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The molecular underpinnings of metabolic adaptation to seasons are poorly understood
in long- distance migrants. We measured changes in physiology and performed de novo
sequencing of RNA extracted from liver samples collected at 4-h intervals over a
period of 24 h from a long-distance avian migrant, the blackheaded bunting (Emberiza
melanocephala), during two states: photostimulated vernal migratory (M) state and
photorefractory non-migratory (nM) state. The M state was differentiated from the
nM state based on body fattening and weight gain, as well as on Zugunruhe, that
is, nocturnal migratory restlessness in caged birds. We found that baseline blood
glucose and triglyceride levels were significantly higher in the M state than the nM
state; conversely, surface body temperature was higher in the nM state than the M
state. In a total of 6 liver samples that were sequenced from each state, 11,246 genes
were annotated, including 4448 genes that were cyclic over 24 h. We found 569
differentially expressed genes (DEGs) between the M and the nM state, and the M
state showed 131 upregulated and 438 downregulated genes. These DEGs formed
core gene hubs associated with specific biological processes in both the states. In
addition, weighted gene coexpression network analysis revealed two discrete modules
of coexpressed genes, with a significant difference in the expression pattern of metab
olism-associated genes between M and nM states. These results demonstrate, for the
first time, transcriptome-wide changes in the liver between two distinct physiological
states and give molecular insights into seasonal metabolic adaptations in latitudinal
migrants.

Keywords: adaptation, birds, gene expression, migration, RNAseq, WGCNA

INTRODUCTION

Bird migration is one of the most salient examples of seasonal ecology in nature. Annual to-and-
fro movements between breeding and non-breeding grounds occur during different seasons and
involve significant adaptations to environmental changes in physiology and behavior (Berthold
et al., 2003). Following postbreeding molt, avian migrants undergo changes associated with autumn
migration (to wintering site) and reverse to a non-migratory state when it overwinters. Later, it
reinitiates processes associated with spring migration (to breeding site) and reproduction, which
are again reversed at the end of reproduction. These changes are programmed by internal clocks
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and synchronized to the natural environment by the annual
photoperiodic cycle (Gwinner and Helm, 2003; Malik
et al., 2014). Increasing photoperiods at the wintering site
photostimulate the spring (vernal) migratory state, which
is characterized by fat deposition and weight gain; elevated
circulating levels of metabolites (e.g., glucose and triglycerides)
and metabolic hormones (e.g., insulin and corticosterone); and
Zugunruhe (migratory restlessness, intense nocturnal activity,
and wing whirring in captive birds: Gwinner and Czeschlik,
1978; Ramenofsky and Wingfield, 2007; Trivedi et al., 2014). At
the end of the vernal migration, fat depletes, body mass declines,
and gonads mature and enlarge in size. Following reproduction,
gonads regress as birds enter into photorefractory state during
which they remain unresponsive to stimulatory effects of long
photoperiod (Malik et al., 2014; Trivedi et al., 2014).

The photostimulated vernal migratory state and the
photorefractory non-migratory state strikingly differ in behavior
and physiology, particularly in aspects that are linked with
night-flight and associated metabolism and energy homeostasis
(Bairlein et al., 2015). Both seasonal states are also indicators
of changes at multiple levels in response to seasonal changes
in the environment. The liver is the major site for seasonal
metabolic changes, and it plays crucial roles in the maintenance
of global metabolic (energy) homeostasis. In particular, the
liver regulates glucose and lipid metabolism: for example,
glycogenesis, gluconeogenesis, detoxification, production of
plasma protein and bile acids, and synthesis of lipoproteins
(Trefts et al., 2015; Kurauti et al., 2016). In avian migrants during
the migratory state, the liver actively metabolizes abundant
nutritional substrates and stores fuel for flight in the form of
triglycerides and also processes fuel substrates for use by other
tissues. During the non-migratory state, the liver reverts to its
baseline activity (Jenni-Eiermann et al., 2002; Landys et al., 2005;
Bairlein et al., 2015). A few recent findings have shown molecular
changes in the liver between migratory and non-migratory states
in songbird migrants. There were significant differences in the
hepatic expression of genes associated with glucose (SIRT1,
FOXO1, PYGL, and GLUT1) and lipid (HMGCOA, PPARs, and
FASN) metabolism between photoperiod-induced migratory
and non-migratory states in migratory blackheaded buntings
(Emberiza melanocephala; Trivedi et al., 2014). Similarly, there
were also differences in 24-h expression patterns of the core
clock genes (BMAL1, CLOCK, PERIOD2, and CRY1) in the
liver of blackheaded buntings (Singh et al., 2015). Furthermore,
analyses of the transcriptome of two migratory subspecies of
Scandinavian willow warblers (Phylloscopus trochilus) showed
that differences in their migratory strategies were likely to be
governed by only few genes, by temporal differences, or by
tissue-specific gene expression patterns (Lundberg et al., 2013;
Boss et al., 2016). Similarly, RNA-Seq analyses of blood and
pectoral muscle revealed 547 differentially expressed genes
(DEGs) between sedentary (J. h. carolinensis) and migratory
(J. h. hyemalis) subspecies of dark eyed juncos (Junco hyemalis;
Fudickar et al., 2016). There were also 188 DEGs related to the
migratory state in the ventral hypothalamus of Swainson’s thrush
(Catharus ustulatus) as revealed by RNA-Seq study by Johnston
et al. (2016).

How the liver meets differential energy requirements of
migratory and non-migratory states remains poorly understood
at the mechanistic level. In order to address this, we performed
RNA-Seq of liver from two groups of blackheaded buntings
that were photostimulated into the vernal (spring) migratory
state or the photorefractory (postbreeding) non-migratory
state. These two states provided a contrasting continuum of
the photostimulated induction and cessation of physiological
processes associated with photoperiod-induced seasonal states
in buntings’ annual life history (Misra et al., 2004; Trivedi
et al., 2014; Singh et al., 2015). By comparing the liver
transcriptome from these two photostimulated states, we sought
to identify DEGs and generate coexpression networks of the
gene. We then correlated physiological parameters with gene
expression patterns to suggest probable molecular pathways that
were possibly associated with seasonal metabolic adaptations in
the migratory blackheaded bunting. Thus, the overall goal of
this study was to understand the molecular underpinnings of
physiological and metabolic adaptations that are a part of the
broad adaptability of avian migrants to seasons in the natural
environment.

