
ORIGINAL RESEARCH
published: 16 October 2018

doi: 10.3389/fphys.2018.01431

Frontiers in Physiology | www.frontiersin.org 1 October 2018 | Volume 9 | Article 1431

Edited by:

Mariano Vázquez,

Barcelona Supercomputing Center,

Spain

Reviewed by:

Jazmin Aguado-Sierra,

Barcelona Supercomputing Center,

Spain

Constantine Butakoff,

Universidad Pompeu Fabra, Spain

*Correspondence:

Alexander V. Panfilov

Alexander.Panfilov@ugent.be

Specialty section:

This article was submitted to

Biophysics,

a section of the journal

Frontiers in Physiology

Received: 14 January 2018

Accepted: 20 September 2018

Published: 16 October 2018

Citation:

Arens S, Dierckx H and Panfilov AV

(2018) GEMS: A Fully Integrated

PETSc-Based Solver for Coupled

Cardiac Electromechanics and

Bidomain Simulations.

Front. Physiol. 9:1431.

doi: 10.3389/fphys.2018.01431

GEMS: A Fully Integrated
PETSc-Based Solver for Coupled
Cardiac Electromechanics and
Bidomain Simulations
Sander Arens 1, Hans Dierckx 1 and Alexander V. Panfilov 1,2*

1Department of Physics and Astronomy, Ghent University, Ghent, Belgium, 2 Laboratory of Computational Biology and

Medicine, Ural Federal University, Ekaterinburg, Russia

Cardiac contraction is coordinated by a wave of electrical excitation which propagates

through the heart. Combined modeling of electrical and mechanical function of the heart

provides the most comprehensive description of cardiac function and is one of the latest

trends in cardiac research. The effective numerical modeling of cardiac electromechanics

remains a challenge, due to the stiffness of the electrical equations and the global

coupling in the mechanical problem. Here we present a short review of the inherent

assumptions made when deriving the electromechanical equations, including a general

representation for deformation-dependent conduction tensors obeying orthotropic

symmetry, and then present an implicit-explicit time-stepping approach that is tailored

to solving the cardiac mono- or bidomain equations coupled to electromechanics of the

cardiac wall. Our approach allows to find numerical solutions of the electromechanics

equations using stable and higher order time integration. Our methods are implemented

in a monolithic finite element code GEMS (Ghent Electromechanics Solver) using the

PETSc library that is inherently parallelized for use on high-performance computing

infrastructure. We tested GEMS on standard benchmark computations and discuss

further development of our software.

Keywords: cardiac arrhythmias, electromechanics, cardiac modeling, ionic models, anatomical models

1. INTRODUCTION

The heart is an electromechanical pump whose mechanical contraction is initiated by electrical
activation, in a process called excitation-contraction coupling. In normal circumstances,
contraction is highly synchronized, resulting in an efficient throughput of oxygenated blood to the
body. Failure in doing so can lead to sudden cardiac death. The contraction also affects excitation
via the process called mechano-electrical feedback. An example of mechano-electrical feedback
that has fatal consequences is commotio cordis (Maron and Estes, 2010), a long-known (Akenside,
1763; Meola, 1879; Nesbitt et al., 2001) phenomenon where a blow to the chest (even without
damaging the heart) may cause ventricular fibrillation. Commotio cordis is still an important cause
of sudden cardiac death in young athletes (Maron, 2003). The underlying mechanism of mechano-
electrical feedback is caused by several factors, including stretch-activated ionic channels (Kohl
et al., 2001). Although much is already known about the subcellular contributions to mechano-
electrical feedback (Quinn et al., 2014), it is still unclear how these translate to macroscopic scales.
Computational models can further help understand the mechanisms and consequences of cardiac
mechano-electrical feedback up to the organ level.
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The heart is mostly modeled as a continuum via partial
differential equations (PDEs). For the spatial coupling between
cells, the cardiac mono- or bidomain equations (Keener and
Sneyd, 2009) are commonly used, in which any specific
model for individual cardiac cells can be inserted. For the
mechanical problem, the most commonly used are the PDEs
of finite (hyper)elasticity (Nash and Hunter, 2000). The joint
solution of these equations is a considerable numerical challenge.
The difficulties largely originate from the different physical
interactions that occur on a wide range of spatial and temporal
scales (Plank et al., 2008; Keyes et al., 2013). The multiphysics
nature makes it impossible to use a general-purpose black-box
solver for this task. Solvers can only be optimal if they use as
much information as possible about the problem. For example,
implicit/explicit integrators need to know which processes are
fast or slow, field-split preconditioners (Brown et al., 2012; Liu
and Keyes, 2015) need to be able to extract fields belonging to
different physics, and multigrid (Briggs et al., 2000; Trottenberg
et al., 2000) and domain decomposition (Quarteroni and Valli,
1999; Smith et al., 2004) solvers need information about the
meshes and discretizations.

In recent years, computational modeling of cardiac
electromechanics has become an active field of research see
e.g., (Göktepe and Kuhl, 2010; Lafortune et al., 2012; Land
et al., 2012; Fritz et al., 2014; Rossi et al., 2014; Franzone et al.,
2015; Augustin et al., 2016). However, different groups often use
different descriptions for the same problems with different forms
for deformation-dependent conduction tensors and sometimes
convective terms in the undeformed configuration. In addition,
current electromechanics codes are often the result of ad hoc
coupling methods between the electrophysiology and finite
elasticity codes, limiting time integration to only first order
numerical schemes and poor stability, although some approaches
are known to address these stability issues (Niederer and Smith,
2008; Pathmanathan and Whiteley, 2009). This problem is
common in other fields that use multiphysics (Keyes et al., 2013).

Our contributions in this paper are the following. First,
we give a consistent derivation of the continuum equations
of coupled electromechanics of the heart based on basic
principles from geometry and physics and the clarification of the
constitutive equations used. From this we show that there are
no convective terms in the undeformed configuration and that
the variety of deformation-dependent conduction tensors from
literature are all special cases of a more general form that we
present here. Second, we generalize Euler-based implicit-explicit
schemes for electromechanics to higher order implicit-explicit
Runge-Kutta schemes, based on the knowledge of fast/slow
dynamics. Third, we explain on how to solve the resulting non-
linear implicit equations from a general multiphysics perspective.

