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Here we introduce bioLQM, a new Java software toolkit for the conversion, modification,

and analysis of Logical Qualitative Models of biological regulatory networks. BioLQM

provides core modeling operations as building blocks for the development of integrated

modeling software, or for the assembly of heterogeneous analysis workflows involving

several complementary tools. Based on the definition of multi-valued logical models,

bioLQM implements import and export facilities, notably for the recent SBML qual

exchange format, as well as for formats used by several popular tools, facilitating the

design of workflows combining these tools. Model modifications enable the definition

of various perturbations, as well as model reduction, easing the analysis of large

models. Another modification enables the study of multi-valued models with tools limited

to the Boolean case. Finally, bioLQM provides a framework for the development of

novel analysis tools. The current version implements various updating modes for model

simulation (notably synchronous, asynchronous, and random asynchronous), as well as

some static analysis features for the identification of attractors. The bioLQM software can

be integrated into analysis workflows through command line and scripting interfaces. As

a Java library, it further provides core data structures to the GINsim and EpiLog interactive

tools, which supply graphical interfaces and additional analysis methods for cellular and

multi-cellular qualitative models.

Keywords: qualitative modeling, computational systems biology, biological networks, boolean networks, static

analysis, model conversion

1. INTRODUCTION

Logical models are highly abstract dynamical models, which have been proposed to study biological
regulatory systems in the late 60s (Kauffman, 1969; Thomas, 1973). This modeling framework
has since gained popularity (Bornholdt, 2005; Saadatpour and Albert, 2013; Samaga and Klamt,
2013) and has been successfully applied to a wide range of regulatory and signaling systems
(Saez-Rodriguez et al., 2007; Naldi et al., 2010; Helikar et al., 2013; Abou-Jaoudé et al., 2016).

In logical models, components are represented by discrete variables with a small range of
possible values, representing qualitative differences in activity. Boolean components can only be
active (1) or inactive (0), while multi-valued components define multiple activity levels. Regulatory
effects are often represented as signed arcs between components in the regulatory graph. These
effects are further formalized as logical rules (also called logical parameters or logical functions),

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01605
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01605&domain=pdf&date_stamp=2018-11-19
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:aurelien.naldi@ens.fr
https://doi.org/10.3389/fphys.2018.01605
https://www.frontiersin.org/articles/10.3389/fphys.2018.01605/full
http://loop.frontiersin.org/people/201686/overview


Naldi BioLQM Toolkit

specifying the target activity level of each component according
to the current levels of its regulators (a subset of all model
components). Interactive software for model definition such as
GINsim (Naldi et al., 2018a) or The Cell Collective (Helikar et al.,
2012) enable the definition of regulatory graphs and logical rules.
However, these logical rules are self-contained and can be used to
recover signed regulatory interactions. The relative simplicity of
this formalism enables the definition of large models with dozens
of components, without requiring precise knowledge of kinetic
parameters. A formal definition of logical qualitative models is
provided in Appendix 1 in Supplementary Material.

The CoLoMoTo consortium was recently founded to facilitate
model sharing and foster cooperation in the qualitative modeling
community, building on the introduction of the SBML qual
exchange format (Chaouiya et al., 2013; Naldi et al., 2015).
The bioLQM toolkit presented here reinforces this effort
by implementing a collection of model modification, format
conversion, and dynamical analysis operations in an extensible
architecture illustrated in Figure 1. On one hand, format
conversions enable the integration of several software tools in
complex analysis workflows. On the other hand, the core data
structure and model modifications provide building blocks for
the development of integrated modeling tools, which can add
their own model edition and visualization capabilities. BioLQM
is notably embed in the popular GINsim software (Naldi et al.,
2018a), which provides a graphical interface to most of its
features. It is also used as backend for model definition and
computation of successor states in Epilog (Varela et al., 2013),
as well as in the CoLoMoTo notebook for model conversion
and some dynamical analysis features (Naldi et al., 2018b).
Preliminary versions of this toolkit were mentioned as the
“LogicalModel” library Chaouiya et al. (2013) and Naldi et al.
(2015).

Section 2 introduces model loading, saving and converting
operations. Section 3 introduces the simulation and dynamical
analysis features. Section 4 introduces model modifications.
Section 5 illustrates the use of these features through the
command-line and scripting interfaces for the analysis of a small
model of the p53-Mdm2 network controlling DNA repair.

2. LOADING AND CONVERTING LOGICAL
QUALITATIVE MODELS

The increasing use of qualitative models to study biological
systems led to the development of various software tools for
the logical formalism (Albert et al., 2008; Garg et al., 2008;
Müssel et al., 2010; Terfve et al., 2012; Naldi et al., 2018a)
and related qualitative approaches (Batt et al., 2012; Paulevé,
2017; Stoll et al., 2017). Most software tools use their own file
format for the definition of models, hindering the delineation
of analysis workflows combining different tools. The SBML
qual exchange format (Chaouiya et al., 2013) has recently been
proposed to improve interoperability between modeling tools.
However SBML support is often missing from existing software
and may not be a priority for newer ones.