MATERIALS AND METHODS

Animals and Experiment
Adult male blackheaded buntings (E. melanocephala) were
procured from the overwintering flock in the wild, and following
acclimation for a week in an outdoor aviary, they were
maintained at a temperature of 22 ± 2◦C on short days (SD,
8 h light: 16 h darkness; 8L: 16D) or long days (LD, 16L:
8D) for the following 40 weeks. Under SD, buntings remain
unstimulated and photosensitive, which is characterized by
normal body mass (no fat deposition), daytime activity, and small
reproductively inactive gonads. Under LD, however, buntings are
photostimulated. Within the first 2–3 weeks of LD exposure,
buntings deposit fat and gain weight, recrudesce testes, and
exhibit Zugunruhe. These photostimulated changes are reversed
after 10–12 weeks of LD: buntings become lean, regress testes,
return to daytime activity, and exhibit photorefractoriness (Misra
et al., 2004; Rani et al., 2006; Trivedi et al., 2014; Singh
et al., 2015). Thus, photostimulated ‘vernal’ migratory (M)
and photorefractory ‘postbreeding’ non-migratory (nM) states
present a contrast within the continuum of seasonal states in
the annual life history of the latitudinal migratory blackheaded
buntings.

This experiment lasted for about 4 weeks and used SD
photosensitive and LD photorefractory buntings (n = 24
each). Short days and LD buntings were in different seasonal
physiological states but with similar phenotypes in showing the
normal body mass and small testes. At the beginning of the
experiment, neither group showed body fat deposits, weighed
23–27 g, and had unstimulated (or regressed) reproductively
inactive small testes (0.33–0.52 mm3). Birds were singly housed
in activity cages (size = 60 cm × 45 cm × 35 cm) that
were individually placed in photoperiodic chambers providing
programmed lighting (L = 350 ± 10 lux; D = ∼0.4 lux). Short
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days photosensitive birds were exposed to LD for 18–24 days so
that each individual had shown 7 nights of Zugunruhe. Long days
photorefractory birds were maintained under LD for 24 days.

Measurement of Changes in Behavior
and Physiology
We monitored 24-h activity-rest pattern for changes in
behavior. We also measured food intake (FI), body mass,
surface body temperature, and blood metabolites in order to
determine changes in physiology between photostimulated M
and photorefractory nM states. Each bird was handled several
times in both light and dark periods to get acclimatized in
order to avoid handling or neophobia-induced stress during
the experiment. The detail for each measurement has been
described in our previous publications (Singh et al., 2010, 2015;
Trivedi et al., 2015). Briefly, an infrared sensor mounted on
the activity cage continuously monitored general activity of a
bird in its cage. Activity data were collected and analyzed using
the Chronobiology Kit software program (Stanford Software
Systems, CA, United States). We measured FI (g bird−1 day−1;
n = 8) and body mass (g; n = 12) of randomly selected birds
from each group both at the beginning and end of the experiment
and recorded surface body temperature (oC; n = 9 or 10) at 4-h
intervals (beginning 1 h after light on, i.e., ZT 1, 5, 9, 13, 17, and
21; ZT, zeitgeber time 0 = light on), a day before the experiment
ended.

Food intake was measured consecutively for 2 days. After 24 h
from the time food was given on the previous day, food bowl
and spillage along with feces were removed. After feces removal,
the weight of food collected was subtracted from food given, and
the average for 2 days gave FI in g bird−1 day-1. From this,
the mean (± SE) for the group was calculated. We considered
the change in body mass as an index of body fattening, since
most, if not all, of the photostimulated fat deposition accounts
for weight gain in migratory songbirds including blackheaded
buntings (King and Farner, 1959; Misra et al., 2004; Rani et al.,
2006; Mishra et al., 2017a). To record body mass, birds were
weighed on a top-pan balance with an accuracy of 0.1 g. We
recorded surface body temperature using thermoscan (Quick
shot Infra-red thermometer; model Exp-01B), which measures
body temperature in the range of 32–42oC. For this, a gentle
air-blow exposed the keel region skin, and the temperature was
recorded as an average of 4–5 readings in a quick succession with
thermoscan placed at a distance of about 2 cm.

At the same six time points, we collected blood samples from
wing vein (n = 4 n = time point) and measured serum glucose and
triglycerides levels by quantitative colorimetric determination
using specific kits. A bird was bled only once, 100–150 µl of
blood was collected each time by puncturing the wing vein into
a capillary tube. The blood sample was first rested at room
temperature for 10 min and then was put at 4◦C for an hour
before it was centrifuged at 1630 g for 15 min at 4oC. Serum
was harvested and stored at −20◦C until assayed for glucose and
triglyceride concentrations. We used QuantiChromTM Glucose
(Cat. #: DIGL-100) and EnzyChromTM triglycerides (Cat. #:
ETGA-200) assay kits for the measurement of glucose and

triglycerides levels in 5 and 10 µl serum samples, respectively,
and followed the procedure as per the manufacturer’s protocol.
Briefly, serum, standards, and reagents were thawed on ice before
the assay began. For glucose, standards were diluted in distilled
water to final concentrations of 300, 200, 100, 50 mg/dl; distilled
water was also taken as blank sample and served as a control.
A volume of 5 µl of neat serum and diluted standard aliquots
were mixed each with 500 µl of reagent in 1.5 ml tubes. These
tubes were then kept in a boiling water bath for 8 min and cooled
afterward on a water bath for 4 min. An aliquot of 200 µl of
each treated sample and standard was pipetted out into separate
wells of a 96-well plate, and optical density (OD) was measured
at 630 nm light wavelength. The glucose concentration in each
sample was calculated as follows: concentration (mg/dl) = OD
sample− OD blank/slope.

For trigyclerides assay, standards were diluted in distilled
water to get a concentration of 1, 0.6, 0.3 mmol/l; distilled water
was taken as blank sample and served as control. A aliquot of
10 µl of serum diluted five-fold in distilled water was used for the
assay. A working reagent was prepared by mixing 100 µl assay
buffer, 2 µl enzyme mix, 5 µl lipase, 1 µl ATP, and 1 µl dye in a
clean tube. An aliquot of 100 µl of working buffer was added and
tap-mixed with sample/standard. This mixture was incubated
for 30 min at room temperature, and the OD was measured on
a microplate reader at 570 nm light wavelength. Triglycerides
concentration of sample was calculated as follows: concentration
(mmol/l) = (OD sample−OD water/slope) × N; N is the serum
dilution factor.

Next day, birds were sacrificed at the respective time points,
and the liver was harvested. Whereas a small piece was processed
for hematoxylin-eosin (H-E; Sigma-Aldrich) and transmission
electron microscopy (TEM; Tecnai, G20, FEI) histologies, the
remaining liver tissue was placed in RNA-laterTM (ThermoFisher
Scientific, Cat. # AM7020) and stored frozen at -80oC until used
for RNA-Seq. To examine differences at the histological level, a
liver piece was fixed in 4% formaldehyde tissue, cryosectioned at
8-µm-thickness, stained with H-E, and passed through ascending
grades of alcohol, and cover-slipped. An AxioCam ICc1 Rev.4
camera attached to the Zeiss Axio Imager M2 microscope
digitally imaged the stained sections. Another 2 mm× 2 mm
liver piece was prepared for TEM to show a better resolution of
differences in fat droplets and vacuoles in the liver between the
two physiological states.

