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Training of elite athletes requires regular physiological and medical monitoring to plan

the schedule, intensity and volume of training, and subsequent recovery. In sports

medicine, ECG-based analyses are well-established. However, they rarely consider

the correspondence of respiratory and cardiac activity. Given such mutual influence,

we hypothesize that athlete monitoring might be developed with causal inference

and that detailed, time-related techniques should be preceded by a more general,

time-independent approach that considers the whole group of participants and

parameters describing whole signals. The aim of this study was to discover general

causal paths among cardiac and respiratory variables in elite athletes in two body

positions (supine and standing), at rest. ECG and impedance pneumography signals

were obtained from 100 elite athletes. The mean heart rate, the root-mean-square

difference of successive RR intervals (RMSSD), its natural logarithm (lnRMSSD), the

mean respiratory rate (RR), the breathing activity coefficients, and the resulting breathing

regularity (BR) were estimated. Several causal discovery frameworks were applied,

comprising Generalized Correlations (GC), Causal Additive Modeling (CAM), Fast Greedy

Equivalence Search (FGES), Greedy Fast Causal Inference (GFCI), and two score-based

Bayesian network learning algorithms: Hill-Climbing (HC) and Tabu Search. The discovery

of cardiorespiratory paths appears ambiguous. The main, still mild, rules best supported

by data are: for supine - tidal volume causes heart activity variation, which causes

average heart activity, which causes respiratory timing; and for standing - normalized

respiratory activity variation causes average heart activity. The presented approach allows

data-driven and time-independent analysis of elite athletes as a particular population,

without considering prior knowledge. However, the results seem to be consistent with

the medical background. Causality inference is an interesting mathematical approach

to the analysis of biological responses, which are complex. One can use it to profile

athletes and plan appropriate training. In the next step, we plan to expand the study

using time-related causality analyses.

Keywords: athlete training adaptation biomarker, cardiac function, tidal volume, cardiorespiratory causality, elite

athletes
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1. INTRODUCTION

Elite athletes require regular physiological and medical
evaluation and monitoring for proper planning of the schedule,
intensity, and volume of training (Meeusen et al., 2013).

Therefore, exercise scientists and sports physicians seek
convenient biomarkers to evaluate the state of an athletes body

during training to monitor homeostasis, maximize effect, and
avoid over-training (Wiewelhove et al., 2015).

Some of the most commonly used parameters are related
to cardiac function. Heart rate monitoring is popular in sport
and recreational activity, and widely used thanks to easy

access to sophisticated tools, enabling beat-by-beat registration
of electrocardiographic (ECG) signals and evaluation of heart

rate variability (HRV) (Buchheit, 2014; Schmitt et al., 2015;
Bellenger et al., 2016; Duking et al., 2016; Giles et al., 2016; Plews
et al., 2017).

Methodical acquisition of RR intervals, performed during
different training periods, provides a chance to discern the proper
course of HRV changes under the influence of exercise training,
and possibly to recognize anomalous patterns indicating poor
post-exercise recovery, sustained fatigue, impaired adaptation,
and development of over-training syndrome.

Despite wide access, practical application of HRV parameters
in sports training monitoring remains limited. The seemingly
simple phenomenon, related to autonomic nervous system
activity, defies simple evaluation, because of many modifying
factors. An additional problem is the selection of optimal HRV
parameters. There is no clear consensus as to which are best in
training response evaluation. Is a single parameter enough, or
will a set be more effective? Should more advanced mathematical
methods be used for optimal modeling? There is growing interest
in this field and recent studies have identified new directions (Sala
et al., 2016, 2017).

Because there is a complex relationship between heart rate and
breathing, taking breathing activity into account seems relevant
and necessary for proper analysis. (Grossman and Taylor, 2007;
Gasior et al., 2016; Sobiech et al., 2017). The influence of
inspiration and expiration is usually apparent in resting ECG
as sinus respiratory arrhythmia (Larsen et al., 2010; Shaffer
et al., 2014; McCraty and Shaffer, 2015). Bidirectional neural
relationships between cardiac functioning and the respiratory
processes have previously been presented. The cardiorespiratory
coupling effect, where heartbeats seem to coincide with specific
respiratory phases, has been tested recently (Penzel et al., 2016;
Sobiech et al., 2017). The possible physiological mechanisms
behind it appear to include increased sympathetic nervous
activity, as well as changes in arterial blood pressure. The effect
of baroreflex, with baroreceptors playing a crucial role in the
adjustment of neural responses, was also extensively described
(Reyes del Paso et al., 2013).

