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Background: Beat-to-beat variability in action potential duration (APD) is an intrinsic

property of cardiac tissue and is altered in pro-arrhythmic states. However, it has never

been examined in mice.

Methods: Left atrial or ventricular monophasic action potentials (MAPs) were recorded

from Langendorff-perfused mouse hearts during regular 8Hz pacing. Time-domain,

frequency-domain and non-linear analyses were used to quantify APD variability.

Results: Mean atrial APD (90% repolarization) was 23.5 ± 6.3ms and standard

deviation (SD) was 0.9 ± 0.5ms (n = 6 hearts). Coefficient of variation (CoV) was

4.0 ± 1.9% and root mean square (RMS) of successive differences in APDs was

0.3 ± 0.2ms. The peaks for low- and high-frequency were 0.7 ± 0.5 and 2.7 ±
0.9Hz, respectively, with percentage powers of 39.0 ± 20.5 and 59.3 ± 22.9%.

Poincaré plots of APDn+1 against APDn revealed ellipsoid shapes. The ratio of the

SD along the line-of-identity (SD2) to the SD perpendicular to the line-of-identity (SD1)

was 8.28 ± 4.78. Approximate and sample entropy were 0.57 ± 0.12 and 0.57

± 0.15, respectively. Detrended fluctuation analysis revealed short- and long-term

fluctuation slopes of 1.80 ± 0.15 and 0.85 ± 0.29, respectively. When compared

to atrial APDs, ventricular APDs were longer (ANOVA, P < 0.05), showed lower

mean SD and CoV but similar RMS of successive differences in APDs and showed

lower SD2 (P < 0.05). No difference in the remaining parameters was observed.
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Conclusion: Beat-to-beat variability in APD is observed in mouse hearts during regular

pacing. Atrial MAPs showed greater degree of variability than ventricular MAPs. Non-

linear techniques offer further insights on short-term and long-term variability and signal

complexity.

Keywords: variability, repolarization, time, frequency, non-linear, entropy

INTRODUCTION

Beat-to-beat variations in the repolarization time-course
represent an intrinsic property of cardiac electrophysiological
function. This may be manifested as variability of action
potential durations (APDs) at the cellular level (Nanasi et al.,
2017), or of QT durations at the organism level (Niemeijer
et al., 2014; Phadumdeo and Weinberg, 2018). This variability
may be affected by distinct physiological states, such as the
degree of intercellular coupling (Zaniboni et al., 2000), redox
states (Kistamas et al., 2015a), altered intracellular calcium
handling (Kistamas et al., 2015b) or APD itself (Abi-Gerges et al.,
2010). Clinical studies have shown that higher variability in QT
intervals can predict pro-arrhythmic outcomes in the context of
non-ischemic heart failure (Hinterseer et al., 2010), as well as
long QT syndrome (Hinterseer et al., 2009).

Mouse models are widely used to study cardiac
electrophysiological and arrhythmogenic properties, owing
to their amenability to pharmacological or genetic manipulation
(Nerbonne, 2014; Choy et al., 2016). However, despite the
importance of APD variability, it has never been examined in
this species. In this study, we quantified beat-to-beat variability
in APDs by applying time-domain and non-linear techniques
for the first time to monophasic action potential recordings
(MAPs) obtained from Langendorff-perfused mouse hearts
during regular pacing.

MATERIALS AND METHODS

Solutions
Krebs-Henseleit solution (composition in mM: NaCl 119,
NaHCO3 25, KCl 4, KH2PO4 1.2, MgCl2 1, CaCl2 1.8, glucose
10 and sodium pyruvate 2, pH 7.4), which has been bicarbonate-
buffered and bubbled with 95% O2-5% CO2, was used in the
experiments described in this study.

