting the secretion of fibronectin/collagen type
IV, potentially contributing to renal fibrosis. This effect could
be inhibited blocking the scavenger receptor CD36 (Munkonda
et al., 2018). Last, Annexin V+ microparticles can be released
by adipocytes during lipotoxic stress, in a Caspase-3 and Rho-
associated kinase fashion, promoting migration of monocytes
and macrophages to the adipose tissue (Eguchi et al., 2015).

Concerning exosomes, it has been shown that they could
play a relevant role in the pathogenesis of type 1 diabetes.
Indeed, islet-derived mesenchymal stem cells (iMSC) released
exosomes that were able to activate autoreactive B and T cells,
primed in NOD mice. Immunization of mice with iMSC derived
exosomes favored the expansion of diabetogenic T cells and
accelerated the T cell mediated destruction of islets (Rahman
et al., 2014). Although it has been shown that exosomes and
specific microRNAs could be found in the urine during the
evolution of diabetic nephropathy, few works have demonstrated
the direct pathophysiological role of these small EV (Barutta
et al., 2013). However, it was recently shown that rat proximal
tubule cells exposed to advanced glycation end-products (AGE)
increased the secretion of exosomes containing C-megalin.
The latter is a multiligand endocytic scavenger receptor
that binds to ligands such as AGE-modified bovine serum
albumin, promoting dysfunction of the autophagy/lysosomal
pathway and exosomal C-megalin excretion (De et al., 2017).
Hyperglycemia exerts also a negative impact on CD34+CD14+
and CD34+CD14− circulating proangiogenic cells by inhibiting
the secretion of the angiogenic microRNA126 within exosomes
(Mocharla et al., 2013). Last, cardiomyocytes too, when exposed
to hyperglycemia or VLDL/IDL, secrete exosomes (Wang X.
et al., 2014; de Gonzalo-Calvo et al., 2017). These contain
microRNA1 and microRNA133a and proved to be independent
predictors of myocardial steatosis, in uncomplicated type-2
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diabetes (de Gonzalo-Calvo et al., 2017). Functionally, exosomes
released from cardiomyocytes isolated from Goto-Kakizaki rats
(an animal model that spontaneously develops type 2 diabetes)
inhibited the activities of proliferation, migration, and formation
of tubule-like structures of cardiac endothelial cells. The effect
was mediated by the transfer of the antiangiogenic microRNA320
to target cells (Wang X. et al., 2014).

Last, diabetes, may reduce the positive effect exerted
by EV. Indeed, although endothelial microparticles can
promote angiogenesis via microRNA126, diabetes reduces
the microRNA126 content of these EV, thus impairing their
proangiogenic capability (Jansen et al., 2013b). Similarly, while
cardiomyocytes release exosomes that promote endothelial
cell proliferation, migration, and capillary network formation
in vitro, diabetes abrogated this protective effect (Wang X. et al.,
2014).

Hypertension
With regard to other risk factors for cardiovascular disease,
both elevated artery blood pressure and angiotensin II (Ang II)
stimulate the release of microparticles from platelets, endothelial
cells, and monocytes (Preston et al., 2003; Nomura et al., 2009;
Cordazzo et al., 2013). Importantly, the levels of both platelet
and endothelial microparticles correlated with: blood pressure,
markers of endothelial and platelet activation (i.e., sVCAM-1 and
sICAM-1), and vWF, a marker of endothelial injury/dysfunction
(Preston et al., 2003). In a cohort of hypertensive patients
with diabetes, systolic blood pressure, HDL cholesterol, sP-
selectin, sE-selectin, sCD40L, RANTES, monocyte derived
microparticle levels, and endothelial derived microparticle levels
were independent predictors of the levels of platelet derived
microparticles (Nomura et al., 2009). These results suggest
that microparticles are at the crossroads between endothelial
injury, coagulation, and inflammation. In line, exposure of
mononuclear cells to Ang II, increased intracellular calcium levels
and stimulated the release of procoagulant, tissue factor-bearing
MVs (Cordazzo et al., 2013). Similarly, stimulation of endothelial
cells with Ang II promoted superoxide generation, Rho kinase
activity, and MV release, which, in turn, exerted prooxidative
and proinflammatory effects on normal endothelial cells (Burger
et al., 2011). Importantly, Ang II receptor blockers inhibited MV
release.