The studies present concerns about whether respiratory
control should be conducted in the HRV analysis. For example,
Saboul et al. (2013) found that the RMSSD index is uninfluenced
by respiratory patterns, for both spontaneous and controlled
breathing. Nevertheless, the relations are more evident when
different mathematical analyses are performed.

Therefore, the identification of an optimal mathematical
method has an essential role in the daily practice. Usually, in
sports science research methodology, a parameter’s value is a
dependent variable of exercise stimuli (top-down approach).
However, in practical applications, the strategy can be reversed,
with the optimal parameter as the one which best indicates
and describes adaptation status (bottom-up approach). The
relation between perception and performance outcomes can
be “correlated” with the results of the objective analysis. For
instance, an over-training syndrome is a major issue that
negatively affects an athlete’s performance, but it is not always
subjectively felt in the same way.

In that context, one should consider evaluating cross-
dependencies or even causalities in recorded signals
and calculated parameters. Causality is then the way to
describe the relationships, also specifying the direction
and the structure. Causal relations can be established
as a directed acyclic graph (DAG), the type of Bayesian
network, in which each node can represent a parameter,
and each directed link has a probability measure. Also, the
graph may be rewritten into structural equation models
(SEM) to get coefficients, which express the strength of
connections. For such DAGs, the do-calculus rules theorem
was introduced to analyze the effects of interventions
(Pearl, 1995).

Other frameworks to analyze different types of causalities
in physiological signals have been also proposed (Javorka
et al., 2016; Müller et al., 2016; Penzel et al., 2016). Non-
linear approaches, assuming cardiorespiratory interactions, were
developed (Jamsek et al., 2004; Lopes et al., 2011). Relatively
newly recognized phenomena—phase synchronization between
heartbeats and ventilatory signal, inverse respiratory sinus
arrhythmia—have also been used (Bartsch et al., 2015; Kuhnhold
et al., 2017; Mazzucco et al., 2017). Information domain
applications for more than three signals were presented (Wejer
et al., 2017). Granger-based causality was employed (Porta et al.,
2017), and also tested along with coherence measure and cross-
sample entropy (Radovanović et al., 2018). Cardiorespiratory
coordination, proposed byMoser et al. (1995), defines the mutual
influence of the onsets of cardiac and respiratory cycles on
each other. Various methods were proposed to analyze this
phenomenon (Riedl et al., 2014; Sobiech et al., 2017; Valenza
et al., 2018).

We hypothesize, that the main athletic rationale for causal
path discovery is to profile athletes within a new causal domain,
plan training modifications—considered to be interventions
done to found cause variables (Pearl, 2010), and track changes
in objectivecardiorespiratory responses. However, the methods
mentioned in the previous paragraph are specifically intended to
describe the systems’ mutual temporal activity, not to propose
directly the possible changes to training and causal-related
parameters. We think that such approaches should be preceded
by a more general one, which takes into account the parameters
describing the entire segment of data, and tries to search for the
structure of directional relationships.

Therefore, in this paper, we seek general time-independent
causal paths between basic cardiac and respiratory variables in
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TABLE 1 | The information of the set of participants evaluated after excluding

those with too much signal distortion.

Group Sport type N Body mass Height

Female Male Min Mean Max Min Mean Max

B IB 4 21 61.0 82.6 104.2 170 193.2 208

IIB 7 2 55.0 64.8 97.7 167 174.7 193

IIIB 4 8 53.2 79.7 151.0 158 174.3 197

C IC 1 4 55.1 71.7 85.2 169 176.0 190

IIC 12 25 49.1 80.7 115.0 162 185.2 207

IIIC 4 8 62.7 75.2 87.7 171 179.5 189

Despite the lack of distinction in the paper, the table is divided into types and groups of

sports, for better insight; the sport types are defined according to Mitchell et al. (2005),

where numbers refer to the static component of heart activity expressed as % of its

maximal voluntary contraction (MVC)—low (I), medium (II), and High (III)—and letters to

the dynamic component (e.g., % of VO2max).

certain population, elite athletes, in two body positions (supine
and standing) at rest.

