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As the intestinal microbiota has become better appreciated as necessary for

maintenance of physiologic homeostasis and also as a modulator of disease processes,

there has been a corresponding increase in manipulation of the microbiota in mouse

models. While germ-free mouse models are generally considered to be the gold standard

for studies of the microbiota, many investigators turn to antibiotics treatment models as

a rapid, inexpensive, and accessible alternative. Here we describe and compare these

two approaches, detailing advantages and disadvantages to both. Further, we detail

what is known about the effects of antibiotics treatment on cell populations, cytokines,

and organs, and clarify how this compares to germ-free models. Finally, we briefly

describe recent findings regarding microbiota regulation of infectious diseases and other

immunologic challenges by the microbiota, and highlight important future directions and

considerations for the use of antibiotics treatment in manipulation of the microbiota.
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INTRODUCTION

Over the past several decades, there has been a dramatic increase in both scientific and popular
interest in the effects of the intestinal microbiota on human health. The microbiota, consisting of
the bacteria, viruses, fungi, and archaea that inhabit different niches in the human body, has been
implicated in regulation of inflammatory, infectious and metabolic diseases, and appears to play
a critical role in potentially causing, propagating, or preventing human illnesses (Lai et al., 2014;
Norman et al., 2014; Palm et al., 2015). With the surge of enthusiasm to understand this new and
massively complex factor in human health has come the need to effectivelymodel it. Specifically, the
development of small animal models of the microbiota permits testing of subsets of the microbiota
as causative vs. correlative factors in disease states, as well as offering a system to uncover putative
therapeutics.

Two main methods have emerged to explore the effects of the microbiota on physiology and
disease in mice: germ-free models and antibiotics treatment regimens. Both approaches have
strengths and weaknesses. Here we will discuss commonly used regimens and methods to deplete
the microbiota, the effects of these approaches on host physiology including cellular composition,
signaling pathways, and organ function, and briefly describe what has been found using these two
different methods to model the effects of the microbiota on human disease.
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GERM-FREE AND ANTIBIOTICS
TREATMENT MODELS

Germ-free mice are bred in isolators which fully block exposure
to microorganisms, with the intent of keeping them free of
detectable bacteria, viruses, and eukaryotic microbes. Initially
conceptualized by Louis Pasteur in 1885, colonies of germ-
free rodents were first established in the 1940s (Yi and Li,
2012; Al-Asmakh and Zadjali, 2015). Germ-free mice allow
for study of the complete absence of microbes or for the
generation of gnotobiotic animals exclusively colonized by
known microbes. However, generating and maintaining these
mice requires specialized facilities, and the cost, labor, and
skills required to maintain them can make these models
inaccessible to many researchers. Germ-free mice must be
monitored regularly for contamination using a combination
of culturing, microscopy, serology, gross morphology, and
sequencing-based detection techniques (Fontaine et al., 2015;
Nicklas et al., 2015). For example, Charles River, one common
germ-free vendor, routinely uses a serologic assay to test for viral
contamination including murine norovirus, mouse rotavirus,
and mouse cytomegalovirus; PCR (both 16S and pathogen-
specific), microscopy, and culturing to test for bacteria; and
gross examination of animals to test for parasites (Charles
River Germ-Free Mouse Report). Additionally, any unique
mouse strain to be studied under germ-free conditions must be
rederived in these facilities, and this limits the number of different
genotypes that are feasible to study. Further, maintenance of mice
in isolators may make it impractical or challenging to conduct
some studies (for example, behavioral testing or pathogen
infections).

An alternate method that has emerged to avoid some of
these complications has been the use of antibiotics treatment
(Figure 1). Treatment with broad-spectrum antibiotics is
commonly used to deplete the gut microbiota of mice, and
can be readily applied to any genotype or condition of mouse.
Unlike germ-free conditions, under which complete sterility
is maintained throughout life, antibiotics can deplete bacterial
populations in mice which were normally colonized since birth.
Germ-free animals are broadly impaired in many aspects of
development and early immune education, whereas antibiotics
treatment in adult mice specifically allows for study of the
role of bacteria in maintaining cell functionality and signaling
pathways after development. Alternatively, some studies deliver
antibiotics in drinking water to pregnant dams to limit maternal
transfer of microbes and then maintain the cage on the regimen
during weaning to study the effects of bacterial depletion early
in development (Lamousé-Smith et al., 2011; Deshmukh et al.,
2014; Gonzalez-Perez et al., 2016; Li et al., 2017).

Due to differences in mechanism of action, antibiotics can
selectively deplete different members of the microbiota. For
example, metronidazole and clindamycin both target anaerobes,
vancomycin is only effective against gram-positive bacteria, and
polymyxin B specifically targets gram-negative bacteria (Atarashi
et al., 2011; Schubert et al., 2015). Individual antibiotics can be
used to shift the composition of the gut microbiota in order
to identify classes of bacteria relevant to different phenotypes

(Schubert et al., 2015; Zackular et al., 2016). In contrast, a cocktail
of different classes of antibiotics can be used to broadly deplete
the gut microbiota. Researchers have used various regimens
which differ in antibiotic combination, dose, and length of
treatment (Table 1). All of these combinations broadly target
Gram-positive, Gram-negative, and anaerobic bacteria. Often,
antibiotics are diluted in drinking water and mice are allowed to
drink ad libitum throughout the course of treatment; therefore,
actual delivered doses can vary. Some protocols additionally
include antifungals in the cocktail to avoid fungal overgrowth
during treatment (Reikvam et al., 2011; Grasa et al., 2015;
Zákostelská et al., 2016). Many also add sweeteners such as sugar,
Splenda, or Kool-aid to mask any bitterness and ensure mice
drink the antibiotics-containing water (Abt et al., 2012; Baldridge
et al., 2015; Emal et al., 2017). However, there are reports of
mice avoiding water and becoming dehydrated when provided
antibiotics in this manner (Hill et al., 2010; Reikvam et al.,
2011; Zákostelská et al., 2016). Daily oral gavage can prevent
dehydration and allow delivery of a precise dose of antibiotics,
so this method is sometimes used alone or in combination with
delivery in drinking water, though it is more labor-intensive
(Kuss et al., 2011; Reikvam et al., 2011).

Validation of bacterial depletion can be performed with
culture-based methods by assessing the colony-forming units
(CFUs) from fecal samples plated in aerobic and/or anaerobic
conditions on non-selective media. However, this method only
accounts for cultivatable microbes. Quantitative PCR of the gene
encoding 16S rRNA allows for culture-independent assessment
of gastrointestinal bacterial load. Broad-spectrum antibiotics
treatment can decrease bacterial load by multiple orders of
magnitude in 2 weeks of treatment or less (Baldridge et al., 2015;
Gonzalez-Perez et al., 2016; Brown et al., 2017). Both germ-
free and antibiotics-treated mice allow for the introduction of
microbes in which the contributions of defined bacterial species
or consortia can be studied (Tan et al., 2016; Staley et al., 2017).
Although some phenotypes seen with antibiotics treatment
are attributed to removal of a single bacterial species, many
differences that occur are due to broad decreases in bacterial
load. Consistent with this, treating bacterially-depleted mice with
conserved pattern recognition receptor ligands such as flagellin
(Ichinohe et al., 2011; Oh et al., 2014) or CpG dinucleotides
(Ichinohe et al., 2011; Hill et al., 2012) can restore some defects,
even in the absence of microbiota restoration.