Preparation of Langendorff-Perfused
Mouse Hearts
This study was approved by the Animal Welfare and Ethical
Review Body at the University of Cambridge. Wild-type mice of
129 genetic background between 5 and 7 months of age were
used. They were maintained at room temperature (21 ± 1◦C)
and were subjected to a 12:12 h light/dark cycle with free access
to sterile rodent chow and water in an animal facility. Mice were
terminated by dislocation of the cervical spine in accordance with
Sections 1(c) and 2 of Schedule 1 of the UK Animals (Scientific
Procedures) Act 1986. The technique for Langendorff perfusion
has been used by our group and described previously (Tse et al.,

2016a,d, 2017). After removal from their chest cavities, the hearts
were submerged in ice-cold Krebs-Henseleit solution. The aortas
were cannulated using a custom-made 21-gauge cannula prefilled
with ice-cold buffer. Amicro-aneurysm clip (Harvard Apparatus,
UK) was used to secure the hearts onto the Langendorff perfusion
system. Retrograde perfusion was carried out at a flow rate
of 2 to 2.5ml min−1 by use of a peristaltic pump (Watson–
Marlow Bredel pumps model 505S, Falmouth, Cornwall, UK).
The perfusate passed through successively 200 and 5µm filters
and warmed to 37◦C using a water jacket and circulator before
arriving at the aorta. Approximately 90% of the hearts regained
their pink color and spontaneous rhythmic activity. These were
therefore studied further. The remaining 10% did not and were
discarded. The hearts were perfused for a further 20min to
minimize residual effects of endogenous catecholamine release,
before their electrophysiology properties were characterized.

Stimulating Procedures
Paired platinum electrodes (1mm interpole distance) were used
to stimulate the right ventricular epicardium electrically. This
took place at 8Hz, using square wave pulses of 2ms in duration,
with a stimulation voltage set to three times the diastolic
threshold (Grass S48 Stimulator, Grass-Telefactor, Slough, UK)
immediately after the start of perfusion.

Atrial and Ventricular Map Recording
Procedures
For atrial MAP recordings, the atrio-ventricular nodes of the
Langendorff perfused hearts were first mechanically ablated
as previously described (Tse et al., 2016b). This eliminated
ventricular far-field activity at the recording electrode. The MAP
electrode was placed at the left atrial or ventricular epicardium
(Linton Instruments, Harvard Apparatus). The stimulating and
recording electrodes were maintained at constant positions
separated approximately by a distance of 3mm. All recordings
were performed using a baseline cycle length (BCL) of 125ms
(8Hz) to exclude rate-dependent differences in action potential
durations (APDs). MAPs were pre-amplified using a NL100AK
head stage, amplified with a NL 104A amplifier and band
pass filtered between 0.5Hz and 1 kHz using a NL125/6 filter
(Neurolog, Hertfordshire, UK) and then digitized (1401plus
MKII, Cambridge Electronic Design, Cambridge, UK) at 5 kHz.
Waveforms were analyzed using Spike2 software (Cambridge
Electronic Design, UK). MAP waveforms that did not match
established criteria for MAP signals were rejected (Knollmann
et al., 2001; Tse et al., 2016c). They must have stable baselines,
fast upstrokes, with no inflections or negative spikes, and a
rapid first phase of repolarization. Zero Percent repolarization
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was measured at the peak of the MAP and Hundred Percent
repolarization was measured at the point of return of the
potential to baseline (Gussak et al., 2000; Knollmann et al., 2001;
Fabritz et al., 2003).

APD Variability Analysis
APD variability analysis was performed using Kubios HRV
Standard software (Version 3.0.2) over a 60 s period. Time-
domain analysis yielded the (1) standard deviation (SD) of
APDs, which represents the overall (short-term and long-term)
variability, and (2) root mean square (RMSSD) of successive
differences of APDs, which represents the short-term variability:

SDAPD =

√√√√ 1

N − 1

N∑

j=1

(
APDj − APD

)2
(1)

RMSSD =

√√√√ 1

N − 1

N−1∑

j=1

(
APDj+1 − APDj

)2
(2)

Frequency-domain analysis was conducted using the Fast Fourier
Transform method. For frequency domain parameters, spectral
analysis was performed by using fast-Fourier transform method.
The sampling frequency was set to 8Hz. The power in the
repolarization spectrum between 0.04 and 4Hz was defined as
total power (TP). The power in the repolarization spectrum was
divided into three different frequency bands: very low frequency
power (VLF, 0 to 0.04Hz), low frequency power (LF, 0.04 to
1.5Hz) and high frequency power (HF, 1.5 to 4Hz).