2. MATERIALS AND METHODS

2.1. Subjects and Device
A group of 116 elite athletes (38 female; ages 24.4 ±

6.3) participated. Due to artifacts in signals gathered during
examination, resulting from body movement and imprecise
electrode mounting, data from 16 athletes could not be
reasonably analyzed and were therefore excluded. The final study
group consisted of 100 athletes (32 female; ages 24.6± 6.4).

The study was carried out at the National Centre for
Sports Medicine in Warsaw during the routine periodic health
evaluation and medical monitoring program, 3–4 months before
the 2016 Olympic Games in Rio de Janeiro. The study group
comprised athletes in sports of differing type and intensity. Data
on sex, height, and body mass in specific sports are presented in
Table 1.

The study, including the consent procedure, was approved by
the Ethics Committee ofWarsawMedical University (permission
AKBE/74/17). All participants were informed about the general
aim of the measurements, though not about the importance
of breathing activity (Mortola et al., 2016). Each subject had
previously signed a consent form for the routine medical
monitoring, which includes a statement of acceptance of the use
of the results for scientific purposes.

Pneumonitor 2 was used to collect single-lead ECG signals
(Lead 2), along with impedance pneumography (IP), which
is related to respiratory activity (Młyńczak et al., 2017). The
IP signal was measured using the tetrapolar method, with
the specified electrode configuration (Seppa et al., 2013).
Receiving electrodes were placed on the mid-axillary line at
about 5th-rib level. Application electrodes were positioned on
the same level on the insides of the arms. Standard Holter-
type, disposable ECG electrodes were used. The sampling
frequency was 250 Hz, sufficient in terms of heart rate variability
analysis and over-sampled from a respiratory perspective
(Task Force, 1996).

2.2. Protocol and Preprocessing
The measurements were performed in a diagnostic room
designated for cardiological examinations. Since the periodic
health evaluation and medical monitoring are performed
frequently for Olympic-level athletes, the diagnostic room and
themeasurement procedure (very similar to that for resting ECG)
were familiar to them.

Each athlete was asked to lie down on the diagnostic (ECG)
couch. After attachment of the electrodes and passage of a
10-min stabilization phase, they were asked to remain supine
and breathe freely (spontaneous breathing), and recording
began. After 6 min, the athlete was asked to stand and
again breathe freely while standing for another 6 min (Gilder
and Ramsbottom, 2008; Sala et al., 2016). The duration
of analysis (about 6 min for each body position) seems
appropriate for characterizing cardiac and respiratory activities
in a “single” measurement. This is consistent with the
method used in other studies, with HRV measurement in the
supine position followed by the standing position (Gilder and
Ramsbottom, 2008; Sala et al., 2016). While this resembles
the orthostatic maneuver, we took the latter only as an
inspiration, performing the analysis for the entire supine and
standing periods, i.e., without consideration of adaptation,
recovery, etc. Physical data (height, body mass, and sex) were
registered during the routinemedical examination performed the
same day.

Pre-processing of the obtained ECG signal consisted of non-
linear detrending for baseline alignment and finding R peaks
based on the Pan-Tompkins algorithm. Raw IP signals were

pre-processed by removing the cardiac component from the IP
signal by subtracting the noise component derived from least

mean square adaptive filtration, then smoothing with a 400 ms
averaging window (Młyńczak and Cybulski, 2017). Then, we
detected and delimited breathing phases by applying an adaptive

algorithm to the differentiated, flow-related signal. We did not
carry out the calibration procedure to transform impedance
values into volumes, instead assuming that impedance changes
had reproduced the tidal volume signal in terms of shape since

linear fitting provides the best agreement between IP and the
reference, pneumotachometry (PNT) (Młyńczak et al., 2015).

We finally considered 10 cardiac and respiratory parameters,
estimated for each participant, for the entire recording, separately
for supine and standing:

• Mean heart rate (HR);
• Root-mean-square difference of successive RR intervals

(RMSSD);
• Natural logarithm thereof (lnRMSSD);
• Mean respiratory rate (RR);
• ciRR—coefficient of variation of instantaneous breathing rate

(iRR, calculated between inspiratory onsets);
• cInsT—coefficient of variation of the durations of the

inspiratory phases (InsT);
• cExpT—coefficient of variation of the durations of the

expiratory phases (ExpT);
• cInsV—coefficient of variation of the amplitudes of the

inspiratory phases (InsV);
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• cExpV—coefficient of variation of the amplitudes of the
expiratory phases (ExpV); and

• Breathing regularity (BR), as described in formula (1) - tanh
operations are added to ensure that a range of 0–100% is
preserved).

