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Cold induced thermogenesis (CIT) in humans results mainly from the combination
of both brown adipose tissue (BAT) and skeletal muscle thermogenic activity. The
relative contribution of both tissues to CIT and to cold induced nutrient oxidation
rates (CI-NUTox) remains, however, to be elucidated. We investigated the association
of BAT and skeletal muscle activity after a personalized cold exposure with CIT
and CI-NUTox in 57 healthy adults (23.0 ± 2.4 years old; 25.1 ± 4.6 kg/m2; 35
women). BAT and skeletal muscle (paracervical, sternocleidomastoid, scalene, longus
colli, trapezius, parathoracic, supraspinatus, subscapular, deltoid, pectoralis major, and
triceps brachii) metabolic activity were assessed by means of a 18Fluorodeoxyglucose
positron emission tomography-computed tomography scan preceded by a personalized
cold exposure. The cold exposure consisted in remaining in a mild cold room for 2 h at
19.5–20◦C wearing a water perfused cooling vest set at 3.8◦C above the individual
shivering threshold. On a separate day, we estimated CIT and CI-NUTox by indirect
calorimetry under fasting conditions for 1 h of personalized cold exposure. There was
no association of BAT volume or activity with CIT or CI-NUTox (all P > 0.2). Similarly,
the skeletal muscle metabolic activity was not associated either with CIT or CI-NUTox
(all P > 0.2). The results persisted after controlling for sex, the time of the day, and
the date when CIT was assessed. Our results suggest that human BAT activity and
skeletal muscle 18F-FDG activity are not associated to CIT in young healthy adults.
Inherent limitations of the available radiotracers for BAT detection and muscle activity
quantification may explain why we failed to detect a physiologically plausible association.
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INTRODUCTION

Obesity is considered a public health problem of epidemic
proportions (Ng et al., 2014). In simple terms, obesity results
from a positive energy balance, and establishing a negative
energy balance is a requisite for achieving weight loss. However,
compensatory mechanisms, both physiological and behavioral,
in response to short-term negative energy balance make it very
difficult to establish a long-term energy deficit and sustainable
weight loss (Palmer and Clegg, 2017). Thus, there are currently
no non-invasive therapies capable of inducing sustainable weight
loss, and developing new therapeutic strategies is, therefore,
necessary (Palmer and Clegg, 2017).

Brown adipose tissue (BAT) was thought to be metabolically
irrelevant or even absent in most human adults (Cannon and
Nedergaard, 2004). However, recent evidence has shown that
BAT is present and active in most, if not all, human adults
(Nedergaard et al., 2007; Cypess et al., 2009; Saito et al.,
2009; van Marken Lichtenbelt et al., 2009; Virtanen et al.,
2009; Zingaretti et al., 2009). During the last decade, BAT has
been regarded as a promising therapeutic target to tackle the
obesity pandemic (Lee et al., 2013; Palmer and Clegg, 2017;
Ruiz et al., 2018). Brown adipocytes are highly specialized
thermogenic cells capable of taking up large quantities of
energy substrates for producing heat by means of uncoupling
mitochondrial respiration (Cannon and Nedergaard, 2004). In
murine, BAT is responsible for a large proportion of both resting
metabolic rate (RMR) and adaptive thermogenesis [i.e., diet-
induced thermogenesis and cold-induced thermogenesis (CIT)]
(Garland et al., 2011). However, although the total BAT volume in
humans is still unknown (Martinez-Tellez et al., 2018), it is clear
that adult humans present a considerable lower proportional
amount (i.e., in relation to body weight) of BAT than murine
(Leitner et al., 2017). Furthermore, murine and human BAT seem
to have different molecular signatures and functionalities (Cypess
et al., 2013; Muzik et al., 2013; Peirce et al., 2014). Therefore, it is
still not clear whether human BAT is able to produce a relevant
increase in the energy expenditure in adult humans (Marlatt et al.,
2018).