This paper is structured as follows. In section 2 we introduce
the necessary notations and concepts and present the strong
and weak form for the continuum electromechanics equations,
followed by a brief discussion on how to discretize the weak form
equations using finite elements in section 3. Next, we discuss on
how to discretize the electromechanics equations in time using
implicit-explicit schemes and how to solve the resulting non-
linear equations in 4. Finally, in section 5 we explain how we

implemented this using PETSc (Balay et al., 1997, 2016a,b) in our
GEMS (Ghent ElectroMechanics Solver) code, and give examples
of numerical results in section 6.

2. PHYSICS

In this section we introduce the mathematical basis for physical
modeling in the moving domain, distinguishing between the
Eulerian and Lagrangian viewpoints. Then we show how the
balance equations (i.e., physical conservation laws) need to be
closed by constitutive equations. By imposing symmetry (e.g.,
a locally uniaxial medium), the constitutive equations involving
tensors cannot be chosen freely, but need to be of certain form
which we here propose and discuss. We conclude by splitting the
equations in fast and slow components, which will be respectively
treated implicitly and explicitly during time stepping in section
4. At the end of this section, we will have cast the modeling
equations in variational form, suitable for use in the finite
element approach.

2.1. Definitions and Notation for
Geometrical Concepts
To formulate the problem of electromechanics, it is important
to understand the underlying geometry. Since we will consider
continuum equations here, it is natural to consider them on a
manifold, i.e., a “curved” space which locally resembles Euclidean
space. For additional background material we refer to Marsden
and Hughes (1994) and Frankel (2012).

Let B be the material manifold of dimension m. This is a
reference manifold for our body. For an excitable surface,m = 2
and for a three-dimensional tissue, m = 3. On every patch of B,
we define material coordinates XI , I = 1, ..,m.

The space in which the body moves is given by the spatial
manifold S (which is sometimes called the ambient or target
manifold), of dimension n. For example, if an excitable surface
is restricted to move in a plane, n = 2. However, in the general
case where the tissue can move in 3D, n = 3. On every patch of
S , we define spatial coordinates xi.

We will assume that we have a metric for these manifolds,
which we denote by resp. G and g, so that we have Riemannian
manifolds. In the simplest case (which we will use further) S

will be n-dimensional Euclidean space, such that xi are Cartesian
coordinates x, y, z, and B will be an open subset of Euclidean
m-dimensional space. However, a non-Euclidean metric on B

can be important in growth and remodeling phenomena (Ozakin
and Yavari, 2010), e.g., hypertrophy and thermoelasticity (Yavari,
2010).

A configuration of B is a mapping φ :B → S which represents
the deformation of the body and we will often use the notation
xi = φi. The set of all configurations of B is called the
configuration space C and is an infinite-dimensional manifold.

The tangent map Tφ :TB → TS ,Tφ(X,V) = (φ(X),Dφ(V))

is called the deformation gradient F and is FiI = ∂φi

∂XI in
components. This tells us how a tangent vector at a point X ∈ B

transforms under φ.
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Another important concept is the deformation tensor C, which
is the pullback of the metric g: C = φ∗g, or in components CIJ =
FiIgijF

j
J . Note that the squared infinitesimal distance between

nearby points with coordinates XI and XI+dXI or xi and xi+dxi

is ds2 = gijdx
idxj = CIJdX

IdXJ , showing that CIJ is a measure for
how length and angles between fixed pairs of points in the tissue
change under a deformation. If we pull back the volume form dv
on S to B, we get φ∗dv = JdV , where dV is the volume form on

B and J =
√

det g√
detG

det F the Jacobian of the deformation.

The strain in the tissue will depend on how the current length
and angles relate to the reference case, which is quantified by the

strain tensor E = φ∗g−G
2 . Since φ is an isometry only if φ∗g = G,

E measures the deviation between the current deformation and
an isometry.

In cardiac contraction, the configuration (or deformation) φ
is time-dependent, which can be represented by a curve C in
configuration space, i.e., a mapping R → C; t → φt , called the
motion. The material velocity and acceleration are then defined
to be respectively the first and second time derivatives of the

motion. Their components are given by V i = ∂φi

∂t and Ai =
∂V i

∂t + (γ i
jk
◦ φ)V jVk, where γ i

jk
are connection coefficients on S .

Since we use Euclidean space for S , we have γ i
jk
= 0.

At this point, it is useful to discuss the Eulerian and
Lagrangian viewpoints. Given the above definitions, any objects
that are defined on B are called Lagrangian or material, while
the concepts defined on S are called Eulerian or spatial. The
Lagrangian and Eulerian point of view are equivalent, because
anything that is defined in one can be transformed to the other.
For cardiac tissue it is natural to use the Lagrangian framework.
This has the advantage that we do not need convective derivatives
in the description.

To model the cardiac microstructure, i.e., the fiber, sheet and
normal direction, we will use frame fields, which are also called
vielbeins in physics. Frame fields are a set of orthonormal vector
fields. They span at each point of a manifold a basis for the
tangent space. If G is the metric of our (material) manifold and
{EA}mA=1 the frame field, the orthonormality condition is

G(EA,EB) = δAB. (1)

The dual of the frame field is denoted EA (with upper indices) and
called the coframe field. It is defined to obey EA(EB) = δAB , such
that it can be used to write the metric in the simple form

G =
m

∑

A=1

EA ⊗ EA. (2)

We will denote the components of the frame field EA in the
coordinate basis by EIA and of the coframe field EA by EAI .

2.2. Balance Equations
Although the bidomain and elasticity equations are well-
known, we will still derive for consistency the equations of
cardiac electromechanics here starting from basic continuum
balance laws. This will allow us explicitly mention assumptions

and approximations made, and to emphasize that cardiac
electromechanics is more than just the sum of bidomain and
elasticity equations, giving rise to more complicated constitutive
equations (such as deformation-dependent conduction tensors).

Our starting point are physical conservation laws: balance of
charge in the intra- and extracellular domains, no accumulation
of total charge, balance of momentum, and the dynamics
of the internal variables (such as gating variables and ionic
concentrations):

∂Qi

∂t
+ DIV Ji = −Iion, (3a)

∂Qe

∂t
+ DIV Je = Iion, (3b)

∂(Qi + Qe)

∂t
= 0, (3c)

ρRefA− DIVP − ρRefB = 0, (3d)

∂Ŵ

∂t
= R, (3e)

where Qi and Qe are the intra- and extracellular charge densities,
Ji and Je are the intra- and extracellular current densities, ρRef is
the reference mass density, A is the acceleration, P the first Piola-
Kirchhoff stress tensor, B is the body force (e.g., gravity), Ŵ is a
column matrix of the internal variables and R are their reaction
rates. Note that all quantities live on the material manifold B and
DIV is the divergence operator on B.