Statistical analyses of behavioral and physiological parameters
were done using the GraphPad prism (version 5.0) software
and the SPSS statistics version-20 software, as appropriate. The
effect size (η2) of samples was calculated using the SPSS statistics
version 20 software.

Measurement of Gene Expression
RNA Extraction and Sequencing
In total, 12 liver samples were sequenced and mapped against
the genome of zebra finch. Samples were collected every 4 h
over a 24-h period; therefore, there were two samples (one
from each state) collected at six time points. We extracted total
RNA from all the samples in one batch using Trizol Plus RNA
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Purification Kit (ThermoFisher Scientific, Cat. # 12183555) and
included DNase treatment with Ambion RNase-Free DNase Set
and column cleanup with Purelink RNA Mini Kit (Invitrogen,
Cat. # 12183018A), as per the manufacturers’ protocol. We used
a Ribogreen assay (Invitrogen, R11490) to determine a sample’s
RNA concentration and RNA integrity number (RIN; Schroeder
et al., 2006) on Agilent 2100 Bioanalyzer. An amount of 1 µg
of total RNA was used to generate poly-A selected mRNAs,
which were isolated using oligo-dT attached magnetic beads.
Complementary DNA (cDNA, 150 – 500 bp with mean size
of 250 bp) libraries were generated with TruSeq RNA Sample
Preparation Kit v2 (Illumina, San Diego, CA, United States;
Cat. # RS-122-2001). Quantified (Quant-iT PicoGreen assay; Life
Technologies, P11496) and validated (Agilent 2200 TapeStation
system) libraries from all the samples were sequenced in a single
lane as 100-bp single-end reads on Illumina HiSeq 2500.

Quality Filtering and Mapping
Single end reads of 100 bp with an average depth of 25 million
reads were generated for each liver sample (Supplementary
Table S1). Raw reads in sff format were converted into fastq
format using the processing kit seq_crumbs1, and adapters and
low quality reads were clipped. Reads were then subjected to
quality control using FastQCv0.102 with a passing score threshold
Q > 30. Prior to assembly, we eliminated the majority of
ribosomal RNA (rRNA) sequences using the short sequence
alignment algorithm Bowtie 2 (version 2.0.2). Initial assembly
was done using ultrafast universal RNA-Seq aligner STAR
(Dobin et al., 2013) and the latest zebra finch (Taeniopygia
guttata) genome (taeGut build 3.2.4). We performed genome-
guided transcript assembly of T. guttata, and using Cufflinks
(v2.2.1), we conducted fragments per kilobase of transcript per
million mapped reads (FPKM) quantification (Trapnell et al.,
2012). Finally, we annotated draft assembly using BLASTX with
e-value ≤ E−10 taking the reference of zebra finch protein
database, which is an accessible analytical tool (Lundberg et al.,
2013).

Differential Gene Expression Analysis
Using the criterion of FPKM value > 0.1 for an expressed gene
in 80% of samples, we were able to confidently obtain expression
values for a total of 11,246 genes. The log2 transformed FPKM
values were used for all downstream analyses. We used linear
regression model in the R package to perform differential
gene expressions (DGEs). False-discovery rate (FDR) < 0.1
and absolute log2 fold change > 0.1 were set as thresholds to
determine significant DGEs between M and nM states. Based on
expression patterns (i.e., condition value), DEGs were categorized
as upregulated (positive condition value) or downregulated
(negative condition value) in M or nM state. Furthermore, we
performed gene ontology (GO) enrichment analyses using the
CORNA R package (Wu and Watson, 2009), with Fisher’s exact
and hypergeometric tests to assign contigs to a specific GO and/or
KEGG term. These analyses enabled us to predict molecular

1https://bioinf.comav.upv.es/seq_crumbs/
2http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

functions and related biological processes from gene expression
results. For statistical significance, alpha was set at 0.05.

Gene Expression Pattern and Relationships
We used the Jonckheere-Terpstra-Kendall (JTK, R package)
analysis to identify cyclic genes and therefore a daily cycle, as
shown by RNA-Seq data. The JTK test is a non-parametric
test, which uses Kendall’s tau, a measure of rank correlation
to measure the association between two measured quantities.
The algorithm used in JTK_CYCLE derives optimal combination
of period and phase from cosine curves between experimental
groups’ time series data. The JTK_CYCLE algorithm R script
offers a statistically accurate identification and characterization
of cycling transcripts (Hughes et al., 2010). We used data from
all six time points over 24 h to compare differences in expression
patterns of genes between M and nM states.

The Network Analysis
We performed weighted gene coexpression network analysis
(WGCNA) in R for an unbiased assessment of transcriptional
networks of all 11,246 genes associated with M and nM
physiological states (Zhang and Horvath, 2005; Langfelder
and Hovarth, 2008). The WGCNA can be considered a step-
wise data reduction technique, which (a) starts from the level
of thousands of variables (e.g., gene expression profiles), (b)
identifies biologically interesting modules based on a node
significance measure, (c) represents modules by their centroids
(e.g., eigenvectors or intramodular hubs), (d) uses intramodular
connectivity (kIM or kME) as quantitative measures of module
membership, and (e) combines node significance and module
membership measures for identifying significant hub nodes.
The module centric analysis alleviates multiple testing problems
inherent in high dimensional data, for example, gene expression
data. Thus, although similar to other clustering methods in
the sense that it also calculates a distance metric between
expression patterns of all genes, WGCNA is a better analysis as
it takes into account the complexity of the distance metric. The
WGCNA starts with simple correlation values (usually Pearson’s)
between all pairs of genes. Later, the correlations are transformed
into an adjacency matrix by raising the correlations to a soft-
thresholding power function β. The parameter β is chosen based
on the data set to achieve an approximate scale-free network
(Zhang and Horvath, 2005) and favors strong correlations
over weak correlations. Adjacencies are next transformed into
a topological overlap matrix (Zhao et al., 2010), which as a
similarity measure can be subtracted from 1 to give a distance
measure. These distance measures are then used in traditional
hierarchical clustering to represent the relationships among
genes in a familiar dendrogram. The next step in a WGCNA
analysis is to break genes into clusters or “modules.” There are
many different methods of cutting a dendrogram, and WGCNA
suggests a computational approach called Dynamic Branch Cut
(Langfelder et al., 2008). Here, we performed WGCNA in the
R package (Langfelder and Hovarth, 2008) on the number of
annotated transcripts that had a p-value < 0.001 in at least
one of the experimental contrasts. There are many different
parameter choices at each step in the process. After assessing
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FIGURE 1 | Phenotypic and physiological measures in migratory and non-migratory seasonal states. (A,B) representative actograms plotted on clock hours (Lon