The main reason why BAT contribution to human energy
expenditure is still unknown is the lack of technology to properly
assess its contribution in vivo (Ong et al., 2018). The most
used technique to assess BAT volume and activity is the 18F-
fluorodeoxyglucose (18F-FDG) positron-emission tomography
and computed tomography (PET-CT) scan (Carpentier et al.,
2018). Besides implicating high ionizing radiation exposure,
one of the 18F-FDG-PET-CT scan’s main limitation relates to
the substrate preference of BAT. The 18F-FDG radiotracer is
a glucose analog. However, several studies have shown that
brown adipocyte’s energy expenditure mainly relies on fatty
acid oxidation (Schilperoort et al., 2016; Blondin et al., 2017).
Although other alternatives to the 18F-FDG-PET-CT scan are
being used, several limitations preclude the existence of a real
gold-standard for in vivo BAT assessments in humans (Ong
et al., 2018). Among the alternatives to 18F-FDG-PET-CT, the
skin temperature of the supraclavicular area has been used as an
indirect marker of BAT activity, which would allow non-invasive

and continuous assessments (Boon et al., 2014; van der Lans et al.,
2016).

Besides the technical limitations to study the BAT contribution
to human energy expenditure, it has been suggested that BAT
could just be a minor contributor to CIT in humans, while
skeletal muscle, by means of both shivering and non-shivering
thermogenesis, could be the main effector of CIT (Muzik et al.,
2013; Blondin et al., 2015b; Jensen, 2015; U Din et al., 2016;
Palmer and Clegg, 2017). Moreover, it has been suggested that
not only skeletal muscle, but also white adipose tissue, could play
a role in CIT (Blondin et al., 2015b; Betz and Enerbäck, 2017).
To date, the are contradictory findings regarding the relative
contribution of both human BAT and skeletal muscle to CIT
(Muzik et al., 2013; van der Lans et al., 2013; Bakker et al., 2014;
Chondronikola et al., 2014; Blondin et al., 2015b; Jensen, 2015; U
Din et al., 2016; Yoneshiro et al., 2016; Palmer and Clegg, 2017;
Porter, 2017), and more studies are needed to fully understand
the relation of BAT and skeletal muscle activity with CIT. The
relation of BAT and skeletal muscle activity with cold-induced
nutrient oxidation rates (CI-NUTox) has received much less
attention and remains to be elucidated. Changes in the pattern of
nutrient oxidation are related to overall metabolic health (Galgani
et al., 2008; Goodpaster and Sparks, 2017; Fernández-Verdejo
et al., 2018). Thus, even if BAT or skeletal muscle non-shivering
thermogenesis had a small impact on energy expenditure, they
would still be very interesting therapeutic targets for human
metabolic health improvements if they modify the substrate
oxidation.

This study aimed to investigate the association of BAT
and skeletal muscle 18F-FDG activity after a personalized cold
exposure with CIT and CI-NUTox in young healthy adults.
Additionally, we examined the association of supraclavicular skin
temperature as a proxy of BAT activity with CIT and CI-NUTox
rates.

MATERIALS AND METHODS

Participants
We used data from two different cohorts. The participants
were young (18–25 years old), healthy, did not smoke or take
any medication, had had a stable body weight in the previous
3 months ( < 3 kg change), and were not regularly exposed
to cold. A total of 57 young healthy adults (23.0 ± 2.4 years
old; 25.1 ± 4.6 kg/m2; 35 women) participated in the present
study (Table 1). Forty-four participants (29 women) were part
of the ACTIBATE study (Study 1), a randomized controlled trial
aiming to study the effect of exercise on BAT volume and activity
(clinicaltrial.gov: NCT02365129) (Sanchez-Delgado et al., 2015).
Only 18 out of these 44 participants met the required fasting
time (6–8 h) to be included in the analyses referred to CI-NUTox
(Table 1). The data for Study 1 was collected between October
and November 2016. In addition, 13 participants were enrolled
(Table 1) in Study 2, which was conducted between December
2017 and January 2018.

The participants signed a written informed consent, and both
the informed consent and the whole study were approved by
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the Human Research Ethics Committee of the University of
Granada (n◦924) and of the Servicio Andaluz de Salud (Centro
de Granada, CEI-Granada), and was performed following the
Declaration of Helsinki (last revision).