The above frequency analysis does not provide any
information on the time evolution of the frequencies. To
achieve, this, time-frequency analysis was conducted using
two different techniques. Firstly, short-time Fourier transform
(STFT) was used to break the signal into small time segments
using an appropriate sliding-window function, and then apply
a Fourier transformation to the successive sliding-window
segments. The Hanning window with a Fast Fourier Transform
length of 256 and overlap of 128 were selected.

Secondly, continuous wavelet transform (CWT) was used to
divide a continuous-time function into wavelets given by:

CWT(a, b) =
1
√
a

∫ +∞

− ∞
x (t) . ψ∗(

t− b

a
)dt (3)

Where the superscript, ∗, is the complex conjugate and ψa,b
∗

represents a translated and scaled complex conjugated mother
wavelet. The mother wavelet ψ is invertible when it verifies the
condition of admissibility which is stated as:

∫ +∞

−∞

∣∣ψ̂(ω)
∣∣

ω
dω <∞ (4)

The Morlet wavelet was selected, which uses a Gaussian-
modulated sinusoid:

ψ (t) =
1
4
√
π

(
eiωot − e−

ω2o
2

)
e−

t2

2 (5)

where ωo is the central frequency of the mother wavelet. The
second term in the brackets corrects for the non-zero mean of
the complex sinusoid of the first term. This becomes negligible
for values of ωo > 5, which we selected in our case:

ψ (t) =
1
4
√
π
eiωot e−

t2

2 (6)

Non-linear properties of APD variability were studied as follow.
Poincaré plots are graphical representations of the correlation
between successive APD values, in which APDn+1 is plotted
against APDn. This enables determination of the SD of the
points perpendicular to the line-of-identity (SD1). Different
points along this perpendicular axis represent a beat-to-beat
variation between the initial (n) and subsequent (n + 1)
contraction, representing multiple two-beat “snapshots” with
little correlation to a progressive time parameter. Therefore, SD1
is associated with instantaneous or short-term variability. As for
the points along the line-of-identity (SD2), it shows beat-to-beat
consistency between the initial (n) and subsequent (n + 1) RR
interval. Hence, deviation of the clustered SD2 points away from
the average RR interval, taken with reference to the centroid,
represents long-term variability. The ratio SD2 to SD1 then gives
an indication of the degree of long-term variability in relation to
the short-term variability.

Coined in 1991 by Pincus et al., the concept of approximate
entropy was introduced to provide approximations on the degree
of regularity when applied to a short-duration epoch, which
cannot be achieved with moment statistics such as mean and
variance. This is applied to non-stationary biomedical data
such as heart rate variability, which commonly presents with
non-linearity and complexity. Logarithmically, the approximate
entropy takes into account the imputed threshold “r” under
which a recurrence is identified. With this it expresses the
likelihood of repeated signals within the threshold for m and
m+ 1 points. It is computed as follows:

Firstly, a set of length m vectors uj is formed:

uj = (APDj;APDj+1, . . . , APDj+m−1); j = 1; 2; . . .N−m+ 1
(7)

where, m is the embedding dimension and N is the number of
measured APDs. The distance between these vectors is defined
as the maximum absolute difference between the corresponding
elements:

d(uj, uk) = max{|APDj+n − APDk+n||n = 0, . . . , m− 1} (8)

for each uj the relative number of vectors uk for which d(uj, uk)
≤ r is calculated. This index is denoted with Cmj (r) and can be
written in the form

Cm
j (r) =

nbr of
{
uk| d

(
uj, uk

)
≤ r

}

N −m+ 1
∀k (9)

Taking the natural logarithms gives:

8m (r) =
1

N −m+ 1

N−m+1∑

j=1

lnCm
j (r) . (10)
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The approximate entropy is then defined as:

ApEn (m, r, N) = 8m (r)− 8m+1(r) (11)

Approximate entropy measures the likelihood that certain
patterns of observations are followed by different patterns of
observations. As such, a lower approximate entropy values reflect
a more regular signal, whereas higher values reflect a more
irregular signal (Pincus, 1991; Mesin, 2018).