09:00 am; Loff 01:00 am) under photostimulated migratory (M) and photorefractory non-migratory (nM) states. (C,D) show fat deposition in M and nM states,
respectively, along with relative testis size in the left top inset. Similarly, histological details in H-E stained simple microscopy, scale bar 200 µm (E,F) and transmission

(Continued)
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FIGURE 1 | Continued
electron microscopy of liver sections are shown, scale bar 1 µm (G,H) under M (left) and nM (right) states. Note, lipid laden liver cells in the M state (G). (I–K) mean
(±SEM) body mass and daily food intake and correlation of food intake on body mass under M and nM states. (L–N) mean (±SEM) basal surface body temperature,
blood glucose and triglycerides levels. Also, shown are 24-h changes in surface body temperature (O) and blood glucose (P) and triglycerides levels in two
states (Q). All data points are mean ± SEM for six birds. Student’s t-test compared M and nM states, if it involved one time-point. Furthermore, we used one-way
ANOVA to determine the significant difference over 24-h, and two-way ANOVA to test if the effect was dependent on the physiological state. Bonferroni post-test
was used to compare two states, if two-way ANOVA indicated a significant difference. An asterisk (∗) indicates a significant difference at particular time-point(s) and #
shows if the difference was significant at all the time points between M and nM states. For significance, alpha was set at 0.05.

a range of soft-thresholding values, we chose power β = 8.
We calculated Pearson correlation coefficients between all pairs
of probes in one block on a laptop computer with 64-bit
Windows and 4 GB of RAM. We chose to use a signed
adjacency and signed topological overlap matrix to preserve
differences between positive and negative correlations. Average
linkage hierarchical clustering was used and modules were
determined using the Dynamic Hybrid method with deepSplit = 2
and a minimum module size = 30. A second Partitioning
Around Mediods-like stage of module detection was done with
pamRespectsDendro = TRUE. At the end, modules with similar
expression patterns were merged at mergeCutHeight = 0.2.
Otherwise, default values of blockwise module functions were
used. Once modules have been defined, an average expression
profile of all genes in the model can be determined by
calculating an eigengene value for each treatment group by
taking the first principal component of gene expression values
in the module. Relatively higher and lower expression values
are represented by positive and eigengene values, respectively.
The set of eigengene values can be taken as a proxy for an
average expression pattern of all genes in a module (Figure 5A).
The total number of annotated transcripts × 12 samples data
matrix has been now reduced down to six modules × two
groups.

The WGCNA analysis defined highly connected intramodular
hub genes as module centroids and identified coexpressed gene
groups (modules) that were altered between the M state and
the subsequent nM state (for details see Supplementary Data
Sheet 1). Briefly, bi-weighted mid-correlations were calculated
for all gene pairs, and a signed similarity matrix was created, in
which gene similarity was reflected by a correlation sign. The
signed similarity matrix was raised to power β to emphasize a
strong correlation, therefore, reducing the emphasis of a weak
correlation, in an exponential scale. The resultant adjacency
matrix was then transformed into a topological overlap matrix
(Li and Horvath, 2007). We chose a threshold power of nine
(smallest threshold that resulted in a scale-free R2 fit of 0.8)
and created consensus networks that calculated component-wise
minimum values for topologic overlap (TO), and genes were
hierarchically clustered using 1 − TO (dissTOM) as the distance
measure. A dynamic tree-cutting algorithm (cutree Hybrid)
assigned initial modules using default parameters but with a
few modifications (i.e., deepSplit = 4, cutHeight = 0.999, min
Module size = 40, dthresh = 0.25, and pamStage = FALSE).
These coexpressed gene modules were used to calculate module
eigengenes (MEs; or 1st principal component of the module),
with reference to a given module of photoperiod-induced
M or nM states. A module hub was defined by module

membership (kME) values, which are calculated values of
Pearson’s correlation coefficient between gene and ME; genes
with kME < 0.7 were excluded from the module. The iGraph
package was used for network visualization (Csardi and Nepusz,
2006).

RESULTS

Differences in Seasonal Phenotypes
Buntings differed in behavior and physiology between the
states (Figure 1). In the M state, they exhibited nocturnal
Zugunruhe and overall increased 24-h activity, and in the nM
state, they exhibited only daytime activity and thus lower 24-
h activity (Figures 1A,B). In addition, in the M state, there
was a significantly higher FI, body mass, blood glucose, and
triglycerides, as compared with the same variables in the nM
state (p < 0.05; Student’s t-test; Figures 1I–K,M,N). Conversely,
baseline surface body temperature (mean of six temperature
measurements over 24 h) was significantly higher in the nM state
than in the M state (Figure 1L). Overall, we found a significant
positive correlation between FI and body mass (r = 0.68, p = 0.016;
Figure 1K). Furthermore, there was a difference in liver histology
between M and nM states; liver cells were found laden with
accumulated fat in the M state (Figures 1E–H).

Interestingly, blood glucose and triglycerides levels were
high for most of the day in the M state, whereas surface
body temperature was high throughout the 24-h period in
the nM state (p < 0.05, Bonferroni posttest; Figures 1O–Q).
Furthermore, in the M state but not in the nM state, there
were significant 24-h variations in blood glucose (F5,23 = 4.47,
p = 0.0008; h2 = 0.554) and triglyceride levels (F5,23 = 9.248,
p = 0.0002, h2 = 0.720; 1-way ANOVA) and a significant
24-h rhythm (as shown by cosinor analysis) (Figures 1P,Q).
Conversely, surface body temperature showed a significant 24-
h variation in the M state only (F5,53 = 9.248, p = 0.0092,
h2 = 0.266; 1-way RM ANOVA; Figure 1O). Overall, there
was a significant effect of the seasonal state on glucose level
(F1,36 = 8.024, p = 0.0075; h2 = 0.182), triglycerides level
(F1,36 = 19.22, p < 0.0001; h2 = 0.348), and surface body
temperature (F1,102 = 358.0, p < 0.0001; h2 = 0.778). Time of
day affected only glucose (F5,36 = 6.158, p = 0.0075; h2 = 0.461)
and triglycerides (F5,36 = 2.589; p = 0.05; h2 = 0.241) levels.
Furthermore, the effect of the seasonal state was found dependent
on the time of day on levels of triglycerides (F5,36 = 3.61,
p = 0.0095; h2 = 0.334) and body temperature (F5,102 =
3.188, p = 0.0103; h2 = 0.135) but not on glucose (F5,36 = 1.072,
p = 0.3921; h2 = 0.130) levels (2-way ANOVA; Figures 1O–Q).