BR =

(

100 − 20 ·

(

tanh
σiRR

iRR
+ tanh

σInsT

InsT
+ tanh

σExpT

ExpT

+ tanh
σInsV

InsV
+ tanh

σExpV

ExpV

))

[%] (1)

The differences between body positions were assessed using the
paired T or Wilcoxon rank tests (depending on the normality of
the parameters, checked using the Shapiro-Wilk test; all with a
significance level of α = 0.05). Signal processing was performed
using MATLAB software. Graphics and statistical inference were
obtained using R software (R Core Team, 2018). The dataset of
parameters and the R script are provided as Data Sheet 1 and
Data Sheet 2, respectively, to ensure reproducibility.

2.3. Time-Independent Causal Path
Discovery
We started with the assumption that the general time-
independent causality can be revealed only when the correlation
appears meaningful. Therefore, we calculated the Bayesian
correlation coefficient as a result of the multiplication of the
slope coefficient from the linear model and the ratio of standard
deviations of both vectors. Assuming

X = α + βY + ε (2)

estimated using Bayesian approach, then

cor(X,Y) = β̂ ·
σ (Y)

σ (X)
(3)

The significance was assumed when the maximum probability
of effect MPE > 0.9 (from the estimation of the linear model)
(Makowski, 2018).

Then, we studied all pairs using six techniques:

• The generalized correlations r∗x|y and r∗y|x, with |r∗x|y| > |r∗y|x|

suggesting that y is more likely to be the “kernel cause” of x
(though only when the p-value is significant) - equation (4)
below implements the generalized correlation (Vinod, 2017)
using the generalCorr R package (Vinod, 2018);

• Causal additive modeling, with selGAM pruning (Buhlmann
et al., 2014), using the CAM R package (Peters and Ernest,
2015);

• Fast Greedy Equivalence Search for continuous
variables (Ramsey, 2015) using the rcausal R package
(Wongchokprasitti, 2017);

• Greedy Fast Causal Inference for continuous variables
(Ogarrio et al., 2016) using the rcausal R package
(Wongchokprasitti, 2017);

• Hill-Climbing—score-based Bayesian network learning
algorithms—using the bnlearn R packaged (Scutari and Lebre,
2013); and

• Tabu Search, a modified hill-climbing algorithm able to escape
local optima, using the bnlearn R package (Scutari and Lebre,
2013).

r∗y|x = sign(rxy) ·

√

1−
E(Y − E(Y|X))2

var(Y)
(4)

where rxy is the Pearson’s correlation coefficient, var is variance,
and the expression inside the square root is a generalizedmeasure
of correlation (GMC) defined in Zheng et al. (2012).

Finally, where possible, exploratory mediation analyses were
conducted using the medmod R package (Selker, 2017). Sobel
tests were performed to evaluate the significance of also
considering the mediation effect, using the powerMediation R
package (Qiu, 2018).

3. RESULTS

3.1. Statistics and Impact of Body Position
Figures 1–10 provide exploratory summaries (using violin and
box plots) across body positions for all considered parameters,
along with the paired test results. All parameters have statistically
significant differences between body positions. As expected, HR
was greater when standing; the reverse was true for RMSSD along
with all respiratory parameters.

FIGURE 1 | The exploratory statistic of mean heart rate (HR) for the supine

and standing body positions, along with the T paired test result. ***means

statistical significance at the level p < 0.001.
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FIGURE 2 | The exploratory statistic of root-mean-square difference of

successive RR intervals (RMSSD) for the supine and standing body positions,

along with the T paired test result. ***means statistical significance at the level

p < 0.001.

The significant Bayesian correlation coefficients are presented
in Table 2. Results for supine are above the diagonal; for
standing - below. Low correlations between cardiac and
respiratory parameters (bottom left and top right corners of
the table) suggested moderate connections between the analyzed
parameters.

3.2. Causal Paths Discovery and Mediation
Analysis
The discovered causal paths (ignoring the relationships between
RMSSD and lnRMSSD, and between BR and its input
coefficients) for the supine and standing positions are presented
in Figures 11–16, separately for each of the considered methods.

Th connections between cardiac parameters seem equivocal
because GC and CAM suggested the direction from RMSSD to
HR for both body positions, the greedy algorithms (FGES and
GFCI) could not determine the direction, while the Bayesian
network methods (HC and Tabu) recommended assuming that
the right direction is the opposite.