Procedures
Study 1. The data were collected on three days. The participants
were always required to come to the research center by bus or by
car (i.e., with the minimum possible physical activity), in a fasting
state (>6 h), after having slept as usual, and having refrained from
stimulant beverages and any moderate (within the previous 24 h)
or vigorous (within the previous 48 h) physical activity.

On the first day, we assessed the participants’ shivering
threshold (i.e., the lowest tolerable temperature without external
observed or auto-reported shivering) (Martinez-Tellez et al.,
2017c). After having checked that they met the previous
conditions, the participants rested in a warm room for
30 min while wearing standardized clothes (Flip-flops, shorts,
and a T-shirt; clo-value: 0.20). Later, the participants entered
a mild cold room (19.5–20◦C) and were equipped with
a water-perfused cooling vest (Polar Products Inc., Ohio,
United States) set at 16.6◦C. They were required to remain
seated and relaxed while the water temperature was progressively
decreased (approximately 2◦C every 10 min) until a temperature
of 3.8◦C was reached (at which the participants remained
exposed for 45 additional minutes) or shivering occurred. We
determined shivering visually and by asking the participants
if they were experiencing shivering. The water temperature
at which shivering occurred was considered the shivering
threshold.

On the second day, we assessed BAT and skeletal muscle
18F-FDG activity by a static 18F-FDG PET-CT scan after a
personalized cold exposure (Martinez-Tellez et al., 2017c). Prior
to the PET-CT scan, the participants were exposed to a 2-h

TABLE 1 | Descriptive characteristics of the participants included in the energy
expenditure analyses.

CIT analyses NUTox analyses No PET-CT

(Study 1) (Study 1) (Study 2)

(n = 44) (n = 18) (n = 13)

Sex (women, %) 29 (65.9) 13 (72.2) 6 (46.2)

Age (years) 22.2 (2.2) 21.9 (2.0) 25.6 (3.0)

BMI (kg/m2) 25.6 (5.3) 24.3 (4.6) 23.6 (2.4)

Lean mass (kg) 42.7 (10.4) 40.4 (8.0) 45.7 (13.3)

Fat mass (kg) 27.2 (10.6) 25.0 (9.6) 18.4 (3.8)

Fat mass percentage (%) 37.0 (8.0) 36.1 (7.0) 28.4 (6.6)

RMR (kcal/day) 1565 (278) 1554 (227) 1484 (286)

BAT volume (ml) 94.4 (59.6) 74.29 (49.7)

BAT SUV mean 4.29 (1.60) 4.24 (1.11)

BAT SUV peak 14.13 (7.22) 13.40 (6.08)

Muscle SUV peak 1.67 (0.33) 1.63 (0.33)

Descending aorta SUV peak 0.92 (0.21) 0.83 (0.20)

Data are presented as means (standard deviation). BMI: Body mass index; RMR:
Resting metabolic rate; BAT: Brown adipose tissue; SUV: Standardized uptake
value; CIT: Cold-induced thermogenesis; NUTox: Nutrient oxidation rates.

personalized cooling protocol, using the same water-perfused
vest as in the shivering threshold test but set at 3.8◦C above
the individual shivering threshold, in a mild cold room (19.5–
20◦C). One hour after starting the cooling protocol, a bolus
of approximately 5 mCi (≈185 MBq) of 18F-FDG was injected
through a peripheral catheter, and the water temperature was
increased by 1◦C to avoid shivering. Immediately after the
cooling protocol, we performed the static PET-CT scan and
obtained PET-CT images from the atlas vertebrae (Cervical 1) to
the thoracic vertebrae 6, approximately.

On the third day, we assessed CIT and CI-NUTox.
After voiding their bladders, the participants wore the same
standardized clothes (clo: 0.20) as on the other testing days
and moved into a warm (23.2 ± 0.7◦C) quiet room. Before
the evaluation, the participants lay down on a reclined bed, in
supine position, and covered by a sheet for 20 min. Later, RMR
was assessed using indirect calorimetry for 30 min following
the current methodological recommendations (Fullmer et al.,
2015). They were instructed to breathe normally and not to
talk, fidget, or sleep. After assessing RMR, the participants were
moved into the cold room (19.5–20◦C). They once again wore
the temperature-controlled water perfused cooling vest set at
the lowest tolerable temperature on the second day (i.e., 3.8◦C
above the individual’s shivering threshold, except for those who
required changes in water temperature to avoid shivering during
the cold-exposure previous to the PET-CT) (Study 1). Then, they
lay down on a bed with the same reclined position as the one used
for the RMR assessment and were instructed to breathe normally
and not to talk, fidget, or sleep. Then, the CIT measurement was
performed during two consecutive 30-min periods, separated by
a 5-min pause to recalibrate the metabolic cart, during which they
continued exposed to cold.