Frontiers in Physiology | www.frontiersin.org 6 November 2018 | Volume 9 | Article 1568

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01568 November 24, 2018 Time: 17:52 # 7

Singh et al. Liver Transcriptome of Migratory Buntings

Differences in Gene Expression Between
Seasonal States
A total of 11,246 expressed sequenced tags (ESTs) with
p-value≤ 1 were assembled, mapped with reference to zebra finch
genome, and analyzed to find DEGs, gene coexpression network,
significant GO terms in modules, and key genes consequently
(Figures 2A1,A2). These included a total of 4448 genes exhibiting
daily oscillation, with 1831 and 2617 genes in M and nM states,
respectively; 758 genes were common to both states (Figure 2A3).
Furthermore, we found 569 DEGs (FDR < 0.1; Figures 2A4,A5
and Supplementary Table S2) with 131 upregulated and 438
downregulated genes in the M state, as compared with the nM
state (FDR < 0.1, Figures 2A4,A5 and Supplementary Table
S2). A time-course heat map also shows this and indicates a 24-h
variation in DGEs (Figure 2A4).

To evaluate transcriptional signatures in the liver, we
identified pathways enriched with genes implicated in various
biological processes. We found upregulated pathways enriched
with genes associated mainly with fatty acid transport, lipid
synthesis and regulation (PPARG, SLC27A4, RAC3, ALAS1;
Figure 2B1), mitochondrial biogenesis and respiration
(FAHD1, MTFR1, IMMT, COX19; Figure 2B2), glucose
transport, purine-, protein-, and carbohydrate- metabolism
(TIGAR, IDNK, PPARG, GALK2; Figure 2B3), development,
angiogenesis and matrix remodeling pathways (IHH, AAMP,
TMPRSS6, HAND2; Figure 2B4), RNA binding, regulation,
and chromatin organization (SMARCE1, HNRNPU, NONO,
BRPF3; Figure 2B5). Similarly, downregulated pathways
were found to be enriched with genes associated mainly with
phosphatidylinositol signaling (PIK3R1, PIK3CA, PRKCE,
PDPK1; Figure 2B6), lipid and fat metabolism (CYP7B1,
ACOT9, LIPIN1, PLCB4; Figure 2B7), ubiquitin mediated
protein catabolism (USP46, CUL5, FBXL4, UBR1; Figure 2B8),
MAPK signaling pathway (MAPK37, Figure 2B9), pantothenate
and CoA biosynthesis signaling pathways (INSR, PANK3, ACSL3;
Figure 2B9), autophagy, Golgi transport, and vesicle transport
(TBCID5, MAN1A2, CLEC16A, GAK; Figure 2B10).

Coexpression Network Analysis
The WGCNA created gene modules and identified two significant
modules from 17 generated modules based on shared similar
gene expression patterns (Bonferroni- correction p < 0.05;
Figures 3A,B). Within each module, a network of the top
25 genes with shared expression patterns (i.e., significantly
upregulated in a state) was identified as blue module (M state:
p = 0.015; Figures 3D,E) or turquoise module (nM state:
p = 0.0043, Wilcox test; Figures 3G,H). Gene ontology terms
highlight biological processes that are enriched in a set of genes
in a state (Figures 3F,I). In particular, the blue module was
found to be enriched in a diverse number of significant GO
terms involved in processes like ribo-nucleoprotein complex,
mitochondria, ribosome biogenesis, oxidation reduction process,
metabolic process, fatty acid metabolism, and ATP binding
(p < 0.0001; Fisher test, Supplementary Table S3). Similarly,
the turquoise module was found to be enriched in GO terms
involved in the ubiquitin-dependent protein catabolic process,

Golgi organization, histone acetyltransferase activity, protein
phosphorylation, protein kinase activity, and MAPK activity
(p < 0.0001; Fisher test, Supplementary Table S3).

In order to better understand the physiological relevance
of the significant modules, we determined the correlation of
physiological parameters (blood glucose and triglycerides levels
and surface body temperature) with the eigengene of each
module. The eigengene of the blue module (M state) showed a
positive correlation with blood glucose (r = 0.5) and triglycerides
(r = 0.57) levels and negative correlation (r =−0.58) with surface
body temperature (Figure 3C). Conversely, there was a positive
correlation between the eignegene of the turquoise module (nM
state) with surface body temperature (r = 0.7) and a negative
correlation with blood glucose (r = −0.55) and triglycerides
(r =−0.7) levels (Figure 3C).

WGCNA Derived Physiological State
Specific Coexpressed Hub Genes
Of the top 25 hub genes that were included in modules, we
found significant differences in FPKM log2 expression values
of 16 genes in the blue module and 21 in the turquoise module
(p < 0.05; Wilcox test, Supplementary Figure S1). The blue
module included genes involved in molecular processes mediated
by ribosomal proteins (RPS6KB2, RPL26; Supplementary Figure
S1A), mitochondrial respiration and membrane protein
(NDUFB9, PRELID1, MRPL16; Supplementary Figure S1A),
cell proliferation, growth and differentiation (CORO1B,
PRUNE; Supplementary Figure S1A), vesicle transport (VCP;
Supplementary Figure S1A), glycogen storage, glycolipid
synthesis, sphingolipid metabolism (PYGL, FUK, CERS2;
Supplementary Figure S1A), phosphatidylinositol, MAPK
pathway (PITPNM1; Supplementary Figure S1A), transcription
factor and regulation (MED21, MAFF, ZBTB48; Supplementary
Figure S1A), and hepatic growth factor (MST1; Supplementary
Figure S1A).

The turquoise module hub gene network included genes that
were found associated with ubiquitin and proteolytic pathways
(UBR2, TPP2; Supplementary Figure S1B), mitochondrial
protein catabolic process (BNIP3L; Supplementary Figure
S1B), protein transporter and anti-apoptotic activity (TTPAL,
ICK; Supplementary Figure S1B), transcriptional regulation
(IZNF318, ZNF644, ZNF318, CDK13; Supplementary Figure
S1B), smad pathway (VPS39; Supplementary Figure S1B),
retrograde transport at trans-Golgi network (RAB35, GOLGA4,
SLAMP; Supplementary Figure S1B), Rho GTPase activity
(IQGAPI, ARHGAP5, TBC1D22A, PLEKHG1; Supplementary
Figure S1B), and peripheral protein coding genes (ATXN7LI,
CCDC149, CCDC186; Supplementary Figure S1B).