The assumptions in the bidomain formulation are the
following. First, the cell membrane can bemodeled as a capacitor:
Qi − Qe = 2CmVm, where Cm is the capacitance per volume and
Vm = Vi − Ve the transmembrane voltage. Second, the intra-
and extracellular space are ohmic conductors, with intra- and
extracellular conductivities6i and6e . Thus we get the following
set of equations:

∂(CmVm)

∂t
+ DIV (6i · GRADVm)+ DIV (6i · GRADVe) = −Iion,

(4a)

DIV (6i · GRADVm)+ DIV ((6i+e) · GRADVe) = 0,
(4b)

∂Ŵ

∂t
= R,

(4c)

ρRefA− DIVP − ρRefB = 0.
(4d)

An assumption often made in cardiac mechanics is the neglect
of the inertial term ρRefA. This is justified because sound waves
occur on a much faster time scale than the electrical waves in
cardiac tissue: the ratio of the speed of sound to conduction
velocity is around 25. This was also validated numerically in an
electromechanical model of a 1D fiber (Whiteley et al., 2007).

2.3. Constitutive Equations
To close Equations (4) we need to specify constitutive equations
for6i,6e, Iion, R, and P. We will only consider the dependencies
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as pointwise functions of material position X, transmembrane
potential Vm, internal variables Ŵ and deformation C:

6i = 6̂i(X,C), (5a)

6e = 6̂e(X,C), (5b)

Iion = Îion(X,Vm,Ŵ,C), (5c)

R = R̂(X,Vm,C) (5d)

P = FŜ(X,Ŵ,C). (5e)

Instead of working with a function P̂ for the first Piola-Krichhoff
stress tensor, we directly work with a function Ŝ for the second
Piola-Kirchhoff stress tensor, because it is symmetric. It is also
possible that the material capacitance depends on deformation,
and therefore we write Cm = Ĉm(X,C). Based on the symmetries
of the material we can deduce more specific representations for
the scalar (Îion, R̂, and Ĉm) and symmetric second order tensor
functions (6̂i, 6̂e, Ŝ). Because of the specific microstructure of
cardiac tissue, we only focus on orthotropic materials, but more
general symmetries based on crystal groups are possible (Smith,
2012). For the following we will use the notation {EA}A∈{F,S,N} for
the local fiber, sheet and sheet normal directions.

Let us start with the scalar functions. It can be shown
(Itskov, 2013) that every scalar-valued function of a symmetric
rank-2 tensor M, such as the deformation tensor C, the second
Piola-Kirchhoff stress tensor S and the conduction tensors
6i,6e, which is invariant under orthotropic symmetries
can be written as a function of the seven invariants
{MFF ,MSS,MNN , (MFS)2, (MFN)2, (MSN)2,MFSMSNMNF}. If
det(M) = 1, (e.g., when M is the deformation tensor of
an incompressible material), these seven invariants are not
independent anymore and we can leave out the last one. In that
case our scalar constitutive equations would be a function of
the six invariants {MFF ,MSS,MNN , (MFS)2, (MFN)2, (MSN)2}.
Often Îion and R̂ are taken to be a function of the fiber stretch
λ =

√
CFF only, see for example Niederer et al. (2006) and

Panfilov et al. (2007).
Orthotropic tensor-valued functions T of a symmetric tensor

M can be shown to be of the form (Itskov, 2013)

T̂(M) =
∑

A∈{F,S,N}

[

α̂A (EA ⊗ EA) (6)

+ β̂A

2
(M · EA ⊗ EA + EA ⊗ EA ·M)

+ γ̂A

2

(

M2 · EA ⊗ EA + EA ⊗ EA ·M2)

+ δ̂A

2
(M · EA ⊗ EA − EA ⊗ EA ·M)

+ ǫ̂A

2

(

M2 · EA ⊗ EA − EA ⊗ EA ·M2)
]

,

where α̂, β̂ , γ̂ , δ̂, and ǫ̂ are now scalar-valued functions of M.
Note that for T̂(M) symmetric δ̂A = ǫ̂A = 0 while for T̂(M)
antisymmetric α̂A = β̂A = γ̂A = 0.

When we write out this expression in components of the EA
frame (A, B ∈ {F, S,N}, no summation implied) we get:

T̂AB(M) = α̂A + α̂B
2

δAB +
β̂A + β̂B + δ̂A − δ̂B

2
MAB

+ γ̂A + γ̂B + ǫ̂A − ǫ̂B
2

(M2)AB. (7)

The second Piola-Kirchhoff stress tensor S is symmetric and

in the case that it is hyperelastic (such that ŜIJ(C) = 2 ∂ψ̂
∂CIJ

,

where ψ̂ is a function of the invariants), the constitutive equation
simplifies to

Ŝ(C) =
∑

A∈{F,S,N}

[

α̂A (EA ⊗ EA)+
β̂A

2
(C · EA ⊗ EA

+EA ⊗ EA · C)
]

+ γ̂C2. (8)

For ventricular cardiac tissue, the Guccione (Guccione et al.,
1995) and Holzapfel-Ogden (Holzapfel and Ogden, 2009)
constitutive equations are popular choices.

Throughout the literature on cardiac electromechanical
modeling, several deformation-dependent conduction tensors
have been proposed. The simplest form is obtained by making
the conduction coefficients 6A dependent on the stretch along
the principal material directions: with λA =

√
C(EA,EA),

6̂(C) =
∑

A∈{F,S,N}
6̂A(λA)EA ⊗ EA (9)

Examples for these are 6̂A(λA) = 6A, i.e., deformation-
independent or “gap-junction based” conduction(Bakir and
Dokos, 2015) or 6̂A(λA) = 6A

λ2A
(Colli Franzone et al., 2016). Yet

another form for the conduction tensor can be found in Bakir and
Dokos (2015), which they call “spatially based” conduction:

6̂(C) = JU−1 ·





∑

A∈{F,S,N}
6A(λA)EA ⊗ EA



 · U−T , (10)

where U is the right stretch tensor, i.e., U =
√
C. A related form

is (Sachse, 2004):

6̂(C) = W ·





∑

A∈{F,S,N}
6A(λA)EA ⊗ EA·



WT , (11)

where W = U−1
(

1+ θ(U − 1)
)

and θ ∈ [0, 1] is a parameter
which reduces this conduction tensor to the “spatial based”
conduction for θ = 0 (apart from the Jacobian factor) and to
a “gap-junction based” conduction for θ = 0.