Additionally, on a different day, we measured the participant’s
body composition by dual-energy x-ray absorptiometry scan
(Discovery Wi, Hologic, Inc., Bedford, MA, United States).
Weight and height were also measured by a Seca scale and a
stadiometer (model 799, Electronic Column Scale, Hamburg,
Germany).

Study 2. This study followed a similar procedure to Study
1, except for some minor differences. BAT and skeletal muscle
18F-FDG activity was not assessed, so Study 2 only included
two testing days. On the shivering threshold test (day 1) the
participants lay on a bed instead of being seated, and the fasting
time before the CIT assessment was 10 h. Additionally, the time
between the shivering threshold test and the CIT assessment was
48 h instead of 5–7 days.

18F-FDG-PET-CT Scan Analysis
We performed and analyzed the 18F-FDG-PET-CT scan
(Siemens Biograph 16 PET-CT, Siemens, Germany) following the
protocol extensively described elsewhere (Martinez-Tellez et al.,
2017c, 2018) and in agreement with current methodological
recommendations for human BAT assessment (Chen et al.,
2016). We analyzed the images using the Beth Israel plugin for
FIJI software (Schindelin et al., 2012). For the BAT assessment we
applied a fixed range of Hounsfield units (HU, -190 to -10) (Chen
et al., 2016) and an individualized SUV threshold: 1.2/(lean

Frontiers in Physiology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 1577

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01577 November 14, 2018 Time: 16:57 # 4

Sanchez-Delgado et al. Brown Fat and Cold-Induced Thermogenesis

body mass/body mass) (Chen et al., 2016). We calculated BAT
volume, BAT mean activity (SUV mean), and BAT maximal
activity (SUV peak). In addition, we calculated the SUVpeak
of several skeletal muscles (paracervical, sternocleidomastoid,
scalene, longus colli, trapezius, parathoracic, supraspinatus,
subscapular, deltoid, pectoralis major, and triceps brachii), and
averaged the obtained value from all muscles in both sides of
the body. Furthermore, we grouped these muscles into deep
(paracervical, scalene, longus colli, paravertebral, subscapular),
cervical (paracervical, sternocleidomastoid, scalene, longus colli),
and cold sensitive (sternocleidomastoid, scalene, longus colli,
pectoralis major) muscles, since it has been shown that these
muscle groups could have a different behavior than others upon
cold exposure (Blondin et al., 2015b). Additionally, a ROI was
drawn in the descending aorta to be used as a reference tissue.

CIT and CI-NUTox Estimations
The indirect calorimetry measurements for both RMR and CIT
were performed using a neoprene face-mask connected to a
CCM Express/Ultima CardiO2 metabolic cart (Medgraphics
Cardiorespiratory Diagnostic, Saint-Paul, MN, United States)
equipped with a directconnectTM metabolic flow sensor
(Medgraphics Corp, Minnesota, United States) (Sanchez-
Delgado et al., 2017; Alcantara et al., 2018). The flow calibration
was performed by a 3-L calibration syringe at the beginning
of every test day, and the gas analyzers were calibrated using
2 standard gas concentrations before every 30-min bout of
indirect calorimetry measurement following the manufacturers’
instructions. We used the same metabolic cart for RMR and CIT
in all participants.