Cyclic Transcripts: Circadian Genes and Epigenetic
Modifiers
Given the role of circadian rhythms in the regulation of
photoperiodic seasonal states in blackheaded buntings (Singh
et al., 2015; Trivedi et al., 2015; Mishra et al., 2017a,b), we
identified genes that showed 24-h oscillations. These cyclic
genes included PER2, CRY1, CRY2, ARNTL (BMAL1), CLOCK,
and NPAS2, which are known to be the core genes of circadian
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FIGURE 2 | Continued
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FIGURE 2 | Transcriptome-wide differential gene expression analyses. Top panel (2A1–A5): The flow-chart outlines steps of RNA sequencing, differential gene
expression (DGE) analysis, and coexpression network analysis (A1); the distribution of nominal p-values from linear regression model employed to detect differential
expression between photostimulated migratory (M) and photorefractory non-migratory (nM) states (A2); Venn diagram showing number of cyclic genes in M and nM
states, as well as common to both states oscillating with an approximately 24-h period (A3); heatmap of 569 differentially expressed genes in two states
(FDR < 0.1), in which scaled expression values are color coded; green- upregulated; red – downregulated (A4), and volcano plot showing the log2fold change and
negative log10 nominal p-value for all the expressed genes, in which green and red circles represent downregulated and upregulated genes in the M state, as
compared with the nM state (A5). Bottom panels (B): boxplots of significantly upregulated (left half; B1–B5) and downregulated (right half; B6–B10) genes included
in a specific pathway, in the M state as compared with the nM state. Each boxplot is log2FPKM expression value in 5–95% intervals (outliers are shown dots). Wilcox
Rank sum test was used to determine the significant change. For significance, alpha was set at 0.05.

FIGURE 3 | Gene coexpression networks associated with different physiological states. (A–H): Weighted gene coexpression network analysis (WGCNA) to show
modular hub genes and pathways. (A) the hierarchical clustering of genes based on 1-topological overlap (1-TO) distance plotted with signed coexpressed modules.
(B) signed correlation of module eigengenes (first principal component of the module) with physiological states, with reference to increased (+ve values) and
decreased (-ve values) coexpression patterns in the refractory non-migratory (nM) state. Horizontal dotted red lines indicate threshold significance, as determined by
Bonferroni correction. (C) pearson’s correlation of module eigengenes with physiological measures (blood glucose and triglycerides levels and surface body
temperature). (D,G) show the coexpression network of first 25 hub genes that were upregulated in M (migratory: blue module, D) and nM (turquoise module, G)
states. In the inner circle of each module lie genes that showed highest correlation with a module eigengene value. (E,H) show boxplots of relative module eigengene
expression between M and nM states in blue (E) and turquoise (H) modules, with significance determined by Wilcox Rank sum test (the outlier values are shown by
a dot). (F,I) are the gene ontology term enrichment of blue and turquoise modules, respectively. For significance, alpha was set at 0.05.

timekeeping (Figure 4B and Supplementary Table S4; JTK
analysis). Additional upregulated circadian timekeeping genes
included HNRNPU (heterogeneous nuclear ribonucleoprotein)
NONO (Non-POU domain containing Octamer-binding),

and RORA (retinoid related orphan receptor-alpha) that are
involved in the regulation of ARNTL/BMAL1. Similarly, NCOA2,
which acts as a transcriptional coactivator for the CLOCK-
ARNTL/BMAL1 heterodimer complex, was upregulated in the
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nM state (Figure 4B). Upregulated epigenetic modifier proteins
in the nM state included histone methyltransferase (SUV39H2,
KMT2A; Figure 4B) and histone demethylase (KDM5A), and
aryl hydrocarbon receptors (AHRs), a ligand-activated helix-
loop-helix transcription factor, which functions as a regulator
of xenobiotic metabolizing enzymes in the liver (Figure 4B).
In the nM state, we also found upregulated genes that encode
epigenetic regulators at post-transcription and translation levels
and included chromatin modifiers with acetyl transferase and
demethylase activities (SMARCE1, BPRPF3, KAT2A, KAT6B,
KDM1B), RNA processing and metabolism (RBM39, RNP81,
SRSF1, DCPIA, SETX), transcriptional repression in a methyl
dependent manner, and endonucleases (ZBTB38, ZC3H12C;
Figure 4A and Supplementary Table S2). Additionally, DICER
and small nucleolar Cajal body specific RNA genes (SNORD16,
SNORNA81, SCARNA15), which serve as important post-
transcriptional regulators in miRNA biogenesis and non-coding
RNA dependent regulation of transcription were upregulated in
the nM state (Figure 4A).

Key Signaling and Metabolic Pathways
To highlight differences in the key signaling and metabolic
pathways between M and nM states, we plotted module
eigengenes (Figure 5). Compared with the nM state, genes with a
significantly higher expression in the M state were categorized as
contributing to ribosome biogenesis, oxidative phosphorylation,
arginine and proline metabolism, proteasome, glycolysis,
and gluconeogenesis of the blue modulatory pathways/genes
(p < 0.05, Fisher test; Figure 5A1). Similarly, genes with a
significantly lower expression in the M state were categorized as
contributing to various pathways, including MAPK signaling,
JAK-STAT signaling, ubiquitin-mediated proteolysis, TGF-beta
signaling, and phosphatidylinositol signaling pathways of the
turquoise modulatory pathways/genes (p < 0.05, Fisher test;
Figure 5A2).

Transcriptional Signatures of the Seasonal
Physiological State
To evaluate transcriptional signatures of seasonal state in
the liver, we identified modules with genes associated with
various biological processes. Upregulated gene clusters were
found enriched in genes associated mainly with ribosome
biogenesis (RPL37, RPL9, RPS12, RPS11, RPL7), oxidative
phosphorylation (NDUFB9, NDUFA6, NDUFB10, UQCRQ,
ATP6V0D1), proteosome function (PSMD1, PSMD2, PSMA7),
glycolysis and gluconeogenesis (PGM2, ADH5), and arginine
and proline metabolism (RARS) in the pathways/genes of the
blue module (Figure 5B1). Similarly, the downregulated gene
clusters were found enriched in genes associated mainly with
MAPK signaling (MAP3K1, STK4, KRAS, TAOK1, PDGFRB),
JAK-STAT signaling (JAK2, IL6ST, PIK3R1, STAM2, IL4R),
ubiquitin mediated proteolysis (TRAF6, UBE3C, MDM2,
UBE3A), TGF-beta signaling (SMAD1, RBL1, BMPR1B;
Figure 5B2), and PIP signaling pathway (ITPK1, PIK3C2A,
INPP4A) in the pathways/genes of the turquoise module
(Figure 5B2).