Although most studies attribute phenotypic differences
after antibiotics treatment to the depletion of gut microbes,
some studies have assessed how regimens affect commensal
populations at other sites. Oral antibiotic regimens can decrease
culturable bacteria in the respiratory tract (Ichinohe et al., 2011;
Abt et al., 2012; Brown et al., 2017) and the vagina of mice
(Oh et al., 2016), but do not affect skin bacterial communities
(Naik et al., 2012). Importantly, though rarely quantified,
antibiotics treatment also likely drastically affects bacteriophage
populations, though there is debate in the literature about
whether phage play important roles in transfer of antibiotic
resistance genes (Modi et al., 2013; Enault et al., 2017; Górska
et al., 2018). Antibiotics treatment can allow for the outgrowth
of commensal fungal species, potentially confounding results as
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FIGURE 1 | Comparison of the advantages and disadvantages of germ-free and antibiotics-treated mouse model systems.

these organisms can alter immune function, hence the inclusion
of antifungals in some antibiotics treatment regimens (Noverr
et al., 2004; Kim et al., 2014). An increasing appreciation for
important roles for the virome and mycobiome may lead to
enhanced interrogation of these effects in the future, as well as the
potential impact of antibiotics on eukaryotic viruses and archaea
(Norman et al., 2014). An important final potential disadvantage
of antibiotics treatment can be the evolution or development
of antibiotic-resistant bacteria and their subsequent selection
and outgrowth in mouse intestines (Zhang et al., 2013; Morgun
et al., 2015). Depending upon the starting bacterial composition,
antibiotic cocktail, duration of treatment, and phenotypic read-
out, antibiotic-resistance may confound findings in experiments,
especially if resistant bacteria are present in only a subset of
tested mice. Longitudinal analysis of bacterial populations in
all experimental groups can aid in detection of resistance and
analysis of whether resistant bacteria may affect experimental
results.

Mice on antibiotics are not completely cleared of bacteria, but
significant reductions in bacterial load are associated with shifts
in cell populations, signaling pathways, and organ morphology,
with results often paralleling what is seen in germ-free mice.

EFFECTS OF THE MICROBIOTA ON CELL
POPULATIONS AND CYTOKINES

Although many aspects of murine physiology are affected
by microbial populations, the effects of antibiotics treatment

on immune cell populations are some of the most well-
studied (Figure 2). The immune system constantly responds
to both pathogenic and commensal microbial populations, and
shifts after antibiotics treatment reflect the dependence of cell
populations and function on bacterial signals. While results of
cell composition analysis are not uniform across studies, we will
describe the most prominent and consistent observations (see
Table 2 for exact findings by different groups).

MYELOID CELLS

Innate immune cells lack antigen-specific receptors, responding
instead to broadly conserved microbial patterns. As innate
cells continuously interface with the microbial populations
constituting the microbiota, sensing of these microbes via pattern
recognition receptors is essential for maintenance of normal host
physiology (Chu and Mazmanian, 2013; Fawkner-Corbett et al.,
2017).

Myeloid cell populations, which include macrophages,
monocytes, and granulocytes, are broadly decreased in systemic
sites after antibiotics treatment, similar to what is seen in
germ-free mice (Khosravi et al., 2014). Although monocytes are
generally not diminished in the bone marrow or peripheral blood
of mice receiving antibiotics (Zhang et al., 2015; Josefsdottir et al.,
2017), these cells have a reduced migratory capacity consistent
with their decreased presence in peripheral tissues (Zhang et al.,
2015; Emal et al., 2017). In contrast, the effects of antibiotics
treatment on inflammatory monocytes and macrophages are
more variable, with some groups reporting decreases in blood,
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TABLE 1 | Broad-spectrum antibiotics treatment regimens.

Method Antibiotics Concentration Duration Additions References

Drinking water

(ad libitum)

Vancomycin +

metronidazole

0.5–1.0 g/L each 10 weeks Atarashi et al., 2008

Ciprofloxacin +

metronidazole

1 g/L each 2 weeks Josefsdottir et al., 2017

Vancomycin + ampicillin +

polymixin

0.1–1.0 g/L each 4 weeks Kim et al., 2017

Vancomycin + neomycin +

metronidazole

0.5–1.0 g/L each 7 days Brandl et al., 2008; Kinnebrew

et al., 2010

2 weeks Kool-Aid Josefsdottir et al., 2017

Streptomycin + colistin +

ampicillin

1–5 g/L each 6 weeks 2.5% sucrose Sawa et al., 2011

Ampicillin + neomycin +

streptomycin + vancomycin

0.5–1.0 g/L each 4–5 weeks Khosravi et al., 2014

Cefoxitin + gentamicin +

metronidazole +

vancomycin

1 g/L 10 days Ganal et al., 2012

Gentamicin + ciprofloxacin

+ streptomycin + bacitracin

0.15–2 g/L each 4 weeks 3% sucrose Yan et al., 2016

Vancomycin + neomycin +

kanamycin + metronidazole

0.5–1.0 g/L each 3 weeks Gury-BenAri et al., 2016

Vancomycin + ampicillin +

kanamycin + metronidazole

0.5–1.0 g/L each Levy et al., 2015

Vancomycin + neomycin +

ampicillin + metronidazole

0.35–1.0 g/L each 7 days 3% sucrose, 1%

glucose, or

Kool-aid

Ochoa-Repáraz et al., 2009

2 weeks Hägerbrand et al., 2015;

Hashiguchi et al., 2015; Knoop

et al., 2015; Brown et al., 2017;

Emal et al., 2017; Josefsdottir

et al., 2017; Steed et al., 2017;

Burrello et al., 2018; Thackray

et al., 2018

3 or more weeks Rakoff-Nahoum et al., 2004;

Ivanov et al., 2008; Vaishnava

et al., 2008; Ichinohe et al.,

2011; Ismail et al., 2011; Yoshiya

et al., 2011; Naik et al., 2012;

Corbitt et al., 2013; Diehl et al.,

2013; Balmer et al., 2014;

Mortha et al., 2014; Oh et al.,

2014; Johansson et al., 2015;

Wu et al., 2015; Zhang et al.,

2015; Park et al., 2016; Yan

et al., 2016; Cervantes-Barragan

et al., 2017; Ge et al., 2017; Li

et al., 2017; Durand et al., 2018

3 4-day treatments

with 3 day rests

Adami et al., 2018

Gavage Vancomycin + neomycin +

ampicillin + metronidazole

+ gentamicin

200 µl of 0.5–1.0 g/L each

by daily gavage

3 day Kelly et al., 2015

10 days Hill et al., 2010

Bacitracin + neomycin +

streptomycin

200 mg/kg body weight 3 days Sayin et al., 2013; Wichmann

et al., 2013;

Fernández-Santoscoy et al.,

2015

(Continued)
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TABLE 1 | Continued

Method Antibiotics Concentration Duration Additions References

Neomycin + bacitracin 20mg each in 200 µl by

daily gavage

7 days Pimaricin

(anti-fungal),

adjusted pH to 4

Grasa et al., 2015

Combination Ampicillin by drinking water;

vancomycin + neomycin +

metronidazole by gavage

1.0g/L in water

10 ml/kg of 5–10 g/L by

gavage every 12 h

10–21 days Amphotericin B

(anti-fungal)