For respiratory parameters and supine body positions, 5 of the
6 methods showed that cInsT causes cExpT, and 5 out of 6 also
that cInsV causes cExpV. Furthermore, all methods indicate that
cExpV causes cExpT, and that cInsV causes cExpT.

The findings for the standing body position were different.
Only 3 of the 6 methods confirmed the direction from cInsV to
cExpV (2 were ambiguous). InsT seems to be connected much
more weakly with ExpT. cInsV and cExpV appear not to cause
cExpT to the same extent as for the supine position. Several loops
are present between cInsV, cExpV, and ciRR. One should note

FIGURE 3 | The exploratory statistic of natural logarithm of root-mean-square

difference of successive RR intervals (lnRMSSD) for the supine and standing

body positions, along with the Wilcoxon rank paired test result. ***means

statistical significance at the level p < 0.001.

another connection, in which cInsV causes ciRR, indirectly or
directly, via cExpV.

Threemethods propose four connections between cardiac and
respiratory parameters in supine body positions:

• cInsV→ RMSSD (CAM),
• cExpV→ RMSSD (CAM),
• HR→ cInsT (CAM and HC), and
• HR→ cExpT (Tabu).

These all indicate the occurrence of a relatively complex
connection even in themost static cases. The relationships appear
to be weak. Several paths can be created (in parallel); however,
we think one of them may suggest the general direction for
cardiorespiratory data during supine rest:

Tidal Volume→Heart Activity Variation→ Average Heart

Activity→ Respiratory Timing

Three methods (GC, HC, and Tabu) indicate the connection
ciRR→HR for the standing body position, implying the general
rule for standing to be:

Normalized Respiratory Activity Variation→ Average Heart Activity

Finally, we set several paths to test for mediation effects:

• (1) RMSSD→HR→ cInsT (supine),
• (2) HR→ cInsT→ cExpT (supine),
• (3) HR→ cInsT→ cInsV (supine),
• (4) cInsT→ ciRR→HR (standing), and
• (5) cInsV→ ciRR→HR (standing).
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Młyńczak and Krysztofiak Causal Paths in Cardiorespiratory Parameters

FIGURE 4 | The exploratory statistic of mean respiratory rate (RR) for the

supine and standing body positions, along with the T paired test result.

***means statistical significance at the level p < 0.001.

FIGURE 5 | The exploratory statistic of standard deviation of instantaneous

breathing rate (calculated between inspiratory onsets - iRR), normalized to

mean iRR, for the supine and standing body positions, along with the Wilcoxon

rank paired test result. ***means statistical significance at the level p < 0.001.

The Sobel p-values for the analyzed mediations are presented
in Table 3. While none of the considered connections have
a statistically significant mediation effect, the p-values

FIGURE 6 | The exploratory statistic of standard deviation of the durations of

inspiratory phases (InsT), normalized to mean InsT, for the supine and standing

body positions, along with the Wilcoxon rank paired test result. ***means

statistical significance at the level p < 0.001.

suggest tendency. It appears that the nature of these links
is more non-linear, still being very light in terms of mutual
correlations.

4. DISCUSSION

The main finding from our analysis is that, for the supine body
position and in the elite athletes group, tidal volume seems to
cause heart activity variation, then the latter causes average heart
activity, which appears to affect the timing of inspiratory and
expiratory phases. The relations are mild and this statement
is not supported by all methods, which is not to say that any
oppose it. For the standing body position, the causal relations are
weaker. The most important remains that in which normalized
respiratory activity variation causes average heart activity. On the
other hand, for these conditions, more of the cross-correlations
between cardiac and respiratory parameters were statistically
significant.

This suggests the need to consider activitymeasures from both
systems; however, in the common practice, only ECG analyses
are usually carried out. The simplest, but still very informative,
parameters of heart activity are mean heart rate and root-mean-
square difference of successive RR intervals. The first enables
study of the average value of the rhythm, while the other shows
its diversity.

The concept of using HRV-related data in sports analysis has
been already proposed in many applications, e.g.:

• Quantitative assessment of training load (Saboul et al., 2016),
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FIGURE 7 | The exploratory statistic of standard deviation of the durations of

expiratory phases (ExpT), normalized to mean ExpT, for the supine and

standing body positions, along with the Wilcoxon rank paired test result.