DISCUSSION

We demonstrate concomitant seasonal changes in behavior and
physiology and gene expression in a photoperiodic migrant
species. Results from this study reveal differences in physiology,
particularly in changes associated with increased energy demands
of migration, between photostimulated M and photorefractory
nM states in buntings. Consistent with greater FI, fat deposition,
and plasma levels of glucose and triglycerides, we found
structural changes in the liver between M and nM states.
For example, hepatocytes were laden with lipid droplets in
significant amounts in the M state but not in the nM state,
indicating fat-fuel storage in the liver. This also suggested
that the liver was the major site of metabolism and energy
homeostasis, and it undergoes drastic changes with transition
in photoperiodically regulated seasonal states. Most intriguingly,
however, surface body temperature was significantly higher in
the nM state than the M state, although buntings exhibited
intense nocturnal Zugunruhe and had increased overall daily
activity in the M state. This, we suggest, was the result of an
increased thermogenesis in photorefractory buntings, consistent
with reported correlation of thermogenesis with increased liver
metabolism in mammals and migratory finches (Swanson and
Olmstead, 1999; Williams and Tieleman, 2000; Villarin et al.,
2003). The liver contributes to thermogenesis by about 25%
from its mitochondria-regulated energy metabolism even when
animals are at their basal metabolic rates (Coutre and Hulbert,
1995; Brand et al., 2003; Villarin et al., 2003; Else et al.,
2004).

Striking differences between M and nM phenotypes
provide strong support to the results of transcriptome-
wide gene expressions in blackheaded buntings. Overall,
transcriptome data suggest that there were transcriptional and
post-transcriptional modifications in the liver for metabolic
homeostasis, as required seasonally with the development
and cessation of migratory state in blackheaded buntings.
We identified candidate genes and the pathways these genes
enrich to meet the metabolic needs of M and nM states. In
the photostimulated M state, we found 131 upregulated genes
associated with mitochondrial aerobic respiration, organization,
and fission, ribonucleoprotein complex, glucose transport and
carbohydrate metabolism, fatty acid transportation and lipid
metabolism, cell cycle and apoptosis, protein ubiquitination
and purine metabolism, transcriptional regulation, bone
growth, morphogenesis, cardiac morphogenesis, angiogenesis,
and platelet aggregation. At the same time, many of the 438
downregulated genes that we found were associated with protein
binding, histone acetylation, methyltransferase, transcription
coactivator, ubiquitin-dependent protein catabolic process, Golgi
organization, protein phosphorylation, and fat, lipid, and energy
metabolism. In the photorefractory nM state, on the other hand,
we found DEGs associated with protein catabolism, suggesting
a metabolic shift from anabolism to catabolism after migration
and reproduction have been completed. Particularly, GNAS and
ADCY2 genes were highly expressed in the photorefractory nM
buntings with higher surface body temperature, consistent with
the suggested roles of these two genes in energy metabolism and
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FIGURE 4 | Seasonal state-specific differences in gene expressions. Boxplot of log2 FPKM expression values in 5–95% intervals of post transcription/translation
regulatory genes (top panel, A) and circadian clock regulatory genes (bottom panel, B). The outliers are shown as dot in each figure. Wilcox Rank sum test was used
to test the significant difference between migratory (M) and non-migratory (nM) states. For significance, alpha was set at 0.05.

lipid clearance via cAMP-dependent pathway in mouse (Yu et al.,
2000; Chen et al., 2004).

Our results revealed significant differences in cell components,
suggesting seasonal changes in liver cell metabolism between
the M state and the nM state. For example, genes that enriched
ribonucleoprotein complex suggested changes in ribosome
biogenesis, which is an indicator of the cellular translational
capacity. The other genes that enriched mitochondrial activity
suggested an energy-influx resulting from coenzyme A-mediated
lipid metabolism (Leonardi et al., 2005). Similarly, genes that
enriched folate biosynthesis and estrogen metabolism pathways
were downregulated in the M state, and this probably accounted
for fat deposition required as flight fuel. These genes might
act in the liver by reducing the oxidation of fatty acid, which
in turn would lead to the export of triglycerides and the
protein catabolism. Alternatively, these genes might act via
the modulation of the dietary requirement for choline in the
cells of the liver (Zeisel, 2006). The other pathway important
in the regulation of lipid metabolism in hepatocytes may be
TGF-β/smad signaling interactive pathway, which has been
known to influence lipid accumulation and triglyceride levels in
hepatocytes (Yang et al., 2014). Similarly, we found suppressed
and enhanced expression of genes involved in synthesis and
breakdown of lipids in the nM state. In particular, ACSL3
(acetyl CoA synthetase 3 enzyme) involved in hepatic lipogenesis
was downregulated, suggesting an attenuated lipid metabolism.
Consistent with this, ACOT9 (coding for Acyl-CoA thioesterase 9
enzyme) involved in the hydrolysis of acyl-CoA to free fatty acids
and coenzyme A, and PANK3 (coding for pantothenate kinase
3 enzyme) involved in the regulation coenzyme A biosynthesis,
were also differentially expressed in the nM state.

Notably, buntings with fatty liver in the M state did not
appear to show any symptom of a pathophysiological state, like

non-alcoholic fatty liver disease (NAFLD; Corbin and Zeisel,
2012). We speculate that this was due to the genetic defense
during the photostimulated M state, as indicated by the module –
over representation of most abundant gene expressions. The
module shows an increased expression of at least two genes
that may be a part of defense in buntings from developing a
metabolic syndrome during the migratory state. Both, SMPD2,
which is potentially responsible for lipidosis (a lipid storage
disorder in mammals), and CERS2, which encodes a protein
associated with cancer growth suppression and involved in
sphingolipid synthesis, were increased in expression during
the photostimulated M state. In the same way, the enhanced
expression of TGF-β signaling genes suggests an increased
energy demand for the maintenance of long activity hours in
photorefractory nM birds. In fact, TGF-β signaling has been
demonstrated as a key regulatory pathway for energy homeostasis
in mammals (Yadav et al., 2012). The upregulated ubiquitin
pathway may also be important to achieve bulk degradation
of skeletal muscle proteins in buntings during the nM state,
as reported during fasting and metabolic acidosis in mammals
(Lecker et al., 1999). We speculate that the ubiquitin pathway
contributes to protein catabolism associated with high surface
body temperature in photorefractory buntings. Protein turnover
via ubiquitin pathway metabolism could be a physiological
adaptation to energy homeostasis, as possibly required during
the nM state in blackheaded buntings. Thermoregulatory roles
of protein degradation and protein turnover have been suggested
in mammals (Ballard, 1977).