In Göktepe and Kuhl (2010) and Göktepe et al. (2013) the
following transversely isotropic form

6̂(C) = 6isoC
−1 +6aniEF ⊗ EF (12)
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was used and in Plank et al. (2013):

6̂(C) =





∑

A∈{F,S,N}
6AEA ⊗ EA



 · C−1. (13)

This variety of deformation-dependent conduction tensors is
mostly a consequence of the assumptions that were made about
the conduction coefficients, for example one assumes that the
conduction coefficients are constant in the spatial or in the
material frame. However, nothing says a priori if these should
even be constant. So to have realistic deformation-dependent
conduction tensors relationships, the conduction coefficients
should be based on measurements with different deformations.

2.4. Variational Formulation
In view of the time-integration methods which will be presented
in section 4.1, let us split R in fast processes (to be treated
implicitly) and slow processes: R = RI + RE. Furthermore, let
Pappl denote the applied pressure on the pressure boundary of
the deformation φ (e.g., the fluid pressure at the endocardial
surfaces). Writing the fast processes on the left-hand side and
the slow processes at the right-hand side, the weak or variational
form for electromechanics can be written as: find Vm,Ve,Ŵ,φ
such that
∫

B

δVm
∂Vm

∂t
dV +

∫

B

δVm|I (6i)
IJ

(

Vm|J + Ve|J
)

dV = −
∫

B

δVmIiondV

(14a)
∫

B

δVe|I
(

(6i)
IJ Vm|J + (6i+e)

IJ Ve|J
)

dV = 0 (14b)
∫

B

δŴ

(

∂Ŵ

∂t
− RI

)

dV =
∫

B

δŴREdV

(14c)
∫

B

δφi
∣

∣

I
PIidV +

∫

∂NB

δφiPapplJ
(

F−1) I
iNIdS = 0, (14d)

for all test functions δVm, δVe, δŴ, δφ. The notation |I was
introduced for the I’th component of the covariant derivative, i.e.,

δVe|I = ∂Vm

∂XI and δφi
∣

∣

I
= ∂(δφi)

∂XI +γ i
jk
δφjFkI (again, for Euclidean

S the connection γ vanishes).
Note that we can write any left-hand side of (14) in the

following form:

∫

B

(

v · f0 + ∇v : f1
)

dV +
∫

∂NB

v · g0dS (15)

where v represents any of the test functions and f0, f1, and g0 are
general functions of Vm, Ve, Ŵ, and φ, their gradients and time
derivatives, time and spatial coordinates. More specifically, we
can summarize all the fast physics by pointwise functions in the
following table:

f0 f1 g0
Vm

∂Vm
∂t 6i · ∇Vm +6i · ∇Ve

Ve 6i · ∇Vm + (6i+e) · ∇Ve

Ŵ ∂Ŵ
∂t − RI

φ P PapplJF
−T · N

(16)

For implicit time integration we will also need the Jacobian of the
left-hand side. Its action on the increments 1Vm, 1Ve, 1Ŵ, and
1φ is given by

∫

B

δVmγ1VmdV +
∫

B

δVm|I (6i)
IJ 1Vm|J dV (17a)

∫

B

δVm|I (6i)
IJ 1Ve|J dV (17b)

∫

B

δVe|I (6i)
IJ 1Vm|J dV (17c)

∫

B

δVe|I (6i+e)
IJ 1Ve|J dV (17d)

∫

B

δŴ

(

γ − ∂RI

∂Ŵ

)

1ŴdV (17e)

∫

B

δφi
∣

∣

I
A I J
i j 1φ

j
∣

∣

J
dV +

∫

∂NB

δφiPapplB
J

ij 1φ
j
∣

∣

J
dS (17f)

where γ is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
step h, γ = h−1) and

B J
ij =

∂
(

J
(

F−1
)I

i
NI

)

∂F
j
J

= JNI

(

(

F−1)I
i

(

F−1)J
j

−
(

F−1)I
j

(

F−1)J
i

)

, (18)

and

A I J
i j = ∂P I

i

∂F
j
J

(19)

is called the first elasticity tensor (Marsden and Hughes, 1994).
The expressions (17) can generally be written as

∫

B

[

vT ∇vT
]

[

f0,0 f0,1
f1,0 f1,1

] [

w

∇w

]

dV +
∫

∂NB

[

vT
] [

g0,0 g0,1
]

[

w

∇w

]

dS

(20)

and the pointwise Jacobians can be summarized as

f0,0 f1,1 g0,1
(Vm,Vm) γ 6i

(Vm,Ve) 6i

(Ve,Vm) 6i

(Ve,Ve) 6i+e

(Ŵ,Ŵ) γ − ∂RI
∂Ŵ

(φ,φ) A PapplB

(21)

where for example (Vm,Ve) refers to the derivative of the weak
equation for Vm w.r.t. Ve.

3. DISCRETIZATION

In this section we apply standard methods to express the
variational equations in a finite element basis, to obtain a
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large non-linear system to solve instead of continuum partial
differential equations.

We will use the finite element method (Ciarlet, 2002; Brenner
and Scott, 2007; Zienkiewicz et al., 2013) to spatially discretize
the weak forms (14). Let the manifold B be triangulated into
E m-simplices {Ke}Ee=1 (cells/elements), each diffeomorphic to

the standard m-simplex K̂ (with coordinates ξ Î): for each e
there is a coordinate map X̂e

: K̂ → Ke for which their

element Jacobians (Je) I
Î
= ∂X̂I

∂ξ Î
and their inverse exist (and are

continuous). If we also choose a function space P and a basis
for the dual space 6 over each element, the triple (K, P,6)
defines the finite element (Ciarlet, 2002). Here we will only use 1st

order Lagrange elements (Brenner and Scott, 2007). Let {ϕp}dim P
p=1

denote the basis functions for P and let {ξq}Qq=1 and {wq}Qq=1 be

the quadrature points of a quadrature rule with Q quadrature
points (e.g., Gauss-Jacobi in the case of simplices Karniadakis and
Sherwin, 2013). Then we can define the element basis evaluation,
derivative and integration matrices as (Be)qp = ϕp(ξq),

(

De
I

)

qp
=

∂ϕp

∂ξ Î
(ξq)

(

(Je)−1) Î
I and (W

e)qp = δqpwq det (Je)

Following (Brown, 2010; Knepley et al., 2013) we discretize the
volume terms

∫

B

(

v · f0 + ∇v : f1
)

dV (22)

as

∑

e

E
T
e

[

(Be)TWe3e(f0)+
∑

I

(De
I)
TWe3e(f I1 )

]

, (23)

where Ee is the element restriction operator and 3e transforms a
function into function evaluations at the quadrature points. Note
that evaluation of a field u at the quadrature points are evaluated
as ue = BeEeu and their derivatives as ∇Iu

e = De
IEeu.