Indirect calorimetry data were averaged every minute and
downloaded from the Breeze Suite 8.1.0.54 SP7 software
(Medgraphics Cardiorespiratory Diagnostic, Saint-Paul, MN,
United States). For RMR, we selected the most stable 5-min
period (i.e., the one with the lowest average coefficients of
variance of oxygen consumption, carbon dioxide production,
minute ventilation, and respiratory exchange ratio), after
excluding the first 5 min recorded (Sanchez-Delgado et al., 2017).
To obtain a single representative value of CIT, we divided the
60 min recorded into 4 periods (i.e., 15 min each). We then
selected the most stable 5-min period within every 15-min period
(using the same criteria than for RMR). Finally, we used the
4 selected 5-min periods together with the RMR to calculate
the area under the curve (trapezoidal rule), expressing it as a
percentage of RMR (Sanchez-Delgado et al., 2018a).

Oxygen consumption and carbon dioxide production for each
selected data point were used to estimate energy expenditure,
carbohydrates (CHOox), and fat oxidation (FATox). Energy
expenditure was estimated through Weir’s abbreviated equation
(Weir, 1949). For CHOox and FATox estimations, we used
Frayn’s equations (Frayn, 1983). We did not include urinary
nitrogen data into the equations.

In addition to indirect calorimetry, we also recorded the
skin temperature of several body locations (Martinez-Tellez
et al., 2017a) throughout the CIT assessment by iButtons (DS-
1922 L, Thermochron; resolution 0.0625◦C; Maxim, Dallas,
United States). All iButtons were attached to the skin with

adhesive tape (Fixomull, Beiersdorf AG, Hamburg, Germany),
and we estimated the mean skin temperature (ISO-standard
9886:2004, 2004). Finally, we calculated the difference between
the warm value and the temperature for the subclavicular and
supraclavicular skin temperature at the end of the cooling
protocol. All data recorded by the devices were processed and
analyzed by the Temperatus R© software1

Statistical Analyses
The distribution of the variables was verified using the Shapiro–
Wilk test, skewness and kurtosis values, visual check of
histograms, Q-Q, and box plots. The descriptive statistics are
presented as mean ± standard deviation, unless otherwise
stated. The analyses were conducted using the Statistical Package
for Social Sciences (SPSS, v. 21.0, IBM SPSS Statistics, IBM
Corporation), and the level of significance was set at < 0.05.

We used simple linear regression analyses to test the
association of BAT and skeletal muscle 18F-FDG activity after a
personalized cold-exposure and supraclavicular temperature with
CIT and CI-NUTox. We also used multiple linear regression
models to test these associations adjusting by sex, BMI, the time
of the day, and the date when CIT was assessed. Furthermore,
we used repeated-measures analyses of variance (ANOVA) to
study the cold-induced changes on skin temperature parameters.
BAT and skeletal muscle 18F-FDG activity after a personalized
cold-exposure was only assessed in Study 1. Therefore, Study 2
was only included in the analyses studying the association of the
supraclavicular skin temperature with CIT and CI-NUTox.

RESULTS

The associations of BAT with CIT and CI-NUTox are shown in
Figure 1. There was no association of BAT (volume: all P > 0.68;
mean activity: all P > 0.25; maximal activity: all P > 0.39) with
CIT and NUTox. The results persisted after adjusting by sex,
BMI, the time of the day, or the date when CIT was assessed. In
addition, we analyzed whether using SUV expressed as a function
of lean body mass (SUVLBM), instead of body mass (SUVBM),
influenced the results (Leitner et al., 2017), and no differences
were found (data not shown).

Figure 2 shows the association of skeletal muscle 18F-FDG
activity after a personalized cold exposure with CIT and CI-
NUTox. There were no associations either when using SUVBM
(all P > 0.23) or SUVLBM (data not shown). Adjusting the
analyses by sex, BMI, the time of the day, and the date when CIT
was assessed did not modify the results. Furthermore, we tested
the association of CIT and CI-NUTox with the deep, cervical,
and cold sensitive muscles activity, as they have been shown
to respond differently to cold (Blondin et al., 2015b; Martinez-
Tellez et al., 2017c). We found no significant association with
any criteria for grouping muscles (i.e., deep muscles, cervical
muscles, and cold sensitive muscles). All these results remained
when using skeletal muscle SUVmean instead of SUVpeak (data
not shown).