***means statistical significance at the level p < 0.001.

FIGURE 8 | The exploratory statistic of standard deviation of the amplitudes of

expiratory phases (InsV), normalized to mean InsV, for the supine and standing

body positions, along with the Wilcoxon rank paired test result. ***means

statistical significance at the level p < 0.001.

• Monitoring of weekly HRV in futsal players during the
preseason to evaluate high vagal activity (Nakamura et al.,
2016),

FIGURE 9 | The exploratory statistic of standard deviation of the amplitudes of

expiratory phases (ExpV), normalized to mean ExpV, for the supine and

standing body positions, along with the Wilcoxon rank paired test result.

***means statistical significance at the level p < 0.001.

FIGURE 10 | The exploratory statistic of breathing regularity (BR) for the

supine and standing body positions, along with the Wilcoxon rank paired test

result. ***means statistical significance at the level p < 0.001.

• Progressive sympathetic predominance at peak training load
as a performance prediction factor in recreational marathon
runners (Triposkiadis et al., 2009),
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TABLE 2 | Bayesian correlation coefficients calculated between parameters and presented when significant.

HR RMSSD lnRMSSD RR ciRR cInsT cExpT cInsV cExpV BR

HR – −0.36 −0.41 −0.17

RMSSD −0.47 – 0.95

lnRMSSD −0.51 0.91 –

RR 0.14 − −0.42 −0.14 −0.22 0.16

ciRR 0.22 −0.15 −0.17 −0.19 – 0.69 0.73 0.62 0.62 −0.81

cInsT 0.16 −0.17 −0.18 0.59 – 0.70 0.63 0.63 −0.84

cExpT 0.13 −0.16 0.66 0.39 – 0.62 0.61 −0.84

cInsV 0.51 0.36 0.44 − 0.96 −0.91

cExpV 0.56 0.40 0.48 0.90 – −0.91

BR −0.16 0.15 −0.79 −0.68 −0.73 −0.85 −0.88 –

Results for supine are above the diagonal; for standing-below.

• Parasympathetic modulation elevation over a 24 h recording
period induced by endurance and athletic activities (Vanderlei
et al., 2008),

• Assessment of the parasympathetic tone resulting from
training (Berkoff et al., 2007),

• Analysis of over-training syndrome (Dong, 2016), and
• Analysis of training adaptation (Plews et al., 2013).

However, in the presented works, the authors did not
consider adding breathing activity to the analysis. Therefore,
we performed the study with a device allowing recording
of ventilation with minimal disruption of said activity. The
Pneumonitor 2 was used to measure changes in thoracic
impedance, which is related to changes in the amount of air
in the lungs (Młyńczak et al., 2017). From that information,
we estimated the average respiratory rate, along with five
coefficients specifying the deviation of the respiratory rate,
inspiratory and expiratory phase durations and amplitudes
(related to volumes), allowing creation of a novel index,
breathing regularity. Consequently, we parameterized cardiac
and respiratory activity with indexes, which estimate a mean
value and variation.

This approach connected with findings for supine
body position create an interesting cardiorespiratory loop
between systems. Several studies proposed to consider multi-
directionality in the coupling of the cardiovascular and
respiratory systems (Porta et al., 2013; Platisa et al., 2016;
Radovanović et al., 2018). More importantly, the relation seems
to combine (in terms of a specific mathematical framework)
several physiological mechanisms. The first “arrow” indirectly
describes the RSA phenomenon (Shaffer et al., 2014; McCraty
and Shaffer, 2015). Some have already observed that the
respiratory centers can modulate the frequency of the heart
through the vagal sinus node intervention (Eckberg, 2009).

The last connection appears related to cardiorespiratory
coupling, described by Sobiech et al. (2017) as a relation between
the histograms of R peaks appearing before the inspiratory onset
and of peaks appearing just after.

The lack of a direct “arrow” from heart activity variation,
namely RMSSD in this study, to breathing corresponds with the

FIGURE 11 | Causal paths discovered for supine and standing body positions

using generalized correlations (GC); relationships between RMSSD and

lnRMSSD, and between BR and its input coefficients, are ignored.

findings of Saboul et al. (2013) and Sala et al. (2016), wherein this
index did not correlate with breathing, neither spontaneous nor
controlled.

In that context, causality inference is a promising
mathematical tool to expand the current analytical framework.
Complex biological responses appear to be the right input, even
when results are quite diverse.