The boundary integrals

∫

∂NB

v · g0dS (24)

are discretized as

∑

f

E
T
e(f )

[

(Be(f ))TWf3e(f )(g0)
]

, (25)

where e(f ) refers to the neighboring element of f , i.e., we evaluate
at the quadrature points of the face using the neighboring
element’s basis functions and field coefficients.

4. ALGORITHMS

In this section we present IMEX integration schemes, the
resulting non-linear equations and approaches to solve them
numerically for the specific structure of the electromechanical
equations.

4.1. Time Integration Using IMEX Schemes
For systems that havemultiple time scales that are well-separated,
we have to choose a time scale that we are interested in. In
studying the long term or slowly varying behavior, the fast
transient processes don’t need to be fully resolved, as these decay
rapidly. These systems are called stiff (see Söderlind et al., 2015
for a discussion on stiffness). Note that in discretized PDEs,
the fastest time scale often comes in the form of a Courant-
Friedrichs-Levy limit (Courant et al., 1928), making it mesh-
dependent.

Explicit schemes require the time step to be of the same order
as the fastest process for stability, so they are very inefficient for
stiff systems. Implicit schemes can step over those fast processes,
but the downside is that they produce large fully coupled non-
linear systems. Implicit-Explicit (IMEX) schemes combine the
best of both worlds: they integrate the fast processes implicitly
and the slow processes explicitly. A class of IMEX methods
are Additive Runge-Kutta Implicit-Explicit (ARKIMEX) schemes
(Ascher et al., 1997; Kennedy and Carpenter, 2001; Giraldo et al.,
2013). They combine two s-stage methods (ERK and (ES)DIRK),
summarized by two Butcher tableaus (Butcher, 2016)

cE1 aE11 · · · 0
...

...
...

cEs aEs1 · · · 0
bE1 · · · bEs

cI1 aI11 · · · 0
...

...
...

cIs aIs1 · · · aIss
bI1 · · · bIs

, (26)

additively to integrate equations of the following form

Mẏ = f I(y, t)+ f E(y, t), (27)

where y : I → R
N describes the evolution of the discretized

state, f I and f E are resp. the implicitly and the explicitly treated
functions andM is a mass matrix. The implicit function contains
the fast or stiff physics, whereas the explicit function contains the
slow or non-stiff physics. Often f I is linear and fE non-linear. The
i-th stage value Yi can then be computed as

Yi = yn + h

i−1
∑

j=1

aEijẎ
E
j + h

i
∑

j=1

aIijẎ
I
j , (28)

where the implicit and explicit stage derivates are given by ẎI
i =

M−1f I(Yi, tn+ cih) and ẎE
i = M−1f E(Yi, tn+ cih). The difference

between both terms is that the stage Yi depends on only previous
stages for the explicit part, but also on the current stage for the
implicit part. The numerical constants aIij, a

E
ij follow from the

chosen integration scheme, see the Butcher tableaus (26).
After rearranging, Equation (28) produces a non-linear

equation in Yi, if the aIii 6= 0:

Mγ (Yi − Zi)− f I(Yi, tn + cih) = 0, (29)

where γ is the shift factor determined by the numerical
integration scheme (for example, for backward Euler with time
step h, γ = h−1). The Jacobian for this equation is

γM − ∂f I

∂y
(Yi, tn + cih) (30)
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and is used while iteratively solving Equation (29) for Yi.
Thereafter, the implicit stage derivative can be simply found as

ẎI
i = γ (Yi − Zi) (31)

and the explicit stage derivative by evaluating the explicit
function

ẎE
i = M−1f E(Yi, tn + cih). (32)

The solution at the next time step is then calculated as

yn+1 = yn + h

s
∑

i=1

bEi Ẏ
E
i + h

s
∑

j=1

bIi Ẏ
I
i . (33)

Note that if f I = 0 we have a purely explicit scheme and if
f E = 0 we have a purely implicit scheme. In order to avoid the
need to invert M, we will only use schemes for which aIsi = bIi
and aEsi = bEi , the so-called globally stiffly accurate schemes
(Boscarino et al., 2013). Then, the completion step (33) can be
skipped. For amore thorough discussion on the technical aspects,
we refer to Kennedy and Carpenter (2001). In the context of
electrophysiology they were previously applied only to single
cell models, where they have been shown to outperform other
integration schemes (Spiteri and Dean, 2008).

4.2. Non-linear Solvers
The IMEX schemes allow us to put some of the complicated
non-linear dependencies in the right-hand sides, making the
implicit solve easier. If we make the following assumptions, we
can essentially solve the whole non-linear system by solving each
subproblem one after another: the ionic current, the stretch-
dependent terms in the cell models and dependence of the
tension variables on Cai or Vm must be in the RHS. Now
we can solve for the stage values by doing the following:
first solve the active tension internal variable equations, then
solve the mechanical equations (14d), then solve the bidomain
equations ((14a) and (14b)) together and finally solve the
electrophysiological internal variable equations (14c). This
approach is nothing more than the non-linear Gauss-Seidel
method applied to the fields:

Algorithm 1 Nonlinear Gauss-Seidel

Given initial u = (u1, · · · , un)T
for k = 1, · · · , n do

Solve Fk(u
∗
1 , · · · , u∗k , · · · , un) = 0 for u∗

k
end for

During this process, we solve the bidomain and, if possible,
the implicit internal variables equations with a linear solver (to
be specified below), while we solve the non-linear mechanical
equations with Newton’s method. If for some reason some of the
above assumptions do not hold and coupling between variables is
strong enough, more Gauss-Seidel sweeps are done to converge.
Alternatively, one could use the above algorithm as a non-linear
preconditioner (Liu and Keyes, 2015).