There was differential expression of genes that enriched
different biological processes, such as miRNA biogenesis,
RNA metabolism and stability, and histone demethylation
and deacetylation, in buntings between the M state and the
nM state. This is shown by differences in the expression
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FIGURE 5 | Module specific selected relevant pathways and candidate genes. Top panel: (A1) shows differences in gene expressions comprising a particular
pathway in the blue module, and in underneath boxed 2 panels (B1) are the log2 FPKM expression values of coexpressed key upregulated genes enriched in
different GO terms showing 5–95% intervals. Bottom panel: Boxplots in the top row show differences in gene expressions comprising a particular pathway in the
turquoise module (A2), and in the three panels underneath (B2) are the log2 FPKM expression values of coexpressed key upregulated genes enriched in different
GO terms showing 5–95% intervals. All plots compare migratory (M) and non-migratory (nM) states, and an outlier is shown as dot in each plot. Wilcox Rank sum
test was used to determined significant difference between M and nM states. For significance, alpha was set at 0.05.

patterns of epigenetic modifiers including post-transcriptional
regulators (SNORD16, DICER1), lysine methyltransferases and
demethylases (KMT2A, KDM7A, KDM5A), ATP-dependent
chromatin remodeling complex (SMARCE1), RNA-binding
proteins (HNRNPU, NONO), ligand-activated transcriptional

activators (AHR), and nuclear receptor coactivators (NCOA2).
SNORDs (C/D box small nucleolar RNAs) are involved in
alternative splicing, cholesterol traffic, production of microRNAs
(miRNAs), and lipid toxicity (Falaleeva and Stamm, 2012).
Similarly, DICER1 is the post-transcriptional regulator of
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specific miRNA-dependent circadian regulation of lipogenic and
fatty acid metabolic genes (Fernández-Hernando, 2013). The
downregulation of these genes indicated their possible roles
in miRNA-mediated gene regulation of seasonal changes in
the metabolism of the liver during the nM state. Similarly,
buntings in the M state had low expression of CSNK1D, which
is involved in post-translational regulation in livers of mice
(Etchegaray et al., 2009). Differences in the abundance of DICER
1, NCOA2, AHR, KDM5A, CSNK1D, KDM7A, and KMT2A
might indicate seasonal alterations in circadian oscillations with
reduced amplitudes in the M state. The core clock gene 24-
h oscillations indeed show changes in amplitude and phase
concurrently with photoperiod-induced seasonal transition in
behavior and physiology in blackheaded buntings (Singh et al.,
2015). We also found in the transcriptome of the liver,
24-h cyclicity of all core clock genes (PER2, CRY1, CRY2,
ARNTL (BMAL1), CLOCK and NPAS2) and clock-controlled
genes (HNRNPU, NONO, RORA, and NCOA2) that comprise
the transcriptional – translational feedback loop of circadian
timekeeping. Although, because of sequencing cost and volume
of obtained results for the analyses, we only show results on
cyclic genes based on one sample per time point per physiological
state, the overall 24-h cyclic expression pattern is consistent
with qPCR results of some of these genes from another study
on blackheaded buntings (Singh et al., 2015). Furthermore,
SFPQ gene that encodes a component of the PER complex in
mammals was upregulated in bunting liver during the M state; the
same gene expression was, however, found to be downregulated
in the hypothalamic transcriptome of migratory Swainson’s
thrushes (Johnston et al., 2016). Considered together, SFPQ gene
expression shows changes during different seasonal states but
with differences in the expression pattern between peripheral
(liver) and central (hypothalamus) tissues. However, it cannot
be known from this study how cycling genes play a role in the
regulation of seasonal states and associated nutrient metabolism
and energy homeostasis in migratory birds. Nonetheless, the
circadian regulation of plasma glucose, triglyceride, and many
other hormones and the nutritional effect on circadian clock
regulated functions has been shown in mammals (Hatori et al.,
2012; Eckel-Mahan et al., 2013).

We provide, for the first time, transcriptome-wide evidence
for the molecular underpinnings of seasonal metabolic
adaptations in a latitudinal migratory songbird. Gene enrichment
and network analyses of DEGs revealed a vital role of the liver
in meeting the metabolic demands of different seasonal
physiological states during the year in migrants. We also
suggest seasonal state dependent molecular changes in the liver
as the ‘liability’ variable that perhaps triggers and maintains
the physiology of birds during migration and postmigration,
consistent with the theoretical ‘threshold’ model of Pulido
(2011). This model envisages the threshold of a ‘liability’
variable (a protein or hormone, for example) as the determinant
for the development of the migratory behavior. In fact, a
strong correlation of WGCNA derived specific genes and
regulatory pathways with changes in behavior and physiology
further highlighted this. Overall, we demonstrate the molecular
underpinnings of metabolism and energy homeostasis, which

form a significant part of the broader temporal adaptability of
species living in the seasonal environment with limited food
resources. Furthermore, these results give significant insights
into how animals that show metabolic syndrome akin to obesity
and diabetes (increased FI, high fat, and become obese with
high glucose levels in migratory state and revert to normal levels
in the subsequent non-migratory state) for several weeks each
year may not develop high-risk diseases, for example diabetes
and cardiac failures. Perhaps, future studies on such non-model
migratory species could provide vital clues on the molecular
switches that regulate metabolism and energy homeostasis in
higher vertebrates and humans.
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FIGURE S1 | Boxplot of log2 FPKM expression values in 5–95% intervals of
significantly coexpressed module specific hub genes (top panel, A) blue and
turquoise modules (bottom panel, B). The outliers are shown as dot in each figure.
Wilcox Rank sum test was used to test the significant difference between
migratory (M) and non-migratory (nM) states. For significance, alpha was set at
0.05.

TABLE S1 | Bunting liver sample transcriptome assembly and annotation
statistics.

TABLE S2 | List of differentially expressed genes under M and nM states. A gene
was categorized as differentially expressed with threshold of false-discovery rate
(FDR) of < 0.1 and absolute log2 fold change > 0.1. Based on the expression

patterns (beta condition value), differentially expressed genes were categorized as
upregulated or downregulated in a particular physiological state (-ve condition
value: downregulated; +ve condition value: upregulated candidate genes, as
compared between M and nM states).

TABLE S3 | List of GO terms in blue and turquoise modules derived from WGCNA
analysis.

TABLE S4 | List of cycling genes under migratory and non-migratory states.
A gene was characterized as cyclic with threshold of adjusted P-value
(ADJP < 0.05). The wave characteristics of cyclic genes was categorized as
period, peak expression time (Lag), and amplitude.
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