Reikvam et al., 2011; Hintze

et al., 2014

Vancomycin + neomycin +

ampicillin + metronidazole

10mg each by daily gavage

0.5–1.0 g/L each in water

5 days gavage

followed by 7–10

days drinking

water

Kuss et al., 2011

Kanamycin + gentamicin +

colistin + metronidazole +

vancomycin

200 µl of 0.35–4 mg/ml by

daily gavage, and mixed

2:100 into drinking water

7 days gavage

followed by

administration in

water

Bashir et al., 2004; Stefka et al.,

2014

Metronidazole + colistin +

streptomycin by gavage,

vancomycin by drinking

water

0.3–2mg each by daily

gavage, and 0.25 mg/ml in

water

2 weeks Amphotericin B

(anti-fungal)

Zákostelská et al., 2016

Oral streptomycin +

ampicillin in drinking water

20 mg/mouse orally and 1

g/L in drinking water

1–2 weeks Kim et al., 2018

Streptomycin by gavage,

followed by vancomycin +

neomycin + ampicillin +

metronidazole by drinking

water

100 mg/mouse for single

gavage and

0.5–1.0 g/L in drinking water

single gavage

followed by >7

days drinking

water

1% sucrose Kernbauer et al., 2014

FIGURE 2 | Selected effects of microbiota depletion on cells in the gastrointestinal tract and spleen. Populations of different cell types are altered in association with

depletion of the microbiota in both the gastrointestinal tract (Left) and the spleen (Right). Both secretory IgA (sIgA) and immune cell types are depleted in the

intestine, while dendritic cells and neutrophils are depleted, but basophils are enriched, in the spleen. Please see Table 2 for more detailed findings by different groups

and in other tissues.

bone marrow, and peripheral tissues (Zhang et al., 2015; Hergott
et al., 2016; Ekmekciu et al., 2017) and others reporting no
significant differences at baseline or after infection (Abt et al.,

2012; Oh et al., 2016; Brown et al., 2017; Robak et al., 2018).
Even when cell numbers are similar, macrophages are often less
mature after antibiotics treatment, impairing their responses to

Frontiers in Physiology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 1534

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kennedy et al. Germ-Free and Antibiotics Treatment Models

TABLE 2 | Effects of the microbiota on cell populations.

Broad-spectrum antibiotics References Germ-Free References

Monocytes ↓ in spleen

similar in blood, BM

↓ inflammatory monocytes in BM, spleen,

blood

Similar inflammatory monocytes in vaginal

mucosa after HSV-2 infection, in lung after

flu infection

Abt et al., 2012; Balmer

et al., 2014; Zhang et al.,

2015; Oh et al., 2016;

Josefsdottir et al., 2017

↓ or similar in blood

↓ in BM, spleen

↓ inflammatory monocytes in

spleen, similar but trend ↓ in BM;

similar in SI, colon

Similar inflammatory monocytes

in mesenteric LN

after S. typhimurium infection

Balmer et al., 2014;

Khosravi et al., 2014;

Fernández-Santoscoy

et al., 2015; Zhang

et al., 2015; Hergott

et al., 2016; Tan et al.,

2016

Increased inflammatory monocyte turnover

and apoptosis in bloodstream; decreased

migratory capacity of BM monocytes

Hergott et al., 2016; Emal

et al., 2017

Macrophages ↓ in SI, colon; ↓ or similar in spleen, liver;

similar in PP, mesenteric LN, cervical LN,

kidney, lungs; ↑ in BM

Similar in lungs after P. aeruginosa or flu

infection

Ochoa-Repáraz et al., 2009;

Abt et al., 2012; Corbitt

et al., 2013; Zhang et al.,

2015; Ekmekciu et al.,

2017; Emal et al., 2017;

Robak et al., 2018

↓ or similar in spleen

↓ in liver

Ganal et al., 2012;

Corbitt et al., 2013;

Khosravi et al., 2014

Less mature in kidney, liver, spleen;

decreased cytokine production in lung

after respiratory infection

Abt et al., 2012; Brown

et al., 2017; Emal et al.,

2017

Dendritic cells

(DCs)

↓ mDCs, pDCs in spleen; ↓ activated DCs

in SI, colon, mesenteric LN, spleen; ↓

CD103+ DCs in lung; ↓ or similar

CD103+ DCs in mesenteric LN

Similar in lung/mediastinal LN after flu

infection, similar in vaginal mucosa before

or after HSV-2 infection

Abt et al., 2012;

Hägerbrand et al., 2015; Oh

et al., 2016; Ekmekciu et al.,

2017; Thackray et al., 2018

↓ in spleen; ↓ or similar in

mesenteric LN

Similar in skin; similar cDCs in

spleen

Walton et al., 2006;

Naik et al., 2012;

Hägerbrand et al.,

2015

Similar antigen-presentation abilities

Similar surface markers in lung, altered in

mesenteric LN, PP

Impaired type 1 IFN production and

priming of CD8T cells after flu infection

Ochoa-Repáraz et al., 2009;

Ichinohe et al., 2011; Abt

et al., 2012; Ganal et al.,

2012; Thackray et al., 2018

Decreased maturity but similar

antigen presentation abilities

impaired type 1 IFN production

Walton et al., 2006;

Ganal et al., 2012

Granulocytes ↓ total in BM; similar in blood Balmer et al., 2014;

Josefsdottir et al., 2017

↓ total in BM; similar in blood Balmer et al., 2014

Neutrophils ↓ in BM, spleen, blood; similar in liver,

BALF, vaginal mucosa;

↑ in lung after P. aeruginosa, flu, S.

pneumoniae or K. pneumoniae infection

Abt et al., 2012; Zhang

et al., 2015; Hergott et al.,

2016; Oh et al., 2016;

Brown et al., 2017; Li et al.,

2017; Robak et al., 2018

↓ or similar in spleen, BM

↓ blood

similar in mesenteric LN after S.

typhimurium infection

↓ in lung after K. pneumoniae

infection

Fagundes et al., 2012;

Khosravi et al., 2014;

Fernández-Santoscoy

et al., 2015; Sturge

et al., 2015; Zhang

et al., 2015; Hergott

et al., 2016;

Josefsdottir et al., 2017

Decreased accumulation in BM or blood

of neonates

Increased turnover and apoptosis in

bloodstream; Fewer aged neutrophils in

blood

Deshmukh et al., 2014;

Zhang et al., 2015; Hergott

et al., 2016

Decreased accumulation in BM

or blood of neonates

Fewer aged neutrophils in blood

Deshmukh et al., 2014;

Zhang et al., 2015

Similar phagocytosis/reactive oxygen

species production, adhesion in neonates;

impaired neutrophil extracellular trap

formation in vitro

Deshmukh et al., 2014;

Zhang et al., 2015

Basophils,

eosinophils,

mast cells

↑ basophils in blood, spleen

Similar mast cells, eosinophils in blood

↑ eosinophils in inguinal subcutaneous

adipose tissue, vaginal mucosa

Hill et al., 2012;

Suárez-Zamorano et al.,

2015; Oh et al., 2016

↑ basophils in blood, spleen

similar eosinophils and mast cells

in skin

Hill et al., 2012; Naik

et al., 2012

↑ eosinophils in lung/BALF after allergen

exposure

Hill et al., 2012; Adami

et al., 2018

(Continued)
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TABLE 2 | Continued