4.3. Linear Solvers and Preconditioners
4.3.1. Bidomain

We solve the discretized bidomain equations with conjugate
gradients preconditioned by block preconditioners (Sundnes
et al., 2002; Pennacchio and Simoncini, 2009; Bernabeu et al.,
2010; Pavarino and Scacchi, 2011). For this we use PETSc’s
FieldSplit preconditioner, allowing us to flexibly choose between
different strategies (Brown et al., 2012) from the command
line. Both blocks are preconditioned with one V-cycle of
PETSc’s native algebraic multigrid preconditioner (GAMG). If
no Dirichlet boundary conditions are given for the extracellular
voltage, we also provide the constant nullspace vector to the
respective block solve.

4.3.2. Mechanics

We solve the linearized elasticity equations arising fromNewton’s
method with conjugate gradients, preconditioned with PETSc’s
algebraic multigrid preconditioner. The difference here with
previous work (Franzone et al., 2015; Gurev et al., 2015; Augustin
et al., 2016) is that this algebraic multigrid preconditioner uses
smoothed aggregation (Vaněk et al., 1996), which ismore efficient
for elasticity problems (Van et al., 2001; Adams, 2002). We
provide the rigid body modes to PETSc’s GAMG preconditioner
to obtain more accurate coarse spaces, resulting in a significant
drop in iterations. Here we use a full multigrid cycle as this also
helps in lowering the number of iterations of the linear solver at
the expense of only a small percentage more work than a single
V-cycle.

4.3.3. Internal Variables

As the internal variables on different points are completely
decoupled these can be solved easily as small linear systems. Very
often these systems are even diagonal, for example when most of
the stiffness comes from the gating variables.

5. IMPLEMENTATION: GEMS

5.1. Source Code in C Using PETSc
We implemented our code in C using the PETSc library (Balay
et al., 1997, 2016a,b). This allows us to have a large choice
of scalable and efficient algorithms and data structures for the
solution of time-dependent PDE’s, which can be easily changed
or finetuned through command line options. By using PETSC’s
unstructured mesh data structure, we can easily read and write
commonmesh formats, (re)distributemeshes and associated data
and we have access to powerful solvers which need access to mesh
and field information (e.g., multigrid and block preconditioners).
More specifically, we used DMPlex (Isaac and Knepley, 2015;
Knepley et al., 2015; Lange et al., 2015) for mesh management
and PetscFE for finite element technology, TS (Abhyankar, 2014)
for time stepping, SNES for non-linear solvers and KSP/PC for
linear solvers and preconditioners. Input and output routines
are coupled to PETSc. Meshes can be read in through DMPlex
if it is of the ExodusII (Schoof and Yarberry, 1994), Gmsh
(Geuzaine and Remacle, 2009), CGNS (Poirier et al., 1998), MED
(Open CASCADE, 2017), Fluent Case (Fluent, 2006), or PLY
(Wikipedia, 2017) file format. Alternatively, meshes can also
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be created by giving the vertex numbers per cell and vertex
coordinates. Output can be generated using the builtin PETSc
viewers. For example, DM (mesh) and Vec (representing discrete
fields) objects can be stored as HDF5 (The HDF Group, 1997-
2017) data, which can be read by ParaView (Ayachit, 2015)
or VisIt (Childs et al., 2012) with XDMF metadata (Kitware,
2017). The extensible nature of PETSc also makes it possible
to implement new solvers and use them through PETSc. This
way we implemented a SNES solver called SNESFieldSplit, which
is the non-linear block Gauss-Seidel solver we discussed in 4.2.
Once this solver knows about the field layout and the equations
per field through the DM, it can automatically do the subsolves.
This is the non-linear equivalent to PCFieldSplit (Brown et al.,
2012), already in PETSc.

5.2. Main GEMS Classes and Usage
The most important part of our GEMS library is the GEMSModel
class. It is responsible for providing all the model-dependent
information such as pointwise residuals and Jacobians,
discretizations, null spaces, and initial guess/conditions
to the appropriate PETSc classes. Current subclasses
include GEMSModelMonodomain, GEMSModelBidomain,
GEMSModelElasticity, GEMSModelElectromechanics (combining
monodomain and quasi-static elasticity), and GEMSModelFibres
(to create rule-based fiber directions based on solving Laplace
equations, following Bayer et al., 2012).

Typical usage for a non-linear problem is illustrated in 1.
Note that nothing should be done extra to run simulations
in different dimensions besides changing the mesh, which can
be as simple as just changing the filename of the mesh. The
...FromOptions(...) functions aremeant to be configured from the
command line or options file. For example, if the GEMSModel
should be changed to GEMSModelMonodomain, the option -
gemsmodel_type monodomain would be added to the command
line or options file.

Listing 1 | Typical usage of the GEMSModel class

MPI_Comm comm ;
SNES sn e s ;
DM dm;
Vec u ;
GEMSModel model ;

/∗ I n i t i a l i z e GEMS, PETSc , MPI , r ead
o p t i o n s ∗ /

GEMS In i t i a l i z e (& argc , &argv , NULL , h e l p ) ;
comm = PETSC_COMM_WORLD;

/∗ Cr e a t e a DMPlex u s in g , e . g . ,
DMPlexCrea t eFromFi l e ( ) ∗ /
DMPlexCreate . . . ( comm, . . . , &dm ) ;

/∗ Cr e a t e and c o n f i g u r e a GEMSModel ∗ /
GEMSModelCreate (comm, &model ) ;
GEMSModelSetFromOptions ( model ) ;
/∗ S e t model− s p e c i f i c d i s c r e t i z a t i o n s and
e q u a t i o n s i n t h e DM ∗ /

GEMSMode lSe tUpDiscre t i za t ion ( model , dm ) ;
/∗ Cr e a t e model− s p e c i f i c near−n u l l s p a c e

( t h i s i s u s ed by GAMG) ∗ /
GEMSModelCreateNearNul lSpace ( model , dm,

NULL ) ;

/∗ Cr e a t e and i n i t i a l i z e t h e s o l u t i o n
v e c t o r ∗ /

DMCreateGloba lVector (dm, &u ) ;
Pe t s cOb j e c t S e tName ( ( P e t s cOb j e c t ) u ,

" s o l u t i o n " ) ;
M o d e l I n i t i a l i z e S o l u t i o nV e c t o r ( model , dm,

u ) ;

/∗ Use DMPlex ’ s i n t e r n a l FEM r o u t i n e s ∗ /
DMSNESSetBoundaryLocal (dm,