The sample entropy also provides a measure of signal
irregularity but is less susceptible to bias than approximate
entropy (Richman and Moorman, 2000; Nayak et al., 2018).
This is done by eliminating the counting of self-matches; hence
the count of the number of similar vector lengths is always
one less than that of ApEn. Furthermore, sample entropy
uses the logarithm of the sum of conditional properties rather
than each conditional property individually, illustrated by the
negative natural logarithm for conditional properties. Both
sample entropy and approximate entropy are able to differentiate
between experimental and theoretical data sets. However, it
has been demonstrated that sample entropy yielded better
relative consistency compared to approximate entropy, reflecting
independence from data length and choice of m or r (Molina-
Pico et al., 2011).

This is given by:

Cm
j (r) =

nbr of
{
uk| d

(
uj, uk

)
≤ r

}

N −m
∀k 6= j (12)

Averaging then gives:

Cm (r) =
1

N −m+ 1

N−m+1∑

j=1

Cm
j (r) (13)

The sample entropy is then given by:

SampEn (m, r, N) = ln (
Cm (r)

Cm+1 (r)
) (14)

Finally, detrended fluctuation analysis (DFA) was performed
to determine long-range correlations in non-stationary
physiological time series (Peng et al., 1995), yielding both
short-term fluctuation (α1) and long-term fluctuation (α2)
slopes. The point at which the slopes α1 and α2 is the crossover
point.

Statistical Analysis
All values were expressed as mean ± standard error of the mean
(SEM). Numerical data were compared by one-way analysis of
variance (ANOVA), a statistical technique that utilizes the F-
distribution to compare the means or two or more samples. P <
0.05 was considered statistically significant and was denoted by ∗

in the figures.

RESULTS

Atrial and Ventricular Action Potential
Duration Variability Determined Using
Time-Domain and Frequency-Domain
Methods
Representative stable MAP recordings were obtained from the
left atrial (Figure 1A) or ventricular (Figure 1B) epicardium of
Langendorff-perfused mouse hearts during regular 8Hz pacing.
Typical time series of atrial and ventricular APDs at 90%
repolarization (APD90) are shown in Figures 1C,D, respectively
and their corresponding histograms are shown in Figures 1E,F,
respectively. Atrial APD90 took a mean value of 23.5 ± 6.3ms
(Figure 2A) with a mean standard deviation (SD) 0.9 ± 0.5ms
(Figure 2B) (n = 6 hearts). The coefficient of variation (CoV),
a measure of relative variability calculated by dividing SD by
the mean and subsequently multiplying by 100%, was 4.0 ±
1.9% (Figure 2C) and the root mean square (RMS) of successive
differences in APDs was 0.3 ± 0.2ms (Figure 2D). By contrast,
ventricular APD90 (n = 6 hearts) were longer than atrial APD90

(44.0 ± 9.1ms; ANOVA, P < 0.05), with lower mean SD (0.4 ±
0.2ms, P< 0.05), CoV (0.8± 0.3%, P< 0.01) but similar RMS of
successive differences in APD90 (0.2± 0.3%, P > 0.05).

An example of a frequency spectrum using the Fast Fourier
Transform method is shown in Figure 3A. Frequency-domain
analysis revealed that the peaks for very low-, low- and high-
frequency for atrial MAPs were 0.04 ± 0.00, 0.7 ± 0.5 and 2.7
± 0.9Hz, respectively (Figures 3B–D), with percentage powers
of 1.7 ± 2.6, 39.0 ± 20.5, and 59.3 ± 22.9% (Figures 3E–G). For
the ventricles, similar peak frequencies (0.04 ± 0.00, 0.2 ± 0.0
and 3.0 ± 0.6%) and percentage powers (0.9 ± 1.1, 66.0 ± 27.8,
and 32.5± 27.0) were observed (ANOVA, P > 0.05).