Broad-spectrum antibiotics References Germ-Free References

Lymphocytes Similar in spleen; ↓ in lung, liver Cheng et al., 2014

αβ T cells ↓ in PP, mesenteric LN, cervical LN, SI,

colon

Similar or ↑ in BM

Similar in blood, liver

↓ or ↑ in spleen

Ochoa-Repáraz et al., 2009;

Zhang et al., 2015;

Ekmekciu et al., 2017;

Josefsdottir et al., 2017; Li

et al., 2017

↓ in SI, blood, spleen

Similar in skin

↑ in BM

Naik et al., 2012;

Kernbauer et al., 2014;

Zhang et al., 2015

CD4T cells ↓ in PP, cervical LN, SI, colon, spleen,

blood

Similar in BM

Similar or ↓ in mesenteric LN, SI

Similar or ↓ or ↑ in spleen

↓ % CD4+ memory cells in SI, colon,

mesenteric LN, spleen

Ivanov et al., 2008;

Ochoa-Repáraz et al., 2009;

Sawa et al., 2011;

Kernbauer et al., 2014;

Ekmekciu et al., 2017;

Josefsdottir et al., 2017;

Burrello et al., 2018;

Thackray et al., 2018

↓ in SI, mesenteric LN, BM

↓ or similar in colon, spleen

Similar, blood, cutaneous LN

Huang et al., 2005;

Mazmanian et al.,

2005; Atarashi et al.,

2008; Sawa et al.,

2011; Naik et al., 2012;

Sjögren et al., 2012;

Smith et al., 2013;

Kernbauer et al., 2014

Impaired activation after HSV-2 infection Oh et al., 2016

Th1 cells (Ifnγ+) ↓ in SI, colon

Similar in mesenteric LN, spleen, vaginal

mucosa or draining LNs, skin

Naik et al., 2012; Kernbauer

et al., 2014; Oh et al., 2016;

Ekmekciu et al., 2017

↓ in SI, mesenteric LN, colon,

skin

Similar or ↓ in mesenteric LN

Similar in cecal patch, colon

↓ in draining lymph nodes after

EAE induction?

Zaph et al., 2008; Lee

et al., 2011; Naik et al.,

2012; Kernbauer et al.,

2014

↓ IFNγ response to flu

Similar IFNγ response to OVA, respiratory

HSV-2, L. pneumophila

↑ IFNγ response to Salmonella in

mesenteric LN, SI

Ichinohe et al., 2011; Diehl

et al., 2013; Kim et al., 2018

Th2 cells (IL4+) ↑ in mediastinal LN after allergen exposure Hill et al., 2012

Th17 cells

(IL17+, Rorc+)

↓ in SI, colon, mesenteric LN, spleen

Similar in skin, liver

Atarashi et al., 2008; Ivanov

et al., 2008; Sawa et al.,

2011; Naik et al., 2012;

Ekmekciu et al., 2017; Li

et al., 2017

↓ in colon, cecum, mesenteric

LN, skin

Similar or ↓ in PP

Similar or ↓ or ↑ in SI

↑ in cecal patch, colon

Atarashi et al., 2008;

Ivanov et al., 2008;

Zaph et al., 2008;

Sawa et al., 2011; Naik

et al., 2012; Kernbauer

et al., 2014; Tan et al.,

2016

T regulatory

cells (FoxP3+)

↓ in colon

Similar or ↓ in SI, spleen, PP

↓ or ↑ in mesenteric LN

Similar in BM, liver

↑ in cervical LN, lung

Ivanov et al., 2008;

Ochoa-Repáraz et al., 2009;

Ichinohe et al., 2011;

Mortha et al., 2014;

Ekmekciu et al., 2017;

Josefsdottir et al., 2017; Li

et al., 2017; Thackray et al.,

2018

↓ in PP, colon

Similar in spleen, mesenteric LN,

peripheral LN, cutaneous LN,

cecal patch, colon, blood,

thymus

↑ in SI, skin; ↑ in draining LN and

spleen after EAE induction

↓ Rorγt+ Tregs in colon, SI,

MLN; similar or ↓ Helios+,

similar Gata3+ Tregs in colon

Ivanov et al., 2008;

Zaph et al., 2008; Lee

et al., 2011; Naik et al.,

2012; Smith et al.,

2013; Ohnmacht et al.,

2015; Durand et al.,

2018

CD8+ T cells ↓ in SI, colon, blood

Similar or ↑ in mesenteric LN

↓ or ↑ in spleen

↑ in PP, cervical LN, BM

Ochoa-Repáraz et al., 2009;

Kernbauer et al., 2014;

Ekmekciu et al., 2017;

Josefsdottir et al., 2017;

Thackray et al., 2018

↓ in mesenteric LN

Similar in SI, colon, blood,

cutaneous LN, spleen

Huang et al., 2005;

Naik et al., 2012;

Kernbauer et al., 2014

Similar IFNγ+ in SI, vaginal mucosa or

draining LNs

Impaired response to flu, vaginal HSV-2;

similar response to OVA, respiratory

HSV-2, L. pneumophila

Kernbauer et al., 2014; Oh

et al., 2016

Ichinohe et al., 2011,?; Abt

et al., 2012; Oh et al., 2016

↓ IFNγ+ in SI, colon, mesenteric

LN

Kernbauer et al., 2014

(Continued)
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TABLE 2 | Continued

Broad-spectrum antibiotics References Germ-Free References

CD4+CD8aa+

cells

↓ in SI epithelium Cervantes-Barragan et al.,

2017

↓ in SI epithelium Cervantes-Barragan

et al., 2017

γδ T cells Similar IL-17+ in SI

↓ IL-17+ in liver

Ivanov et al., 2008; Li et al.,

2017

Similar in skin

Similar or ↑ in SI

↓ IL-17+ in SI, skin, liver

Bandeira et al., 1990;

Ivanov et al., 2008;

Ismail et al., 2011; Naik

et al., 2012; Li et al.,

2017

Less activated and more apoptotic in liver,

↓ production of antimicrobials in SI

Ismail et al., 2011; Li et al.,

2017

↓ production of antimicrobials in

SI, less activated in liver,

diminished response to mucosal

injury in colon

Ismail et al., 2009,

2011; Li et al., 2017

NK T cells Similar or ↓ in spleen

Similar in PP, cervical LN, mesenteric LN,

liver

↑ in colon

Ochoa-Repáraz et al., 2009;

Li et al., 2017; Burrello

et al., 2018

↑ in colon Kernbauer et al., 2014

B cells ↓ in SI, colon, PP

Similar or ↓ in spleen, blood, BM

Similar in mesenteric LN, cervical LN, liver

Ochoa-Repáraz et al., 2009;

Yoshiya et al., 2011; Zhang

et al., 2015; Ekmekciu et al.,

2017; Josefsdottir et al.,

2017; Li et al., 2017;

Thackray et al., 2018

↓ in blood

Similar in spleen

↑ in BM

↓ IgA, IgG production in SI

Kernbauer et al., 2014;

Zhang et al., 2015

Antibodies Similar IgM, IgG in BALF, IgG in serum, ↑

in serum after allergen exposure

↓ IgA in BALF, blood, feces

↑ IgE in serum at baseline, after allergen

exposure

Atarashi et al., 2008; Hill

et al., 2012; Oh et al., 2014;

Stefka et al., 2014;

Uchiyama et al., 2014;

Adami et al., 2018; Lynn

et al., 2018; Robak et al.,

2018

Similar IgG in serum, ↑ after

allergen exposure

↓ IgA in feces

↑ IgE in serum at baseline, after

allergen exposure

Atarashi et al., 2008;