All the techniques mentioned in the Introduction are based
on pre-processed time series or beat-by-beat sequences. They
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FIGURE 12 | Causal paths discovered for supine and standing body positions

using causal additive modeling (CAM); relationships between RMSSD and

lnRMSSD, and between BR and its input coefficients, are ignored.

allow evaluation of different time resolutions, in order to focus
on the specific condition and subject. We believe that this
is the right approach, and that for a better grasp of how
to prepare a sport-sensitive biomarker, it should be preceded
by a more general approach. The approach would be time-
independent, more holistic (considering a whole group of
participants), and not based on prior medical knowledge. As
the causality frameworks were originally introduced to deal with
interventional variables, they can be even used for prediction,
e.g., when several changes in a training program can be
interpreted as changes to the system. As this is a retrospective
study, it is also assumed that interventions are impossible, and
the networks are created with no prior knowledge. Causal search
relies on passive observation.

It appears debatable whether correct causal explanations
can be chosen only by looking at observed data. On the
other hand prior knowledge would enable acquisition of
answers to causal questions without performing interventions
(still difficult to manage from physiological perspective). Here,
the context is different. We believe that causal analysis and
cardiorespiratory relation can be a relevant supplement to
already-established techniques and play the role of a biomarker
(or its part) for establishing the state of the athlete. In
this introductory approach, we assumed the single parameters
describe specific subjects, and the analysis collects them all
together.

FIGURE 13 | Causal paths discovered for supine and standing body positions

using fast greedy equivalence search (FGES); relationships between RMSSD

and lnRMSSD, and between BR and its input coefficients, are ignored.

The proposed protocol is inspired by the orthostatic
maneuver, but the analysis for each positions is independent.
Moreover, we hold that, from a causal discovery perspective,
one can consider the entire segment of the signal, instead of
subsections like the adaptation after standing up. Looking at the
entire segment makes the analysis simpler from an operators
perspective.

As the estimated causal structures seem mild, analyzing
supine-to-standing changes wouldmake themethodmore robust
(by considering changes in intrathoracic pressure or differences
in venous return characteristics). Radovanović et al. (2018)
reported that even slight change of body position may change the
direction of the relationships. Sobiech et al. (2017) also suggested
that the results can be reliably analyzed only during static
conditions and that the effect is the strongest in a resting state.
However, in our opinion, the differences between body positions
may have a significant impact on the analysis of cardiorespiratory
data and should not be ignored. These differences, established
for two body positions, may serve as an additional input for
determination of the adaptation profile.

The effect observed for standing body position has already
been studied by Sala et al. (2016), who analyzed on a basic
level the effectiveness of assessment of the balance change in the
autonomic system during active verticalization. They observed
that this change should be stronger in athletes and assumed that
it is associated with improved physical capacity. Apart from that,
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FIGURE 14 | Causal paths discovered for supine and standing body positions

using greedy fast causal inference (GFCI); relationships between RMSSD and

lnRMSSD, and between BR and its input coefficients, are ignored. Inclined

circles at the beginnings of arrows indicate either a presented direction, an

unmeasured confounder, or both.

increased coupling between heart period and arterial pressure in
response to postural changes was reported in Silvani et al. (2017).

4.1. Use of Causal Discovery Framework
The findings presented in this study open up a novel domain
of possible parameterization of physiological connections. We
think the framework can be used to profile athletes, analyzing
trends throughout the training schedule and testing changes in
relations’ direction and strength relative to improved adaptation,
etc.

Causal inference, even if used to search for graphs between
analyzed parameters, was originally proposed to evaluate the
effects of interventions, dividing variables into interventional
and observational sets. In both sports medicine and daily
practice, modification of the training can be regarded as such an
intervention.

The paths discovered by the various algorithms should be
reconciled with medical background knowledge and, even more
importantly, should be verified further in a prospective study.
With so many possible interventions, the paths may reduce the
complexity of test protocols: one might expect to influence heart
rate and its variability by changing the depth, not the frequency,
of breathing.

FIGURE 15 | Causal paths discovered for supine and standing body positions

using the Hill Climbing Bayesian network learning algorithm (HC); relationships

between RMSSD and lnRMSSD, and between BR and its input coefficients,

are ignored.