DMPlexSNESComputeBoundaryFEM , NULL ) ;
DMSNESSetFunct ionLocal (dm,

DMPlexSNESComputeResidualFEM , NULL ) ;
DMSNESSet JacobianLoca l (dm,

DMPlexSNESComputeJacobianFEM , NULL ) ;

/∗ Cr e a t e and c o n f i g u r e t h e n o n l i n e a r
s o l v e r and s o l v e ∗ /

SNESCreate (comm, &sne s ) ;
SNESSetDM( snes , dm ) ;
SNESSetFromOptions ( s n e s ) ;
SNESSolve ( snes , NULL , u ) ;

/∗ View t h e mesh ∗ /
DMViewFromOptions (dm, NULL , "−dm_view " ) ;

/∗ View t h e s o l u t i o n ∗ /
VecViewFromOptions ( u , NULL , "−s o l _ v e c _
v iew " ) ;

/∗ Clean up ∗ /
SNESDestroy (& sne s ) ;
VecDes t roy (&u ) ;
ModelDestroy (&model ) ;
DMDestroy(&dm ) ;
GEMSFina l ize ( ) ;

Further we have a class for the electrophysiological 0D cell
models called GEMSCellModel. Its only function is to give
the pointwise implicit and explicit functions, Jacobian and
initial conditions. Currently implemented cell models include
FitzHugh-Nagumo (FitzHugh, 1961; Nagumo et al., 1962) and
Ten Tusscher-Panfilov 2006 (ten Tusscher and Panfilov, 2006)
models.

5.3. Comparison to Other Cardiac Solvers
One of the main features of GEMS is, that it uses PETSc (and
other third party packages it interfaces) as much as possible and
not just as a linear algebra solver. In particular it uses the DM
object prominently, which makes it easy to input/output meshes
and field data in various formats, feed field and mesh data to
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various advanced (non)linear, often consisting of combinations
of subsolvers, etc (for example, the block preconditioners for
bidomain or incompressible elasticity in which each field has a
different preconditioner and linear iterative solver). These solvers
(and their subsolvers) can then be configured just from command
line options, without recompiling. Thus it strives for maximal
flexibility and easy experimentation. Other cardiac solvers such
as Chaste (Mirams et al., 2013) or Continuity (Continuity, 2018)
have already existed for many years and have functionalities
such as reading generic cell models through CellML and solving
mechanics. But the typical approach to electromechanics is first
order operator splitting with separate codes for mechanics and
electrophysiology. Our library was built with a flexible approach
to coupling between different physics from the beginning. To
specify a problem we start with a coupled set of equations
(defined by pointwise residuals, right hand sides and Jacobians)
and through command line options we can configure the solvers.
This makes experimentation with different combinations of
solvers a whole lot easier and also makes it possible to use higher
order integration schemes.

6. NUMERICAL RESULTS

6.1. Electrophysiology
As a first test we did the benchmark for electrophysiology with
the cardiac monodomain equations as described in Niederer
et al. (2011), with the suggested spatial resolutions of 0.5, 0.2,
and 0.1 mm (using linear tetrahedral elements) and temporal
resolutions of 0.05, 0.01, and 0.005 ms. We did the benchmark of
propagation in a 3D slab with three different integration schemes:
with FBE111 (forward-backward Euler), the ARS222 (Ascher
et al., 1997), and the BPR353 schemes (Boscarino et al., 2013)

(the numbers in the names of these integration scheme names
reflect the number of explicit and implicit stages and the order
of accuracy). As an extra, we also ran the benchmark using
a large time step of 0.5 ms at a spatial resolution of 0.1
mm, to showcase the stability and temporal convergence of
the used methods. The internal variables were stored at the
quadrature points. In Figure 1 we display the activation times
along the diagonal of the bar geometry. We see that increasing
spatial and temporal resolutions have opposite effects on arrival
times: increasing spatial resolution raises the arrival time, while
increasing the temporal resolution lowers the arrival time. The
faster convergence rate of the arrival time for higher order
time integration is also noticeable. For example, for the BPR353
scheme the arrival times for the time steps of 0.05, 0.01, and 0.005
are almost indistinguishable. In Niederer et al. (2011) different
codes were found to have arrival times between 37.8 and 48.7
ms at the highest spatial and temporal resolutions. Our arrival
times are within those bounds at these highest resolutions. (It is
inevitable that at lower resolutions the arrival time will deviate
more.) Execution times for the simulations can be found in
Table 1.

6.2. Electromechanics
At this stage of development of our package we decided just
to illustrate the solution of electromechanical equations using
the most simple tools. The comparison of various integration
methods and constitutive relations will be done at a later stage. As
an illustration for the fully coupled electromechanical equations
we simulated the contraction of an idealized biventricular
geometry that was stimulated at the apex. The mesh for this
geometry was created using Gmsh (Geuzaine and Remacle,
2009) with a resolution of 0.2 mm resulting in a tetrahedral

FIGURE 1 | Activation times calculated with the FBE111, ARS222, and BPR353 integration scheme with several spatial and temporal resolutions along the diagonal

of the bar geometry.

Frontiers in Physiology | www.frontiersin.org 9 October 2018 | Volume 9 | Article 1431

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Arens et al. GEMS: An Integrated Solver for Coupled Cardiac Electromechanics

Table 1 | Execution times for Niederer’s electrophysiology benchmark.

Scheme 1x (mm) 1t (ms) Execution time (s)

FBE111 0.1 0.5 4.20 · 103

FBE111 0.1 0.05 1.27 · 104

FBE111 0.1 0.01 6.34 · 104

FBE111 0.1 0.005 1.24 · 105

FBE111 0.2 0.05 1.81 · 103

FBE111 0.2 0.01 9.00 · 103

FBE111 0.2 0.005 1.82 · 104

FBE111 0.5 0.05 2.94 · 102

FBE111 0.5 0.01 1.48 · 103

FBE111 0.5 0.005 3.10 · 103

ARS222 0.1 0.5 5.40 · 103

ARS222 0.1 0.05 2.51 · 104

ARS222 0.1 0.01 1.25 · 105

ARS222 0.1 0.005 2.48 · 105

ARS222 0.2 0.05 3.48 · 103

ARS222 0.2 0.01 1.77 · 104

ARS222 0.2 0.005 3.44 · 104

ARS222 0.5 0.05 4.30 · 102

ARS222 0.5 0.01 2.19 · 103

ARS222 0.5 0.005 4.40 · 103

BPR353 0.1 0.5 1.10 · 104

BPR353 0.1 0.05 5.27 · 104

BPR353 0.1 0.01 2.59 · 105

BPR353 0.1 0.005 5.22 · 105

BPR353 0.2 0.05 7.28 · 103

BPR353 0.2 0.01 3.57 · 104

BPR353 0.2 0.005 7.12 · 104

BPR353 0.5 0.05 7.45 · 102

BPR353 0.5 0.01 3.67 · 103

BPR353 0.5 0.005 7.15 · 103

Simulations were run on 32 nodes of Intel E5-2670 CPUs, using 1 core per node. See

section 6.1 for details.