Hill et al., 2012; Oh

et al., 2014; Stefka

et al., 2014

↓ antigen-specific response to vaccines in

neonates, not adults

↓ flu-specific IgG, IgA after infection, IgG

early after flu vaccine

↑ Salmonella-specific IgG in blood and IgA

in feces

↑ rotavirus-specific IgA in serum, feces,

only at later times after infection

Ichinohe et al., 2011;

Lamousé-Smith et al.,

2011; Abt et al., 2012; Diehl

et al., 2013; Oh et al., 2014;

Uchiyama et al., 2014; Li

et al., 2017; Lynn et al.,

2018

↓ Ova-specific IgG in response

to Ova immunization at all ages

tested

↓ flu-specific IgM in serum after

infection, IgG early after flu

vaccine

↑ rotavirus-specific IgA, IgG in

serum, only at later time points

Lamousé-Smith et al.,

2011; Abt et al., 2012;

Oh et al., 2014;

Uchiyama et al., 2014

Innate lymphoid

cells (ILCs)

↓ ILC3s and ILC1s in PP

↑ ILC3s in terminal ileum PP

Similar or ↑ ILC3s in SI LP

↑ ILC2 in vaginal mucosa

↓ GM-CSF+ ILC3s in colon

ILC1 and ILC2 expression becomes more

ILC3-like

Sawa et al., 2011; Mortha

et al., 2014; Hashiguchi

et al., 2015; Gury-BenAri

et al., 2016; Oh et al., 2016;

Kim et al., 2017

↑ ILC2s in SI; similar activation

Similar or ↑ ILC3s in SI

Similar ILC1 in SI

Sawa et al., 2011;

Kernbauer et al., 2014;

Gury-BenAri et al.,

2016; Schneider et al.,

2018

Natural killer

(NK) cells

↓ in spleen

Similar in PP, mesenteric LN, cervical LN,

liver

Ochoa-Repáraz et al., 2009;

Li et al., 2017

Similar in spleen Ganal et al., 2012

Impaired cytotoxicity and cytokine

production in spleen

Ganal et al., 2012 Impaired cytotoxicity and

cytokine production in spleen

Ganal et al., 2012

BALF, bronchoalveolar lavage fluid; BM, bone marrow; EAE, experimental autoimmune encephalomyelitis; LN, lymph node; PP, Peyer’s patch; SI, small intestine.

pathogens (Abt et al., 2012; Brown et al., 2017; Emal et al.,
2017).

Bulk granulocytes decrease in the bone marrow of antibiotics-
treated mice, though their numbers in peripheral blood are

similar (Balmer et al., 2014; Josefsdottir et al., 2017). Neutrophils
decrease in bone marrow and in peripheral sites, with an
increased rate of apoptosis and decrease in aged neutrophils in
the bloodstream after microbiota depletion (Deshmukh et al.,
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2014; Zhang et al., 2015; Hergott et al., 2016). However,
neutrophil populations are not diminished at the site of infection
after pathogen exposure in antibiotics-treated mice (Abt et al.,
2012; Oh et al., 2016; Brown et al., 2017; Robak et al., 2018). In
contrast to neutrophils, the proliferation of basophil precursors
in the bone marrow is increased after antibiotics treatment,
associated with increased basophils in the periphery and an
enhanced response to allergen exposure (Hill et al., 2012).
Similarly, eosinophils in various tissues are enhanced at baseline
(Suárez-Zamorano et al., 2015; Oh et al., 2016), and in the
lung after inhaled allergen exposure (Hill et al., 2012). These
alterations in granulocyte populations are consistent with a shift
from type 1 to type 2 immune responses after depletion of the
commensal microbiota.

Various dendritic cell subsets are also reduced after antibiotics
treatment at both mucosal and systemic sites (Ichinohe et al.,
2011; Ekmekciu et al., 2017; Thackray et al., 2018), although these
differences may not be apparent after infection (Abt et al., 2012;
Oh et al., 2016). Differences in dendritic cell numbers have not
been reported in germ-free mice, though impairment in priming
has been seen (Walton et al., 2006; Ganal et al., 2012).

Reductions in innate immune cell number and function,
characteristic of both germ-free mice and antibiotics-treated
mice, may be explained by diminished cytokine and chemokine
levels, which are necessary for normal cell recruitment,
differentiation, and functionality (Mortha et al., 2014; Brown
et al., 2017). Reductions in myeloid populations are likely
not explained by decreases in progenitor populations: although
antibiotic exposure beginning in utero can reduce postnatal
granulocytosis (Deshmukh et al., 2014), treatment in adult mice
does not reduce myeloid progenitor populations in the bone
marrow (Josefsdottir et al., 2017; Thackray et al., 2018).

LYMPHOID CELLS

In contrast to what is seen with myeloid progenitors, common
lymphoid progenitors are reduced in the bone marrow after
microbiota depletion (Josefsdottir et al., 2017; Thackray et al.,
2018), consistent with what is seen in some, but not all, germ-
free models (Balmer et al., 2014; Iwamura et al., 2017). Total
lymphocytes are similarly reduced in the peripheral blood after
antibiotics treatment (Josefsdottir et al., 2017).

The effects of the microbiota in regulating differentiated T
cell populations has been widely explored, but results found are
somewhat variable. αβ T cells generally decrease in peripheral
organs (Ochoa-Repáraz et al., 2009; Zhang et al., 2015; Ekmekciu
et al., 2017), although not in the bone marrow or blood (Zhang
et al., 2015; Josefsdottir et al., 2017). Similarly, many reports
suggest that CD4+ T helper cells decrease in tissues (Ochoa-
Repáraz et al., 2009; Kernbauer et al., 2014; Ekmekciu et al.,
2017; Josefsdottir et al., 2017; Thackray et al., 2018), as do CD4+
T memory cells (Ekmekciu et al., 2017), although others see
either no difference or increases in specific tissues (Ivanov et al.,
2008; Sawa et al., 2011; Ekmekciu et al., 2017; Josefsdottir et al.,
2017; Burrello et al., 2018). Th1 cells tend to decrease in the
gastrointestinal tract (Naik et al., 2012; Kernbauer et al., 2014;

Ekmekciu et al., 2017), but not in extra-intestinal tissues (Naik
et al., 2012; Oh et al., 2016; Ekmekciu et al., 2017), whereas
Th17 cells decrease in most tissues studied (Atarashi et al., 2008;
Ivanov et al., 2008; Sawa et al., 2011; Naik et al., 2012; Ekmekciu
et al., 2017). The effects of microbial depletion on Th2 cells are
less well-studied, although they have been seen to increase in
lymph nodes after allergen exposure (Hill et al., 2012). Results
with regulatory T cells are inconsistent across studies, with some
citing decreases in different tissues (Ochoa-Repáraz et al., 2009;
Mortha et al., 2014; Ekmekciu et al., 2017; Thackray et al., 2018),
others seeing similar numbers regardless of antibiotics treatment
(Ivanov et al., 2008; Ichinohe et al., 2011; Josefsdottir et al., 2017;
Li et al., 2017), and still others seeing increases in some sites
(Ochoa-Repáraz et al., 2009; Ichinohe et al., 2011).