To ease model exchange between software tools that do not
all support the SBML qual format, the bioLQM toolkit provides
an extensible list of format handlers connected to the internal
model representation. Each format is described as a Java class
providing annotations (name of the format, default file extension
and multi-valued support) along with optional implementations
of model import (loading a file into the internal representation)
or export (saving the internal representation to a file) operations.
These descriptor classes are available through service discovery
to facilitate the addition of new formats.

The supported formats are listed in Table 1 and in bioLQM
documentation 1. BioLQM uses JSBML (Rodriguez et al., 2015)
to load and save SBML qual models. The other import parsers
are based on the antlr parser generator (Parr and Quong, 1995).
While some formats natively support multi-valued models,
many are limited to the Boolean case. Multi-valued models
can be exported to these Boolean formats through an implicit
booleanization step, described in section 4.

3. MODEL DYNAMICS AND SIMULATION

A state of a model is a vector giving the activity levels of all its
components. As the activity level of each component is restricted
to a finite range, the state space (containing all possible states)
itself is also finite. However, the total number of possible states
grows exponentially with the number of components.We say that
a component is called to update in a given state if the evaluation
of the associated logical rule is different from its current activity
level: for example an inactive component can become active.
Stable states (also called fixed points, or steady states) are states
in which no component is called to update. Such stable states
denote a qualitative equilibrium in which all components can
maintain their current activity level.

The dynamics of the model (i.e., its evolution over time) is
given by transitions between states of the model, controlled by
the updating calls (i.e., by the logical rules of the model) and
by updating modes which define the synchronization between
concurrent updating calls. Various types of updating modes have
been introduced, with most software tools focusing on a specific
subset. BioLQM aims to provide an extensive choice of updating
modes in a single toolkit. In the following subsections, we further
distinguish deterministic and non-deterministic simulations and
provide an overview of all updating modes implemented in
bioLQM. While stable states, which have no transition toward
other states, do not depend on the updating mode, reachability
properties and cyclical attractors can be strongly affected by the
choice of updating mode as illustrated in Figure 2. More formal
definitions of the updating calls and updating modes are given in
Appendix 2 in Supplementary Material.

3.1. Deterministic Simulations
In a deterministic simulation, each state has a unique successor,
except stable states which have no successor at all as we consider
here that a successor must denote a change of state. Starting with
an initial state, a deterministic simulation yields an ordered list

1See http://colomoto.org/biolqm/
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FIGURE 1 | Global structure of the bioLQM toolkit. The bioLQM toolkit is centered around a data structure for the representation of logical qualitative models. Based

on this data structure, (i) the I/O module contains a collection of formats enabling model loading and saving ; (ii) the modifiers module contains a collection of

model modifiers to transform an input model into a modified model ; (iii) the tools module contains a collection of analysis tools. All these feature are accessible

through a central service manager, which handles service discovery and serves as main entry point for the Java API. A simple command line launcher

provides quick execution of simple workflows, while a scripting engine can be used for more complex use cases.

TABLE 1 | Available formats.

File extension Multi-valued Import Export Description and associated tools

sbml x x x SBML qual Exchange format (Chaouiya et al., 2013)

bnet x x (Py)BoolNet (Müssel et al., 2010; Klarner et al., 2017)

booleannet x x booleannet (Albert et al., 2008)

boolfunction x x Boolean functions

boolsim x x boolsim (genYsis) (Garg et al., 2008)

cnet x x BNS (Dubrova and Teslenko, 2011)

ginml x x GINsim (Naldi et al., 2018a)

mnet x x x Custom text format for multi-valued models

tt x x x Truth table

an x x Pint automata network (Paulevé, 2017)

apnn, pnml, ina x x Conversion to Petri Net formats (Chaouiya et al., 2011)

gna x x GNA (Piecewise-linear formalism) (Batt et al., 2012)

bnd x MaBoSS (Stochastic Boolean model) (Stoll et al., 2017)

The Import/Export capabilities are listed in the corresponding columns (all formats can be exported). The formats natively supporting multi-valued models are also identified, other
formats rely on implicit model booleanization.

of successive states, called a trace. Given a sufficient number of
steps, all traces end in an attractor, which can be either a stable
state or a cyclical attractor of length k in which the k-th successor

of each state is itself. The trace tool, illustrated in section 5,
uses an initial state and a deterministic updater to compute a
simulation trace. The following deterministic updatingmodes are
supported:

• The synchronous (or parallel) updating applies all logical rules
at the same time (Kauffman, 1969).

• The sequential updating applies all rules in a pre-
determined order. Instead of evaluating all rules on the
original state before updating all components at once as
in the synchronous case, they are evaluated on the state
obtained after applying the previous rule. The selected
order can then change dramatically the successor state: a
different sequential updater can be defined for each possible
ordering.