4.2. Limitations of the Study
There were only 116 participants, of whom 100 were ultimately
considered. The study group appears to be heterogeneous, apart
from the fact that the studies were conducted in the “hot period”
3–4 months before the Olympic Games, which may suggest
a state of over-training (neither questionnaires nor objective
data about it were collected). Also, the device was new for all
subjects. These factors might influence the results, particularly
the relatively high supine respiratory rates and standing heart
rate. The existence of differences between sports would also
affect the conclusions. The collection of only one observation per
athlete precludes reproducibility analysis.

There were no control variables assumed in the protocol. One
may consider a respiratory activity to be controlled during the
measurement. However, the primary objective of the registration
was to measure cardiorespiratory data without any restrictions to
the respiratory activity. As this is a retrospective study, we could
not affect it during the analysis. This may be one of the reasons
why the studied relationships were so mild.

Measurements were carried out only once for each subject,
and only at rest, not in a natural environment. It is necessary to
perform comparative registrations on a unified group of athletes
under laboratory conditions, during the preparatory period and
just before the season, in combination with a psychometric
questionnaire. The results of a study in which the registration
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FIGURE 16 | Causal paths discovered for supine and standing body positions

using Tabu Search (TS); relationships between RMSSD and lnRMSSD, and

between BR and its input coefficients, are ignored.

TABLE 3 | The Sobel’s p-values assessing the significance of the mediation effect

for the chosen causal path connections discovered for the supine and standing

body positions.

Path Position Sobel’s p-value

RMSSD → HR → cInsT Supine 0.073

HR → cInsT → cExpT −||− 0.086

HR → cInsT → cInsV −||− 0.088

cInsT → ciRR → HR Standing 0.105

cInsV → ciRR → HR −||− 0.058

could be performed outside the laboratory, during normal
training, or even with 24 h Holter-based tracking of natural
functioning, would yield more condensed findings.

Notably, the methods used to discover causal paths sense
different aspects (the algorithms having different starting points)
and can produce more liberal or conservative results. As only the
“significant” pairs of causal-effect links were presented, possible
bias cannot be evaluated directly. As the relevant analysis could
not be performed for a few participants, we decided not to divide
participants by sex or sport type.

4.3. Further Considerations
In the presented work, we use a data-driven and time-
independent approach (on a large inter-individual scale). It is

considered as a starting point. As stated in the introduction, the
presented approach seems to be an overview, to be performed
before time-dependent methods which may allow the separate
assessment of a single person, with finer time resolution.
Therefore, as a next step, we plan to discover various non-linear
parameters and techniques to confirm, expand and enhance
the findings presented in this paper. Still, the main outcomes
are coherent with the knowledge-based predictions and results
reported, e.g., in Sobiech et al. (2017).

Eckberg showed that the RSA phenomenon is not only the
effect of respiration on RR intervals (or heart rate in general)
but might be also treated as the response of heart rate to the
respiratory modulations resulting from arterial pressure changes
mediated by baroreflex (Eckberg, 2009). Sobiech et al. (2017)
suggested that arterial blood pressure is probably the driver
(cause) of both cardiac and respiratory function. This requires
further research with more modalities included in the analysis
(Zhang et al., 2017).

Other important questions include: Are the cardiorespiratory
connections (direction and strength) the same in different sports,
or specific to each? What other factors, like sex, height, or
body mass, confound the results? These questions are especially
important not only for elite athletes, but also for subjects with
abnormalities, and will be studied (Sharma et al., 2018).

5. CONCLUSIONS

Adding respiratory data to cardiac signals in sports medicine
would provide better monitoring and evaluation of athletic
training.

In the presented paper, we pose the hypothesis that average or
diversity cardiac and respiratory parameters, describing overall
characteristics of RR intervals and tidal volume curves, without
consideration of the time resolution, are linked by causal paths.
Furthermore, such an approach can precede more detailed,
individual, time-series-related analysis.

Based on the data gathered from 100 elite athletes at rest
in two body positions, the applied causal discovery frameworks
suggested moderate connections. For supine, the general path
led from tidal volume, through heart activity variation and
average heart activity, to respiratory timing. For standing - from
normalized respiratory activity variation to average heart activity.
Different graphical structures and directions were observed for
the two body positions, which may improve the resolution of the
findings.

We think posterior-style causal inference and characterization
may develop descriptions of cardiorespiratory connections and
possibly distinguish between various groups of athletes. The
method can be used to profile athletes, elaborate onmodifications
of their training schedules, and find objective ways to improve
their competitive performance.
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