Simultaneous time-frequency analysis was subsequently
performed using short-time Fourier transform (STFT) and
continuous wavelet transform (CWT). Application of STFT
yielded plots demonstrating frequency against time for atrial
and ventricular APD90 (Figures 4A,B), and their corresponding
three-dimensional representations (Figures 4C,D). CWT with
Morlet wavelets as basis functions of atrial and ventricular APD90

yielded image plots shown in Figures 4E,F, respectively.

Action Potential Duration Variability
Determined Using Non-linear Methods
Poincaré plots expressing APDn+1 as a function of APDn were
constructed for the atrial and ventricular MAPs (Figures 5A,B).
In all of the hearts studied, ellipsoid shapes of the data points
were evident. The SD perpendicular to the line-of-identity
(SD1) and SD along the line-of-identity (SD2) are shown in
Figures 5C,D, respectively. For atrial recordings, the mean SD1
and SD2 were 0.20 ± 0.15 and 1.26 ± 0.67, respectively. The
SD2 to SD1 ratio took a mean value of 8.28 ± 4.78 (Figure 5E).
The approximate and sample entropy took values of 0.57 ±
0.12 (Figure 5F) and 0.57 ± 0.15 (Figure 5G), respectively. For
ventricular MAPs, Poincaré plots of APDn+1 against APDn

revealed similar ellipsoid shapes. They showed similar SD1 (0.15
± 0.19, P > 0.05) and lower SD2 (0.49 ± 0.26, P < 0.05).
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FIGURE 1 | Representative MAP traces from a single heart obtained over a ten-second period during regular 8Hz pacing from the left atrium (A) or left ventricle

(B). The corresponding time-series (C,D) and histograms (E,F) for action potential duration at 90% repolarization (APD90).

FIGURE 2 | Time-domain analysis yielding mean APD (A), standard deviation (SD) of APDs (B), coefficient of variation (CoV) (C), and root mean square (RMS) of

successive differences of APDs (D) (n = 6; *P < 0.05; **P < 0.01).
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FIGURE 3 | Examples of frequency spectra using the Fast Fourier Transform method for atrial (A) and ventricular (B) MAP recordings. Peaks for very low- (C), low-

(D) and high-frequency (E) for atrial and ventricular MAPs, and their percentage powers (F–H).

Nevertheless, there was no difference in SD2/SD1 ratio (6.19
± 3.03, P > 0.05). Moreover, approximate entropy (0.69 ±
0.27, P > 0.05), and sample entropy (0.75 ± 0.54, P > 0.05)
were statistically indistinguishable when compared to the atrial
parameters.

Detrended fluctuation analysis plotting the detrended
fluctuations F(n) as a function of n in a log-log scale was
performed for the atrial and ventricular MAPs (Figures 6A,B).
This revealed short- (α1) and long-term (α2) fluctuation slopes

of 1.80 ± 0.15 (Figure 6C) and 0.85 ± 0.29 (Figure 6D),
respectively for the atria, which were not significantly
different from the values obtained from the ventricles
(1.32 ± 0.49 and 1.15 ± 0.28, respectively, both P >

0.05). α1 was significantly larger than α2 in the atria
(ANOVA, P < 0.001) but not in the ventricles (ANOVA,
P > 0.05).

The variability data for APD70, APD50, and APD30 are shown
in Supplementary Appendices 1–3, respectively.
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FIGURE 4 | Application of Short-Time Fourier Transform (STFT) yielded plots demonstrating frequency against time for atrial (A) and ventricular APD90 (B), and their

corresponding three-dimensional representations (C,D). Continuous wavelet transform (CWT) with Morlet wavelets as basis functions of atrial (E) and ventricular

APD90 (F).