Similar to CD4+ T cells, cytotoxic CD8+ T cells generally
decrease in the intestine after antibiotics, though results at other
sites are more varied (Ochoa-Repáraz et al., 2009; Kernbauer
et al., 2014; Ekmekciu et al., 2017; Josefsdottir et al., 2017;
Thackray et al., 2018). Proinflammatory cytokine production
from cytotoxic T cells is not diminished at baseline after
antibiotics treatment, but has been reported to decrease in
response to infection with some pathogens (Ichinohe et al., 2011;
Abt et al., 2012; Kernbauer et al., 2014; Oh et al., 2016).

Reports of B cell population shifts are varied, with some
groups seeing declines in the blood, bone marrow, and tissues
after antibiotics treatment, and others noting similar numbers
regardless of microbiota depletion (Ochoa-Repáraz et al., 2009;
Yoshiya et al., 2011; Zhang et al., 2015; Ekmekciu et al.,
2017; Josefsdottir et al., 2017; Li et al., 2017; Thackray et al.,
2018). Likewise, shifts in antibody responses are inconsistent—in
general, total IgG and IgM levels remain similar in different sites
analyzed, but secretory and serum IgA levels tend to decrease and
serum IgE levels increase after microbiota depletion (Hill et al.,
2010; Oh et al., 2014; Uchiyama et al., 2014; Adami et al., 2018;
Lynn et al., 2018; Robak et al., 2018). Antigen-specific response
to infection or vaccination vary by pathogen, mouse age, and
time point after exposure analyzed, but neonates in particular
generally produce a less robust response to vaccination after
exposure to antibiotics (Ichinohe et al., 2011; Lamousé-Smith
et al., 2011; Abt et al., 2012; Diehl et al., 2013; Oh et al., 2014;
Uchiyama et al., 2014; Li et al., 2017; Lynn et al., 2018).

Innate-like lymphocytes (including CD8αα+ T cells, γδ T
cells, NK T cells) and innate lymphoid cells (ILCs, including
natural killer cells) localize to barrier sites and are influenced
by the presence of commensal microbes (Constantinides,
2018). Double-positive CD4+CD8αα+ T cells serve regulatory
functions in the small intestinal epithelium and are diminished
in antibiotics-treated mice, associated with a reduction in
the bacterium Lactobacillus reuteri which induces this cell
type (Cervantes-Barragan et al., 2017). γδ T cells are present
in epithelial tissues, mediating tissue repair and monitoring
microbial populations. Although studies in germ-free mice
suggest that the microbiota is dispensable for these cells to home
to the intestine or skin (Bandeira et al., 1990; Ismail et al., 2011;
Naik et al., 2012), both germ-free and antibiotics-treated models
indicate that microbial colonization is necessary for normal
activation and production of antimicrobial compounds by these
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TABLE 3 | Effects of the microbiota on cytokine signaling.

Broad-spectrum antibiotics References Germ-Free References

IL-1 family

cytokines

Similar IL-1β in jejunum, colon, BM,

BALF, liver; similar IL-1α in jejunum,

BALF, liver

↓ pro-IL-1 in lung

↓ IL-1β, IL-1α in vaginal washes after

HSV-2 infection; ↓ IL-1β in BALF after

flu infection

↓ Pro-IL-18 in BALF, ↓ IL-18 in colon

trend ↓ IL-18 in vaginal washes after

HSV-2 infection

↑ IL-33 in vaginal mucosa

Ichinohe et al., 2011; Abt

et al., 2012; Levy et al.,

2015; Suárez-Zamorano

et al., 2015; Oh et al., 2016;

Yan et al., 2016; Li et al.,

2017; Robak et al., 2018

↓ IL-1 in BM

↓ IL-1β in SI, colon, trend ↓

BM

↓ IL-1α in skin

↓ IL-18 in colon

↑ IL-33 in colon, SI

Naik et al., 2012; Shaw

et al., 2012; Sjögren et al.,

2012; Singh et al., 2014;

Levy et al., 2015; Ohnmacht

et al., 2015; Yan et al., 2016

Th1 cytokines Similar IL-2 in liver

↓ IFNγ in SI, in vaginal mucosa after

HSV-2 infection; similar IFNγ in SI,

colon, vaginal mucosa at baseline

↓ or similar TNFα in colon, trend ↓ in

BM, ↓ in lung after flu infection; similar

TNFα in vaginal washes, SI, BALF

↓ IL-12 in spleen after

LCMV-infection; similar IL-12 in colon,

SI, vaginal washes with or without

HSV-2 infection

Hill et al., 2010; Abt et al.,

2012; Suárez-Zamorano

et al., 2015; Oh et al., 2016;

Yan et al., 2016; Ekmekciu

et al., 2017; Li et al., 2017;

Burrello et al., 2018; Robak

et al., 2018

↓ TNFα in colon, BM, WAT;

similar in popliteal LN; ↓ in

lung after K. pneumoniae

infection

↑ IL-12β, similar IL-12α in

colon

↓ IFNγ, TNFα in skin, similar

IFNγ in popliteal LN, spleen

after Leishmania infection

↓ IFNγ in draining LN after

EAE induction

Oliveira et al., 2005; Zaph

et al., 2008; Lee et al.,

2011; Caesar et al., 2012;

Fagundes et al., 2012; Naik

et al., 2012; Sjögren et al.,

2012; Yan et al., 2016

Th2 cytokines ↑ IL-4 in inguinal subcutaneous

adipose tissue, in mediastinal LN after

allergen exposure; similar in SI,

vaginal washes

↑ IL-5 in inguinal subcutaneous

adipose tissue, vaginal mucosa;

similar in SI

Similar IL-6 in SI, BM, vaginal

washes, BALF, liver; ↑ in BALF after P.

aerigunosa infection; similar or ↓ in

colon; ↓ in BALF after flu infection, in

spleen after LCMV infection

Similar IL-10 in spleen, lung; similar or

↓ in SI; ↓ in colon

Similar IL-13 in SI; ↑ in inguinal

subcutaneous adipose tissue, in

mediastinal LN after allergen

exposure

Rakoff-Nahoum et al., 2004;

Abt et al., 2012; Hill et al.,

2012; Suárez-Zamorano

et al., 2015; Oh et al., 2016;

Yan et al., 2016; Ekmekciu

et al., 2017; Li et al., 2017;

Burrello et al., 2018; Robak

et al., 2018

Similar IL-6 in colon; similar

or ↑ in BM; similar or ↓ in SI

Similar IL-10 in colon; ↓

IL-10 in WAT

Similar IL-13 in colon

↑ IL-10 in lung after

K. pneumoniae infection

Similar IL-4 in popliteal LN,

spleen after Leishmania

infection

Oliveira et al., 2005; Zaph

et al., 2008; Caesar et al.,

2012; Fagundes et al.,

2012; Shaw et al., 2012;

Sjögren et al., 2012;

Ohnmacht et al., 2015; Yan

et al., 2016

Th17 cytokines ↓ IL-22 in SI, colon

Similar IL-17 in lung; similar or ↓ in SI,

colon; ↓ in liver; ↓ in lung after

S. pneumoniae or K. pneumoniae

infection

Hill et al., 2010; Deshmukh

et al., 2014;

Suárez-Zamorano et al.,

2015; Brown et al., 2017;

Ekmekciu et al., 2017; Li

et al., 2017; Burrello et al.,

2018

↓ IL-17 in SI; ↑ IL-17 in

colon

↓ IL-17 in draining LN after

EAE induction

Ivanov et al., 2008; Zaph

et al., 2008; Deshmukh

et al., 2014

BALF, bronchoalveolar lavage fluid; BM, bone marrow; EAE, experimental autoimmune encephalomyelitis; LN, lymph node; SI, small intestine; WAT, white adipose tissue.

cells (Ivanov et al., 2008; Ismail et al., 2009, 2011; Naik et al.,
2012; Li et al., 2017). Levels of NK T cells are generally similarly
maintained in tissues after antibiotics treatment, though their
activation has not been well-studied (Ochoa-Repáraz et al., 2009;
Li et al., 2017; Burrello et al., 2018). Likewise, ILCs have not
been extensively evaluated after antibiotics treatment, although
multiple studies report shifts in the representation or function
of ILC subsets at mucosal surfaces (Ochoa-Repáraz et al., 2009;
Sawa et al., 2011; Ganal et al., 2012; Mortha et al., 2014;

Hashiguchi et al., 2015; Gury-BenAri et al., 2016; Oh et al., 2016;
Kim et al., 2017; Li et al., 2017).