Concerning exosomes, both mechanical stretching, and
Ang II can promote their release from cardiomyocytes and
macrophages (Pironti et al., 2015; Osada-Oka et al., 2017).
Functionally, these vesicles could mediate the transfer of AT1R on
cardiac and skeletal myocytes, and mesenteric vessels, conferring
responsiveness to Ang II infusion in AT1R knockout mice
(Pironti et al., 2015). Moreover, THP-1-derived macrophages,
grown in the presence of Ang II, released exosomes that increased
the expression of ICAM-1 and PAI-1 on target endothelial cells
(Osada-Oka et al., 2017).

Sleep Apnea Syndrome and Hypoxic Conditions
In patients suffering from sleep apnea syndrome, episodes of
intermittent hypoxia are associated with the release of circulating
CD41+ and Annexin V+ microparticles of platelet origin, which

show a diurnal fluctuation that reaches a significant peak at 5 pm.
While the levels of CD41+ MVs positively correlated with the
severity of obstructive sleep apnea, continuous positive airway
pressure therapy reduced their diurnal peak (Bikov et al., 2017).
Moreover, exposure of healthy volunteers to intermittent hypoxia
led to the release of exosomes of endothelial cell, lymphocyte,
monocyte and platelet origin into the bloodstream. Exosomes
released after 4 days of exposure to intermittent hypoxia (4D IH)
increased the expression of ICAM-1, decreased the expression
of eNOS, and reduced the cell barrier function of cultured
endothelial cells. Moreover, endothelial cells treated with 4D
IH exosomes increased their adhesion to monocytes (Khalyfa
et al., 2016). Indeed, hypoxia is a potent trigger for EV secretion,
activating HIF1α and HIF2α (Wang T. et al., 2014). Furthermore,
during ischemia reperfusion injury, stimuli such as ROS and
activation of purinergic receptors can act as additional triggers
of EV release (Szotowski et al., 2007; Kahner et al., 2008; Bianco
et al., 2009; Drago et al., 2017).

Effect of Therapies on EV Release
Considering the biogenesis and the mechanisms of release of EV,
it is conceivable how not only diseases but also drugs can impact
EV production.

Since variations in intracellular calcium levels modulate the
release of both exosomes and MV, we can anticipate that drugs
interfering with calcium homeostasis modify the secretory profile
of treated cells. In line, amiloride, a drug that inhibits both the
Na+/H+ exchanger and the Na+/Ca2+ channel, has been shown
to reduce both constitutive and stimulated exosome release
in vitro (Savina et al., 2003). Similarly, nifedipine, a calcium
channel blocker, was able to reduce the release of platelet derived
microparticles (Lee et al., 1993). However, the effect of the latter
drug on the release of EV by cardiac cells has not been assessed
yet. Conversely, no effect was observed when the L-type calcium
channel inhibitor verapamil was employed (Savina et al., 2003).
Importantly, calcium channel blockers and β-blockers may also
inhibit EV uptake, by reducing endothelial cell activation (Xiao
X. et al., 2017).

An intriguing observation, conducted in the oncology field,
is that a low environmental pH is associated with enhanced
secretion and uptake of exosomes (Parolini et al., 2009). In
line, omeprazole and other H+/K+ pump inhibitors, such as
omeprazole, reduce both exosome release and their uptake
(Chalmin et al., 2010). Although these observations have been
conducted on tumors, it would be of outmost important to
verify whether these drugs interfere with EV release during
cardiac ischemic events, conditions that are coupled with the
acidification of the interstitial space.

Consistently with the role played by cholesterol in exosome
biogenesis, it has been shown that hydroxy-methylglutaryl-
coenzyme A (HMG-CoA) inhibitors modulate the release of
exosomes. Specifically, they increase exosome secretion from
microglial cells, and promote the release of immunomodulatory
exosomes from DCs (Tamboli et al., 2010; Li et al., 2016).
Concerning other drugs interfering with lipid metabolism, it has
been shown that amiloride could inhibit ceramide formation,
possibly by indirectly inhibiting the acid sphingomyelinase,
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preventing the formation of an acidic microenvironment
(Serrano et al., 2012). Similarly, GW4869, a nSMase 2 inhibitor,
could blunt ceramide formation and exosome biogenesis
(Panigrahi et al., 2018).

Given the described role played by ADP in promoting
EV release, it is not surprising that thienopyridines, e.g.,
ticlopidine, clopidogrel, and prasugrel (P2Y12 inhibitors), can
negatively modulate the release of EV (Badimon et al., 2017).
Furthermore, other antiaggregant drugs, such as aspirin, lower
the level of circulating microparticles both in vitro and in
diabetic patients (Chiva-Blanch et al., 2016; Connor et al.,
2016).