mesh consisting of 1529230 cells and 312888 vertices. We used
the algorithm from Bayer et al. (2012) to generate myofiber
orientations. The fiber angle varied from −45◦ (epi) to 75◦

(endo). We used the monodomain formulation and the TNNP06
(ten Tusscher and Panfilov, 2006) model for electrophysiology,
with the same parameters as in Niederer et al. (2011). For the
passive hyperelastic equations we used the Guccione constitutive
equations (Guccione et al., 1995), where a penalty term κ/2(J −
1)2 was added to the strain energy and for the active tension
generation we used the Niederer-Hunter-Smith model (Niederer
et al., 2006). Parameters were taken from Keldermann et al.
(2010) and κ was taken as 350 kPa. Here we used a timestep of
0.5 ms with the FBE111 scheme and we used linear elements for
the transmembrane voltage and deformations, while the internal
variables were stored at the quadrature points. The resulting
activation and contraction sequence can be seen in Figure 2. The
simulation took 7.5 h on 32 nodes of Intel E5-2670 CPUs, using
1 core per node. The electromechanical testing will be continued
in subsequent studies.

7. DISCUSSION AND OUTLOOK

In this paper we presented an overview of the methodology used
in cardiac electromechanics and our numerical approach to these
challenging problems. In particular, in section 2 we presented
a short derivation of the main equations of electromechanics
from basic principles (i.e., geometry and balance equations)
in strong and weak form. We discussed constitutive equations
to close these equations and clearly list all assumptions
made. We derived a general representation of a deformation-
dependent conduction tensor, assuming orthotropic symmetry
and pointwise dependence on deformation and showed that
previous deformation-dependent conduction tensors found in
literature are all special cases of this. Note however, that the
scalar functions in this representation still need to be determined
from experiment. In section 3 we applied standard finite element
methods to express the variational equations in a finite basis,
which can then be solved by the numerical methods in section 4.
There we discussed additive implicit-explicit Runge-Kutta time
integration methods and how with appropriate partitioning of
fast and slow physics the non-linear implicit equations can be
solved more easily by solving smaller problems belonging to
different fields one after another. Efficient (non-)linear solvers
for these problems were also discussed. Further we reviewed the
structure and possibilities of the GEMS library in section 5 and
how PETSc gives us a wide range of tools to solve our PDE’s,
including meshes, I/O and solvers. In section 6 we presented
some numerical results as verification and illustration of the
GEMS library.

Our main conclusion is that additive implicit-explicit Runge-
Kutta time integration methods, combining the advantages
of implicit and explicit integration, work very well for
electromechanical problems. This method allows larger time
steps, with limited complication of Jacobians and non-linear
solves. Our numerical implementation uses the PETSc library
extensively, which gave us access to powerful and scalable mesh
management, time stepping and (non)linear solvers which may
need mesh and field information. One of the things which could
be further researched is whether we can get much advantage
of anistropic mesh adaptation through the PRAgMaTIc library
(Rokos and Gorman, 2013), which has been recently interfaced
to PETSc (Barral et al., 2016). This could also be used to build
mesh hierarchies in a geometric multigrid approach.

The GEMS package is still in the process of further
development. Although the user can access and set all solver
options through the command line, a graphical user interface
may be desirable in the future, both for input and visualization.
Regarding modeling, we currently hard-coded two cell models
(FHN and TP06) and foresee to import more models of cardiac
electrophysiology in a semi-automated way via the CellML
repository (www.cellml.org). We are currently using pressure
boundary conditions on the endocardial surface, which can be
extended with physical models for circulation and valve action.

Our method has been designed to enable strong coupling
between the electrical and mechanical subsystems at every time
step of the simulation, and at the same high spatial resolution,
both for the electrical and mechanical equations. One possible
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FIGURE 2 | Time sequence of electromechanical contraction of a full 3D biventricular cardiac geometry. Color coding shows transmembrane potential.

speed-up factor is the following: currently all field values and
gradients at the quadrature points are calculated for each residual
or Jacobian belonging to some field(s), for maximum flexibility.
Thus, one may avoid unnecessary interpolation in order to
accelerate the computation of the residuals: if the residual of field
A is independent of field B, the value or gradient of field B at the
quadrature points is not needed.

The use of PETSc enables to parallelize the computation on
high-performance computing clusters (HPC). Smaller (test) runs,
can be run on a desktop computer, requiring about 32GB of
RAM memory to run the biventricular model in Figure 2 with
the TP06 cell model. There is no significant difference in memory
cost between mono- and bidomain equations, since the latter
introduces only few new state variables (extracellular potential,
extracellular conductivities).

In this paper we have chosen to illustrate our approach using
simple standard problems: the benchmark for electrophysiology
(Niederer et al., 2011) and simple illustration of electromechanics
for the fully coupled equations an idealized biventricular
geometry. This is because we mainly wanted to describe of the
methodology and place it to the existing environment and did

not focus on specific scientific applications. Such simulations
can definitely be performed using our methodology and will be
presented in subsequent papers.
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NOTATION

A acceleration
B body force
B material manifold
C deformation tensor
E strain tensor
{EA}A∈{F,S,N} material fiber directions
F deformation gradient
G material metric
g spatial metric
J Jacobian of deformation
P first Piola-Kirchhoff stress tensor
Pappl applied pressure
R reaction rates for internal variables
S second Piola-Kirchhoff stress tensor
S spatial manifold
6e extracellular conduction tensor
6i intracellular conduction tensor
V velocity
Ve extracellular voltage
Vm transmembrane voltage
X material coordinates
x spatial coordinates
Ŵ internal variables (i.e., ionic concentrations,

gating variables, tensions variables)
φ deformation field
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