CYTOKINES

Although shifts in cytokine levels after antibiotics treatment are
variable (Table 3), most studies that report differences describe
a shift away from proinflammatory cytokines. Many associate
microbiota depletion with decreases in the production of IL-1
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family cytokines, Th1 cytokines such as IFNγ and TNFα, and IL-
17 family cytokines. The production of these cytokines is often
similar or reduced specifically in the gastrointestinal tract in naïve
animals, but the diminished response becomes apparent after
challenge with a pathogen, often at the site of infection. For
example, although IL-1 family cytokine levels are similar, pro-
IL-1 and pro-IL-18 are reduced in the vaginal mucosa and lung
in antibiotics-treated mice at baseline, associated with a reduced
production of IL-1 family cytokines in response to infection at
each site (Ichinohe et al., 2011; Abt et al., 2012; Oh et al., 2016;
Robak et al., 2018). Similarly, type 1 cytokines such as IFNγ

and TNFα are generally present at similar levels in tissues after
antibiotics treatment in uninfected mice but reduced at the site of
infection in microbiota-depleted mice (Abt et al., 2012; Oh et al.,
2016; Robak et al., 2018). Inflammatory Th17 cytokines such as
IL-17 and IL-22 are generally reduced in the intestines even at
baseline in antibiotics-treated mice (Hill et al., 2010; Deshmukh
et al., 2014; Ekmekciu et al., 2017), whereas differences in tissues
such as the lung become apparent after infection at that site
(Deshmukh et al., 2014; Suárez-Zamorano et al., 2015). In parallel
with this decrease in inflammatory cytokines, some reports
suggest that there is an increase in the expression of Th2 family
cytokines such as IL-4, IL-5, and IL-13, especially after allergen
exposure, consistent with a shift from Th1 to Th2-type immunity
after microbiota depletion (Hill et al., 2010; Suárez-Zamorano
et al., 2015; Oh et al., 2016).

Broadly, there is reasonable concordance between germ-free
and antibiotics treatment mouse models in alterations of cellular
compartments and cytokines. However, different groups have
reported disparate findings with different antibiotics treatment
regimens, making it challenging to definitively categorize
microbiota-mediated modulatory effects. We propose that
distinct starting microbiota composition and distinct regimens
likely underlie this variability, and highlight this as an area of
much-needed standardization.

MICROBIOTA EFFECTS AT THE ORGAN
LEVEL

In addition to shifts in cell populations and signaling pathways,
antibiotics treatment has been seen to affect organ morphology
more broadly, both in the gastrointestinal tract as well as in
extra-intestinal organs (Table 4). As the bulk of commensals
reside in the gastrointestinal tract where they assist with digestion
and interact closely with epithelial cells, it is not surprising
that many changes are seen in intestinal physiology after
microbial depletion. The length of the whole intestine or the
colon is not affected, but the cecum becomes dramatically
larger, transit time increases, and fecal pellet frequency and
consistency can be altered (Grasa et al., 2015; Suárez-Zamorano
et al., 2015; Ge et al., 2017). Moreover, villi become narrower
(Kernbauer et al., 2014), cellular proliferation decreases (Reikvam
et al., 2011; Ekmekciu et al., 2017), and features such as
tuft cells (Wilen et al., 2018) or goblet-cell antigen passages
(Knoop et al., 2015) are affected in specific regions of the
gastrointestinal tract. Immune function in the intestines is

also affected, as the production of antimicrobial peptides is
reduced (Brandl et al., 2008; Vaishnava et al., 2008; Kinnebrew
et al., 2010; Reikvam et al., 2011), Paneth cells granules are
diminished (Kernbauer et al., 2014), Peyer’s patches become
less abundant and decrease in cellularity (Reikvam et al., 2011;
Grasa et al., 2015; Hashiguchi et al., 2015), expression of Toll-
like receptors is altered (Grasa et al., 2015), and tolerance to
the commensal intestinal microbiota is impaired (Kim et al.,
2018).

Non-gastrointestinal organs also depend on ongoing bacterial
signals to maintain normal morphology. The spleen (Ochoa-
Repáraz et al., 2009; Reikvam et al., 2011; Yoshiya et al., 2011;
Zhang et al., 2015; Josefsdottir et al., 2017; Thackray et al.,
2018), thymus (Josefsdottir et al., 2017), and lymph nodes
(Ichinohe et al., 2011; Durand et al., 2018) may decrease in size
and/or cellularity after antibiotics treatment. Liver regeneration
is impaired in antibiotics-treated mice (Wu et al., 2015) and
bile acid synthesis is altered (Sayin et al., 2013; Zhang et al.,
2014). Additionally, fat pads diminish and bone mass increases,
consistent with a role for the microbiota in maintaining normal
body composition (Suárez-Zamorano et al., 2015; Yan et al.,
2016). There have been a number of intriguing studies recently
exploring the role of the microbiota in regulating brain function
and behavior via the gut-brain axis; this complex topic has been
recently reviewed elsewhere (Cryan and Dinan, 2012; Liu and
Zhu, 2018).

MICROBIOTA REGULATION OF IMMUNE
CHALLENGES

As might be expected, given the systemic and tissue-specific
differences in immune function, antibiotics-treated mice are
more susceptible to a variety of pathogens. For example,
microbiota-depleted mice are more susceptible to bacterial
pathogens such as vancomycin-resistant enterococcus,
Salmonella, and Clostridium difficile in the gastrointestinal
tract (Kinnebrew et al., 2010; Fernández-Santoscoy et al., 2015;
Theriot et al., 2016), a variety of pneumonia-causing bacteria in
the respiratory tract (Brown et al., 2017; Robak et al., 2018), and
systemic Escherichia coli (Deshmukh et al., 2014). Additionally,
after antibiotics treatment, mice are impaired in their response
to vaginal HSV-2 (Oh et al., 2016), flaviviruses (Thackray et al.,
2018), influenza (Ichinohe et al., 2011; Abt et al., 2012), and
cutaneous Leishmania (Naik et al., 2012). However, microbiota-
depleted mice actually become less susceptible to enteric viral
pathogens including murine norovirus and poliovirus (Kuss
et al., 2011; Uchiyama et al., 2014; Baldridge et al., 2015), possibly
due to direct interactions between viral pathogens and enteric
bacteria or due to loss of specific cell types required for viral
infection. Antibiotics-treated mice are additionally impaired in
their development of tolerance to food antigens (Bashir et al.,
2004; Kim et al., 2018) and are more prone to allergic diseases
(Hill et al., 2012; Adami et al., 2018).