DISCUSSION

This is the first proof-of-concept study investigating the
beat-to-beat variability in repolarization time-courses of atrial
and ventricular MAP recordings in whole hearts of mice.
The main findings are that (1) variability in APDs can be
detected using time-domain, frequency-domain, combined time-
frequency, and non-linear methods; (2) the atria and ventricles
show similar low- and high-frequency peaks; (3) but the atria
showed predominantly low-frequency components whereas the
ventricles showed predominantly high-frequency components;
(4) Poincaré plot showed ellipsoid shapes from all of the hearts;
(5) the SD perpendicular to the line-of-identity (SD2) was
significantly larger than the SD along the line-of-identity (SD1),
leading to SD2/SD1 ratios greater than unity; (6) a degree of
disorder was identified by approximate and sample entropy
analyses, (7) short-term fluctuation slopes were steeper than
long-term fluctuation slopes.

Variability in recorded signals is an intrinsic property of
excitable media in biological systems. In the heart, heart rate
variability (HRV) is normally observed in the healthy state
(Shaffer and Ginsberg, 2017), whereas alterations in HRV have
been associated with adverse outcomes such as arrhythmogenesis
that may be mediated through generation of APD variability
(Mcintyre et al., 2014). Similarly, beat-to-beat variability in the
repolarization time-course can be present and can be observed
electrocardiographically as QT interval variability (Baumert
et al., 2016; Orini et al., 2016). Naturally occurring beat-
to-beat variations in APDs have been observed in isolated
cardiomyocytes (Kiyosue and Arita, 1989; Shryock et al., 2013),
even when pacing rate and temperature are held constant
(Zaniboni et al., 2000). It has been studied in detail in canine
ventricular cardiomyocytes (Abi-Gerges et al., 2010; Kistamas
et al., 2015a,b; Szentandrassy et al., 2015; Magyar et al., 2016),
but never in mouse models whether in single cells or isolated
hearts. Our study adds to the literature by demonstrating
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FIGURE 5 | Representative Poincaré plots of APDn+1 against APDn from the left atrium (A) or left ventricle (B) from a single heart. SD along the line-of-identity (SD1)

(C) and SD perpendicular to the line-of-identity (SD2) (D), and the SD2/SD1 ratio (E), approximate entropy (F), and sample entropy (G) (*P < 0.05).

that such variabilities are also present in Langendorff-perfused
mouse hearts under similar constant rate pacing conditions.
Computational modeling has previously identified the molecular
mechanisms underlying such beat-to-beat variability in APDs
(Heijman et al., 2013). These include stochastic gating of ion
channels, in particular that of sodium and delayed rectifier
potassium channels. Although fluctuations in APDs was present
in our experimental mouse model, the variability was very small,
with standard deviation of around 1.4ms for the atria and 0.2ms

for the ventricles. This may be due to the differing morphology
of the cardiac action potentials in this species. Consistent with
these findings, modeling studies suggests that variability is higher
in species that have more pronounced plateau phase during
repolarization, such as guinea pigs and rabbits (Heijman et al.,
2013), than those with a triangular action potential morphology
such as mice. Indeed, the standard deviation is around 10ms in
guinea pig ventricular cardiomyocytes (Zaniboni et al., 2000) and
7ms in rabbit sinoatrial nodal cells (Wilders and Jongsma, 1993).
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FIGURE 6 | Detrended fluctuation analysis (DFA) plots expressing detrended fluctuations F(n) as a function of n in a log-log scale for the atria (A) and ventricles

(B), yielding short-term (C), and long-term (D) fluctuation slopes (α1 and α2, respectively).

This variability is dependent on the APD. Therefore, one way
to express this is the coefficient of variation (CoV), given by the
percentage of SD divided by the mean APD. The CoV is around
2% in both the guinea pig and the rabbit ventricles. From our
study, we found CoV to be 4.0% in the atria and 0.8% in the
ventricles. It should be noted that our model used intact hearts
whereas single cells were used in the other studies. Multicellular
preparations are known to show lower levels of variability than
in single cells because of electrical coupling, which dampens the
differences between cells (Magyar et al., 2015).