1http://profith.ugr.es/temperatus?lang=en
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FIGURE 1 | Associations of brown adipose tissue (BAT) 18F-FDG activity after a personalized cold exposure with cold induced thermogenesis (CIT) and
cold-induced nutrient oxidation rates (Study 1). Unstandardized simple regression coefficient (β) and standardized coefficient of determination (R2). SUV:
Standardized uptake value; AUC: Area under the curve; RMR: Resting metabolic rate; FATox: Fat oxidation rate; CHOox: Carbohydrates oxidation rate.

FIGURE 2 | Association of skeletal muscle 18F-FDG activity after a personalized cold exposure with cold induced thermogenesis (CIT) and cold-induced nutrient
oxidation rates (Study 1). Skeletal muscle 18F-FDG activity represents an average of the uptake in several skeletal muscles: paracervical muscles (cervical vertebrae
4), sternocleidomastoid, scalene, longus colli, trapezius, parathoracic muscles (Thoracic vertebrae 2), supraspinatus, subscapularis, deltoid, pectoralis major, and
triceps brachii. Unstandardized simple regression coefficient (β) and standardized coefficient of determination (R2). SUV: Standardized uptake value; AUC: Area
under the curve; RMR: Resting metabolic rate.
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FIGURE 3 | Association of cold-induced (CI) supraclavicular skin temperature change with cold induced thermogenesis (CIT) and cold-induced nutrient oxidation
rates (including participants of studies 1 and 2). Unstandardized simple regression coefficient (β) and standardized coefficient of determination (R2). AUC: Area under
the curve; RMR: resting metabolic rate.

Changes on mean, subclavicular, and supraclavicular
skin temperature during CIT assessment are shown in
Supplementary Figure S1. The associations of cold-induced
changes in supraclavicular skin temperature with CIT and CI-
NUTox are shown in Figure 3 (including data of studies 1 and
2). We failed to observe any significant association (all P > 0.09),
which was unaffected when adjusting by sex, BMI, the time of
the day, or the date when CIT was assessed. Similar results were
found when using the skin temperature data at the end of the test
instead of the cold-induced change (1). Moreover, neither the
mean nor subclavicular skin temperature were associated with
CIT or CI-NUTox.

Finally, we also tested the above-mentioned associations
using the difference between energy expenditure at the end of
the cooling protocol and RMR, instead of the area under the
curve calculation, and with % of energy expenditure coming
from FATox instead of CI-NUTox. We found no significant
associations in any of these analyses (data not shown).

DISCUSSION

This study analyzed the association of BAT and skeletal muscle
18F-FDG activity after a personalized cold exposure with CIT
and CI-NUTox in young healthy adults. We also examined
the association of supraclavicular skin temperature, an indirect
marker of BAT activity (Boon et al., 2014; van der Lans et al.,
2016), with CIT and CI-NUTox. No significant associations
were found of BAT, skeletal muscle 18F-FDG activity, or
supraclavicular skin temperature with CIT and CI-NUTox. This
lack of association was consistent across different methodologies
for BAT and CIT assessment, and independent of several
potential confounders. These findings are partially in line with
other studies which used different methodologies (Muzik et al.,
2013; Blondin et al., 2015b; U Din et al., 2016), suggesting a
negligible contribution of BAT to human CIT. On the other hand,
the observed associations of skeletal muscle 18F-FDG activity
after a personalized cold exposure with CIT and CI-NUTox
should be considered with caution, since not having 18F-FDG
activity in warm conditions might impair the ability to effectively
assess cold-induced skeletal muscle metabolism.

The relation between BAT and CIT in humans has been
extensively studied during the last years, yet, controversial
results still exist. Several studies showed that individuals with
detectable BAT (BAT + in 18F-FDG-PET-CT scan) present
higher CIT levels (Vijgen et al., 2011; Yoneshiro et al., 2011;
Chondronikola et al., 2014), and that only BAT + individuals
present seasonal variation of CIT, being higher in winter than in
summer (Yoneshiro et al., 2016). Moreover, other studies showed
positive and significant associations between BAT (assessed by
18F-FDG-PET-CT) and CIT (van Marken Lichtenbelt et al., 2009;
Ouellet et al., 2012; Chen et al., 2013). In contrast, other studies
did not observe any significant association between BAT and
CIT (Vosselman et al., 2012; Bakker et al., 2014; Blondin et al.,
2015b), and BAT activation induced by cold acclimation was not
accompanied by changes in CIT (Lee et al., 2014), which concur
with our findings. Of note is that the lack of association observed
in our study between CIT and supraclavicular skin temperature,
as an indirect marker of BAT activity (Boon et al., 2014; van der
Lans et al., 2016), further reinforces this finding.