Many of the effects after antibiotics treatment in mice are
consistent with what is seen in germ-free models, suggesting
that these are dependent on regular signals from the microbiota.

Frontiers in Physiology | www.frontiersin.org 11 October 2018 | Volume 9 | Article 1534

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kennedy et al. Germ-Free and Antibiotics Treatment Models

TABLE 4 | Effects of the microbiota on individual organs.

Broad-spectrum antibiotics References Germ-Free References

Whole intestine Similar length, ↑ transit time Grasa et al., 2015; Ge et al., 2017

Small intestine ↓ transit time

similar apoptotic cells, fewer

proliferating cells

↓ RegIIIγ and RegIIIβ production

↓ number of PP; ↓ cells in PP

↓ villus width, ↓ T cells/vilus

↓ granules/Paneth cell

altered expression of TLRs

similar tuft cells

Brandl et al., 2008; Vaishnava et al.,

2008; Kinnebrew et al., 2010;

Reikvam et al., 2011; Wichmann

et al., 2013; Kernbauer et al., 2014;

Grasa et al., 2015; Hashiguchi et al.,

2015; Park et al., 2016; Ekmekciu

et al., 2017; Durand et al., 2018;

Schneider et al., 2018; Wilen et al.,

2018

↓ transit time

fewer proliferating cells

↓ RegIIIγ, RegIIIβ production

↓ villus width, ↓ T cells/vilus, ↓

cells in LP

↓ cells in PP

↓ mucus thickness, attachment

to epithelium; mucus more

attached

↓ granules/Paneth cell, ↓

lysozyme+ cells/crypt

similar tuft cells

↑ bile acids

Vaishnava et al., 2008;

Sayin et al., 2013;

Wichmann et al., 2013;

Kernbauer et al., 2014;

Schütte et al., 2014;

Johansson et al., 2015;

Park et al., 2016;

Durand et al., 2018;

Schneider et al., 2018

Cecum ↑ size

↑ villus length and width

↓ SCFAs

decreased thickness of muscularis

propria

Hill et al., 2010; Corbitt et al., 2013;

Kelly et al., 2015; Park et al., 2016;

Yan et al., 2016

↑ size

↑ villus length and width

↓ SCFAs, bile acids

Decreased thickness of

muscularis propria

Hill et al., 2010; Corbitt

et al., 2013; Sayin

et al., 2013; Smith

et al., 2013; Yan et al.,

2016

Colon Similar length, ↑ transit time

↓ RegIIIγ and RegIIIβ, other

anti-microbial factors

↓ epithelial regeneration, ↓

proliferating cells

Similar mucus penetrability

Altered expression of TLRs

↓ tuft cells

↓ SCFAs

Formation of goblet-cell antigen

passages

Reikvam et al., 2011; Wichmann

et al., 2013; Grasa et al., 2015;

Johansson et al., 2015; Knoop et al.,

2015; Ekmekciu et al., 2017; Ge

et al., 2017; Wilen et al., 2018

↓ RELMβ, other anti-microbial

factors

↓ crypt height

Similar mucus thickness,

attachment to epithelium;

decreased impenetrable mucus

Similar tuft cells

↓ SCFAs, bile acids

Formation of goblet-cell antigen

passages

He et al., 2003;

Matsumoto et al.,

2012; Sayin et al.,

2013; Wichmann et al.,

2013; Kernbauer et al.,

2014; Johansson et al.,

2015; Knoop et al.,

2015; Levy et al., 2015;

McKinley et al., 2017

Lymph nodes Similar or ↓ cellularity

↓ size and cellularity after flu infection

Ichinohe et al., 2011; Durand et al.,

2018

↓ or similar cellularity

Altered structure

Bauer et al., 1963;

Manolios et al., 1988;

Kernbauer et al., 2014;

Zhang et al., 2015;

Durand et al., 2018

Spleen Similar or ↓ weight

↓ cellularity, fewer leukocytes

Ochoa-Repáraz et al., 2009; Reikvam

et al., 2011; Yoshiya et al., 2011;

Grasa et al., 2015; Suárez-Zamorano

et al., 2015; Zhang et al., 2015;

Josefsdottir et al., 2017; Thackray

et al., 2018

Similar cellularity, similar

lymphocytes

Altered structure

Bauer et al., 1963;

Mazmanian et al.,

2005; Zhang et al.,

2015

Thymus ↓ weight Josefsdottir et al., 2017 Similar cellularity Nakajima et al., 2014

Liver Similar or ↓ weight

Impaired regeneration

Altered bile acid production

Corbitt et al., 2013; Sayin et al., 2013;

Zhang et al., 2014; Wu et al., 2015;

Yan et al., 2016

Similar weight

Impaired regeneration

Altered bile acid production

Cornell et al., 1990;

Corbitt et al., 2013;

Sayin et al., 2013; Yan

et al., 2016

Fat ↓ weight of abdominal fat pads

↓ inguinal and perigonadal adipose

tissue

Suárez-Zamorano et al., 2015; Yan

et al., 2016

↓ weight of abdominal fat pads

↓ % body fat

Caesar et al., 2012;

Yan et al., 2016

Bone ↑ bone mass Yan et al., 2016 ↑ bone mass vs. short-term SPF

colonized, ↓ bone mass/length

vs. long-term SPF colonized

↑ bone mass vs. conventional

Sjögren et al., 2012;

Yan et al., 2016

PP, Peyer’s patch; TLR, Toll-like receptor; LP, lamina propria; SCFA, short-chain fatty acid; SPF, specific-pathogen-free.
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However, it is important to note that antibiotics can have effects
on eukaryotes independently of the microbiota, as treatment
of germ-free mice with antibiotics can replicate some findings
seen when treating normally colonized mice (Han et al., 2015;
Gopinath et al., 2018). Replicating key findings in germ-free
mice can help confirm that the differences seen after antibiotics
treatment are indeed caused by microbial depletion.

CONSIDERATIONS FOR THE FUTURE

While antibiotics treatment offers an inexpensive and accessible
alternative to germ-free models, results obtained using these
regimens come with the caveats of potential off-target drug
effects and incomplete or inconsistent ablation of microbes.
Additionally, because so many groups use distinct treatment
regimens and mouse microbial populations may be institution-
specific, antibiotics studies are much more challenging to
compare than germ-free mouse studies.

We suggest that some standardization of antibiotics treatment
regimens would be helpful; for example, if a standard cocktail
were employed to demonstrate an initial finding, this could
be compared to other studies, and subsequent follow-up
experiments could be done with modified cocktails as necessary.
Additionally, we suggest that at least a limited assessment of the
replicability of findings in antibiotics-treated mice and germ-
free mice would be of high value for most studies, to rule in or
out potential off-target drug effects or developmental differences

between germ-free and standard pathogen-free mice that may
be important for a phenotype. Finally, it will be critical for
investigators to ensure that microbial loads are consistently
monitored in both antibiotics treatment and germ-free models
to identify any effects of contaminants or antibiotic-resistant
microbes.

Ensuring that we are able to interpret the contribution of
an individual study to the field of microbiota research will
require careful planning and execution of these experiments
on the part of investigators. As we continue to uncover
additional health and disease states in which the microbiota
plays a role, the use of these models will become increasingly
common.
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