In line with the stimulatory effect of TNFα on the release of
endothelial cell derived MVs (see Table 1), the use of an inhibitor
of this cytokine (certolizumab) reduced EV secretion in vitro
(Heathfield et al., 2013).

Moreover, while digoxin possibly reduces exosome release,
acting as a non-specific HIF1α inhibitor, it has been shown
to increase the release of endothelial cell and platelet derived
microparticles, in patients affected by atrial fibrillation (Chirinos
et al., 2005; Panigrahi et al., 2018).

Of particular relevance in oncology is that cisplatin, which
is usually concentrated in the lysosomal compartment, could
be secreted via the exosomal pathway, in drug resistant cells
(Safaei et al., 2005). Similarly, doxorubicin can be secreted within
exosomes, but this process could be inhibited in vitro by ketotifen,
a stabilizer of the mastocyte membrane, thus reversing drug
resistance (Khan et al., 2018).

Last, prompted by early reports, showing that the
cardioprotective and proangiogenic activities of both
mesenchymal stem cells and CD34+ progenitors could be found
in the exosomal fraction of their secretome, several investigators
have evaluated, in recent years, the cardioprotective role of EV
secreted by different cell types (Lai et al., 2010; Sahoo et al.,
2011). In line, microparticles released by apoptotic endothelial
cells promote endothelial cell migration and proliferation, thus
promoting reendothelialization in vivo, with a microRNA126-
dependent mechanism (Jansen et al., 2013b). Cardiac progenitors
(CPC) too release exosomes that are required to protect HL-1
myocytes from apoptosis and to promote angiogenesis in vitro.
These exosomes, that contain proangiogenic and anti-apoptotic
microRNAs, reduced the infarct size, decreasing cardiomyocyte
apoptosis, and increasing angiogenesis in vivo (Barile et al., 2014).
Intriguingly, the protective effect of CPC-derived exosomes
mimicked the effect of cell therapy on acute myocardial
infarction, possibly as a consequence of the modulation
of the immune system. Specifically, exosomes reduced the
accumulation of macrophages in the zone bordering the
infarcted area and promoted their polarization toward an anti-
inflammatory phenotype, both in vivo and in vitro. Exosome-
mediated transfer of microRNA181b to macrophages may be
the molecular mechanism responsible for the phenomenon
(de Couto et al., 2017). The protein content of exosome
too has been considered to be responsible for the beneficial
effects of CPC-derived exosomes. Indeed, pregnancy-associated
plasma protein-A (PAPP-A) is one of the most highly enriched
proteins in the comparison between CPC-derived exosomes

and bone marrow mononuclear cell derived exosomes. PAPP-
A, whose active form was identified on the exosome surface,
cleaves IGFBP-4 and increases the bioavailability of IGF-1,
thus reducing cardiomyocyte apoptosis. Consistently, CPC-
derived exosomes reduced infarct size and ameliorate ventricular
function more efficiently than bone marrow derived ones (Barile
et al., 2018).

CONCLUSION

In conclusion, the term EV encompasses a broad category of cell
derived vesicles that differ in biogenesis and biological properties.
As a consequence, their fractionation and characterization still
represent a challenge. As consequence of this and of the fact that
it is an emerging area of investigation, the current literature may
be confounding. However, the conflicting results could just reflect
heterogeneity in EV preparation and characterization and lack of
knowledge or attention to confounding factors. Among the most
prominent ones, comorbidities and ongoing pharmacological
therapies may have a profound impact in either stimulating
or inhibiting EV release or in modifying the characteristics
of the secreted EV. In line, according to the literature, EV
secreted by a specific cell type may exert protective effects, under
normal conditions, while they could exert deleterious effects in
pathological settings. Similarly, priming of a cell type with a
specific drug may increase the immunomodulatory function of
EV secreted by a given cell type.

Therefore, in future studies, the pathologic status, and the
ongoing drug therapies must be considered as covariates, when
analyzing for the biological effect of a specific EV type.

METHODS

To identify the scientific literature regarding EV and
cardiovascular diseases, we reviewed the literature in the PubMed
database. We focused on publications written in English and
published in the last ≈10 years. As search terms, we used “EV”
or “MVs” or “exosomes” and either “cardiovascular disease” or
“diabetes”. Due to the large number of papers, more than 2,000
scientific works, we were not able to cite all individual references
and we summarized those that we consider the most important
concepts and quoted representative works. We apologize to all
authors whose important publications are not cited.
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