Importantly, studies using [(15O)O2], instead of 18F-FDG, as
the radiotracer for PET-CT scans, have demonstrated that the
direct contribution of BAT to CIT is rather small (i.e., only 1%
of the increase of CIT) (Muzik et al., 2013; U Din et al., 2016). Of
note is that although [(15O)O2] presents limitations due to a very
short half-life (e.g., only a small anatomical area can be assessed)
among others, it is able to effectively quantify energy expenditure
of different tissues and it is not affected by changes in substrate
preference, as 18F-FDG is. According to these studies, BAT in the
cervical and upper thorax area (most human BAT) would account
for only 10–15 kcal/day if fully activated for 24 h. However,
paradoxically, some of the studies using radiotracers different
from 18F-FDG consistently showed a positive association of
BAT perfusion and volume with CIT (Orava et al., 2011; U
Din et al., 2016). This, together with the observations showing
higher glucose uptake and energy expenditure in skeletal muscles
close to BAT depots (Blondin et al., 2015b; U Din et al., 2016),
suggest that BAT may influence human CIT by indirect, rather
than direct, mechanisms (U Din et al., 2016), such as endocrine
signaling (Villarroya et al., 2017).

The hypothesis of an indirect effect of BAT over CIT could
explain the controversy in the studies investigating the relation
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between BAT assessed by 18F-FDG-PET-CT and CIT. Moreover,
it is known that different methodological approaches for both
PET-CT acquisition and analysis can profoundly influence the
outcome (Martinez-Tellez et al., 2017b, 2018). Most studies
examining the relation between BAT and CIT were conducted
before a consensus was reached on how to perform PET-CT scans
for BAT assessment and quantification (Chen et al., 2016), and
thus, applied different methodologies. Therefore, methodological
issues regarding cold exposure prior to PET-CT and PET-CT
analyses might explain the observed discrepancies. Here, we
investigated the association between BAT and CIT in a larger
sample size than previous studies, and strictly following state-of-
the-art methodology for BAT assessment. However, it is to note
that we measured BAT and CIT on different days, and, therefore,
intra-individual day-to-day variance in energy expenditure may
have prevented us from finding an existing association (Bader
et al., 2005; Schoeller, 2007; Cooper et al., 2009; Alcantara et al.,
2018).

There is cumulating evidence supporting the idea that skeletal
muscle is the main thermogenic organ upon cold exposure in
humans (Blondin et al., 2015b; Jensen, 2015; U Din et al., 2016;
Betz and Enerbäck, 2017), even at mild cold exposure. For
instance, upon cold stimulation, energy expenditure of muscles
in the cervical and upper thorax is ≈8 times higher than energy
expenditure of BAT (U Din et al., 2016). Interestingly, skeletal
muscle contribution to CIT seems to be higher in deep and
centrally located muscles than in superficial and bigger muscle
groups (Blondin et al., 2015b; U Din et al., 2016). Moreover,
it is not clear whether the muscle energy expenditure during
mild cold exposure relies upon shivering (Blondin et al., 2015b)
or non-shivering mechanisms (Betz and Enerbäck, 2017). In
contrast with this strong evidence, we found no association
between skeletal muscle 18F-FDG activity after a personalized
cold exposure and CIT. However, it should be considered that
we did not assess the skeletal muscle 18F-FDG activity in warm
conditions, and, therefore, we could not determine whether
the cold-induced change in glucose uptake was associated with
CIT. This issue might not be of importance where BAT is
concerned (Chen et al., 2016), since BAT glucose uptake in
warm conditions is rather low (Cypess et al., 2009). However,
differences between muscle 18F-FDG activity in warm conditions
and upon cold exposure are much smaller, and, therefore,
not having skeletal muscle warm 18F-FDG activity might have
considerably limited the ability to detect an existing association.
In addition to the skeletal muscle 18F-FDG activity, we also
tested the association between lean mass (as a subrogate of
muscle mass) and CIT, which did not show significance (data not
shown).