Time-domain analysis allowed the quantification of the
variability using standard deviations, coefficients of variations
and root mean squares of successive APDs in both the atria
and ventricles. It was noted that atrial APDs were significantly
shorter than ventricular APDs, in keeping with our previous
findings (Tse et al., 2016a,b). Moreover, we report for the first
time higher degrees of variability in the atria as reflected by
higher mean SD, CoV and RMS of APDs when compared
to the ventricles. Frequency-domain analysis using the Fast
Fourier Transform-based method produced power spectrum
density estimates for the APD90 time series. This provides the
basic information on how power is distributed as a function of
frequency. We observed that both atrial and ventricular MAPs
were predominantly in the low-frequency domain. LF and HF
rhythms in repolarization variability are important as they reflect
QT rate adaptation (Merri et al., 1993). Variability assessed in
the frequency domain represents an index of temporal dispersion
of ventricular repolarization (Lombardi et al., 1998) which is

an important determinant of arrhythmogenesis. However, the
above frequency analysis does not provide any information
on the time evolution of the frequencies. To achieve, this,
time-frequency analysis was conducted using both short-time
Fourier transform (STFT) and continuous wavelet transform
(CWT). Previously, time-frequency analysis has been applied to
electrograms to detect regional cardiac repolarization alternans
that occur transiently (Orini et al., 2013, 2014).

Significantly, non-linear analyses of APDs yielded further
insights. Thus, Poincaré plots of APDs showed ellipsoid shapes
in all of the hearts studied, and together with a SD2/SD1 ratio
> 1, indicated that variability in the long-term was greater than
variability in the short-term. This ratio was around 6 to 8 and
did not significantly differ between the atria and ventricles. In
a canine model, higher short-term variability calculated from
Poincaré plots being associated with the occurrence of drug-
induced torsade de pointes (Thomsen et al., 2004). Furthermore,
the present findings also found a degree of entropy present
in the atria and ventricles. Entropy refers to the degree of
disorder in a system and has been used to quantify the regularity
or complexity of biological signals (Pincus, 1991; Pincus and
Goldberger, 1994). These entropy calculations are based on the
state space reconstruction of time series data (Richman and
Moorman, 2000; Bandt and Pompe, 2002; Li et al., 2015). Our
study quantified for the first time approximate entropy in the
atria and ventricles. This is an appropriate method for time series
with more than 50 points, a condition that we have satisfied
(Pincus, 2001). Similar, this study determined sample entropy,
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which is a refined version of approximate entropy. It can quantify
the irregularity of APD time series without biasing (Richman
and Moorman, 2000) and has the advantage of eliminating self-
matches and being less dependent on time-series length (Li et al.,
2009). Entropy has been identified as a pro-arrhythmic indicator
(Cervigon et al., 2016). High entropy in repolarization was shown
to predict arrhythmic or mortality outcomes in patients receiving
implantable-cardioverter defibrillator for primary prevention of
sudden cardiac death (Demazumder et al., 2016). Further studies
are needed to confirm or refute the hypothesis that increased
approximate or sample entropy predicts the onset of atrial or
ventricular arrhythmias in mouse hearts. However, its use has
some important limitations. For example, it should not be applied
to long duration signals because more computations are required
for real-time implementation (Tripathy et al., 2017).