Moreover, it should be noted that skeletal muscle
thermogenesis, even during shivering, relies mainly on fatty
acid oxidation (Blondin et al., 2014; Haman and Blondin, 2017),
and, therefore, the glucose analog 18F-FDG might not be a valid
marker of muscle thermogenesis or metabolic activity. Similarly,
BAT thermogenesis also relies mainly on fat oxidation (Blondin
et al., 2017), and it has recently been shown that glucose uptake
is not mandatory for human BAT thermogenesis (Blondin et al.,

2015a). Therefore, inherent limitations of 18F-FDG for BAT
detection and muscle activity quantification may explain why
we failed to detect a physiologically plausible association. There
is a need to develop new radiotracers for BAT detection and
muscle activity quantification with more metabolic significance
than 18F-FDG and with a larger half-life than others such as
[(15O)O2].

We also studied the associations of BAT and skeletal muscle
18F-FDG activity with CI-NUTox. Since both BAT and skeletal
muscle thermogenesis relies on fatty acid oxidation, it is plausible
to expect a positive association of BAT and skeletal muscle
activity with FATox. In contrast, we observed no association,
which could be partially explained by the inherent limitations
of 18F-FDG as a radiotracer. However, since BAT and skeletal
muscle thermogenesis seem to compensate each other (Blondin
et al., 2016) and both mainly depend on FATox, it is also
plausible that no relation with FATox exists. Finally, it should
be considered that we recorded CI-NUTox in a cold exposure of
only 1 h. Longer cold exposures result in different contributions
of both CHOox and FATox (Blondin et al., 2014), and,
therefore, new studies examining the relation of BAT and muscle
thermogenesis with CI-NUTox during longer cold exposures are
needed.

Our results should be considered with caution since some
limitations are present. It should be noted that BAT and
skeletal muscle 18F-FDG activity was assessed on a different day
than CIT and CI-NUTox, and, therefore, day-to-day variation
may have influenced our results. Moreover, as stated above,
whereas 18F-FDG PET-CT after a personalized cold exposure
is currently considered the gold standard for BAT in vivo
quantification (Chen et al., 2016; Carpentier et al., 2018), it
is not the best method to assess skeletal muscle metabolism
upon cold exposure, which could explain the lack of association
with CIT. Moreover, we quantified skeletal muscle 18F-FDG
activity (SUVpeak) in one image slide, and therefore it might
be influenced by the blood vessels eventually contained in the
ROI. Using skeletal muscle SUVmean did not change the results,
probably because muscle SUVmean and SUVpeak are highly
correlated (all r > 0.976; all P < 0.001). Of note is also that
the cooling protocol applied to assess both BAT and skeletal
muscle 18F-FDG activity and CIT and CI-NUTox is based on the
individuals’ shivering threshold, which was assessed by subjective
methods (self-reported and direct observation), rather than by
objective methods (electromyography) (Acosta et al., 2018).
Another relevant issue is that the cold-exposure used to assess
CIT and CI-NUTox was only 1 h long, and, therefore, we cannot
know whether a longer cold exposure would provide different
results. In addition, it should be noted that we studied young
healthy adults, hence we do not know whether these findings
extend to older or unhealthy individuals. Finally, due to a lack
of homogeneity in the fasting time of Study 1, we conducted
the NUTox analyses with a relatively small sample size (only
18 out of 44 participants in Study 1). However, we performed
a second study which allowed us to study the association of
supraclavicular temperature with CIT and CI-NUTox in a larger
sample size.
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CONCLUSION

We found, in a larger sample size than previous studies
and strictly following the most updated methodological
recommendations, that BAT and skeletal muscle thermogenic
activity (assessed by means of 18F-FDG activity after a
personalized cold exposure) is not associated with CIT or CI-
NUTox. These findings support the hypothesis of BAT having
a marginal role in human CIT, although important limitations
inherent to the available technology for BAT and skeletal muscle
metabolism in vivo quantification precludes us from drawing
firm conclusions from the present data.
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