Fractional calculus has been applied to investigate
physiological time series such as heart rate variability (González
et al., 2012; Sturmberg and West, 2013; Sturmberg et al., 2015).
Some techniques assume stationary signals whilst others do not
make such assumptions (Gao et al., 2013). This study applied
for the first time detrended fluctuation analysis (DFA) to reveal
complex fractal fluctuation patterns by delineating them into
long- and short-term fluctuation for the first time in the mouse
heart. DFA is a method for quantifying long-range correlations
in non-stationary physiological time series (Peng et al., 1995).
DFA enables correct estimation of the power law scaling, the
Hurst exponent, in the presence of extrinsic non-stationaries
while eliminating spurious detection of long-range dependence
(West et al., 2008). The average fluctuation is plotted against
the number of beats on a log-log scale, yielding short- and
long-term fluctuation slopes, or scaling exponents (α1 and α2,
respectively). α of 0.5 indicates uncorrelated data, and deviations
from 0.5 indicates the presence of correlation. For example, in
the atria, we found α1 to be around 1.7, suggesting the presence
of short-term correlation, but α2 was around 0.7, suggesting the
minimal long-term correlations. In the ventricles, α1 and α2
took similar values to those observed in the atria.

Previously, decreases in the short-term exponent of HRV,
has been associated with arrhythmic and mortality outcomes in
heart failure after acute myocardial infarction (Huikuri et al.,
2000) and in end-stage renal failure patients receiving peritoneal
dialysis (Chiang et al., 2016). Decreases in the short-term
exponent have also been detected prior to the onset of atrial
arrhythmias (Vikman et al., 1999). In a rabbit hypertrophic
cardiomyopathy model, DFA of maximum QT intervals showed
higher scaling exponent in diseased compared to control groups
(Sanbe et al., 2005). In human induced pluripotent stem cell-
derived cardiomyocytes, fractal correlations as determined by α1
was observed (Kuusela et al., 2016). In humans, a significant
decrease in α1 was observed during sympathetic activation
suggesting a breakdown of the short-term fractal organization of
heart rate (Tulppo et al., 2005). Moreover, normal α1 but lower
α2 was observed in patients with atrial fibrillation compared to
those without AF (Kalisnik et al., 2015).

Previous work has demonstrated that HRV time series have
a crossover phenomenon (Havlin et al., 1999; Penzel et al.,
2003). In this study, DFA also found scaling trends with two

distinct values. This is interesting because it may be related to
bi-fractality, where fractal patterns can emerge from random
fluctuations via allometric filtering mechanisms (Scafetta and
West, 2007). Thus, APD time series are potentially crossover-
fractals with two fractal dimensions. This could be validated
by using empirical mode decomposition to construct crossover-
fractals from two monofractals (Liaw and Chiu, 2010). However,
although DFA is useful for exploring the structure of correlations
in physiological time series, tracking the local evolution of
the exponent by a recursive least-squares method can yield
structures of correlations that can provide additional details
on the dynamics of these series (Bojorges-Valdez et al., 2007).
Our findings suggest that repolarization characteristics exhibit
fractal behavior and may be better represented using concepts
from fractional calculus, for example by using fractal dynamical
equations (Marculescu and Bogdan, 2011). Such an approach
has successfully been used to optimize control for implantable
pacemakers (Bogdan et al., 2012, 2013).

Moreover, fractional differintegration was used to characterize
HRV, allowing determination of the standard deviation of the
fractionally differintegrated RR time series for a fractional
differintegration of order α [SDFDINN(α)]. αc, the order of the
fractional differintegration that provide the minimum standard
deviation of the fractionally differintegrated RR set, showed a
linear correlation with the Hurst exponent. Interestingly this
method for estimating the exponent showed less bias and lower
variance when compared to DFA (García-González et al., 2013).
Also, αc was closely related to α1 but they were not equal.
Future studies are needed to explore the predictive values
of these fluctuation exponents, and to evaluate the efficacy
of fractal dynamical state equation to describe the spatial
and temporal dependency structure of repolarization properties
in mouse models of cardiac arrhythmias (Xue and Bogdan,
2017).

CONCLUSIONS

The present findings provide a proof-of-concept that APD
variability is present at baseline conditions and can be
detected using time-domain, frequency-domain and non-linear
techniques. AtrialMAPs showed greater degree of variability than
ventricular MAPs. Non-linear techniques offer further insights
on short-term and long-term variability and signal complexity.
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