• The block-sequential updating generalizes the sequential one
by considering groups of components updated synchronously
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FIGURE 2 | Comparison of updating modes. State transition graphs obtained with the multi-valued model shown in the top part using various deterministic (left-side)

and non-deterministic (right-side) updatings. Dashed arcs denote multiple transitions and node coloring emphasizes attractors. Note that the stable state is common

to all updating modes. The sequential and priority updaters follow the implicit ordering of the components. The STG obtained with the complete updating contains all

synchronous and asynchronous transitions, as well as additional transitions to leave the states encompassing more than two updating calls. These transitions are

colored in red in the corresponding panel. Finally, the bottom-right panel contains the asynchronous STG obtained for the booleanized version of the model. In this

STG, gray nodes and arcs on the left side correspond to non-admissible states and transitions between them. These states are unreachable from the admissible

ones, and the transitions enabling to leave this set of states are highlighted.
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(Robert, 1986). The definition of a block-sequential updater
relies on an ordered partition of the model components.

• The synchronous priority updating is also based on a
partition of components into blocks, but only the first block
containing updated components will be considered. The set
of possible updaters is a subset of the priority-based updaters
introduced by Fauré et al. (2006).

3.2. Non-deterministic Simulations
In a non-deterministic simulation, each state can have several
successors. Starting with an initial state, a non-deterministic
simulation can lead to a large number of alternative trajectories.
This type of dynamics if often represented as a State Transition
Graph (STG), where the nodes are states of the model, and
arcs denote possible transitions between these states. Like in
the deterministic case, all trajectories end in an attractor, but
starting from an initial state, a non-deterministic simulation can
lead to several alternative attractors. These attractors can be
stable states, cyclical attractors, as well as sets of intertwined
cycles called complex attractors. More formally, all attractors
are terminal strongly connected components of the STG. State
transition graphs can represent deterministic traces as well as
more complex dynamical behaviors. Such a graph can cover
several alternative initial states or even all possible states. The
current version of bioLQM supports the definition of non-
deterministic updaters, enabling the computation of the lists of
successor states. However, it does not provide a complete engine
for non-deterministic simulations, or a data structure for state
transition graphs. GINsim (Naldi et al., 2018a) implements these
features on top of bioLQM. The following non-deterministic
updating modes are supported:

• The asynchronous updating applies all logical rules
independently. All successors of a state change exactly
one component (Thomas, 1973).

• The complete updating considers all possible combination of
components to be updated at once. The set of successors
includes all asynchronous successors, as well as the
synchronous one (and more).

• The priority updating generalizes the synchronous priority
introduced above by allowing some of the blocks (priority
classes) to be updated asynchronously (Fauré et al., 2006).

3.3. Stochastic Simulations
Stochastic updaters enable the computation of a single successor,
which is selected randomly among multiple possibilities and can
thus change between calls. A stochastic updater can be derived
from any non-deterministic updater by assigning identical
probabilities to all transitions defined by the original updater.
Alternatively, a custom updater can be constructed by defining
individual probabilities.

BioLQM provides the random tool to compute single
random trajectories using the above stochastic updaters. This tool
is limited to the construction of individual trajectories and does
not provide a complete stochastic analysis. As listed in Table 1,
bioLQM enables the conversion of Boolean models to the format
of the MaBoSS software, which uses the Gillespie algorithm to

estimate the probabilities of Boolean states of a continuous time
Markov process, and provides a collection of scripts to further
analyze the simulation results (Stoll et al., 2017).

3.4. Identification of Attractors
The dynamical analysis of large regulatory networks through
model simulation suffers from combinatorial explosion,
especially in the non-deterministic case. BioLQM implements
two published methods based on constraint-solving for the
identification of attractors without explicit state enumeration.

1. The first method enables the identification of stable states

(fixed points) by extracting and combining stability conditions
from the logical rules (Naldi et al., 2007). BioLQM
includes this implementation, using decision diagrams to
manipulate stability conditions, and introduces an alternative
implementation based on the clingo ASP solver (Gebser et al.,
2011), which tends to be slower for small models, but can scale
better in some cases. Similar methods are also available in the
GNA and Pint tools (Batt et al., 2012; Paulevé, 2017).

2. The efficient identification of cyclical attractors and complex
attractors remain a challenging problem, especially as these
attractors can depend on the updating mode. Stable patterns
have recently been proposed as an approximation of complex
attractors, which can be identified efficiently and does not
depend on the updating mode (Zañudo and Albert, 2013;
Klarner et al., 2014). Here, a pattern is a partially-defined
state where some components have a fixed activity level, while
others are undefined. Such a pattern represents all states
with matching activity levels for the defined components (i.e.,
2k possible states for k undefined Boolean components). A
pattern is stable if the images of all included states belong
to the pattern (the image of a state is its successor in a
synchronous updating). BioLQMproposes an adapted version
of the method implemented in PyBoolNet (Klarner et al.,
2014, 2017) using the clingo ASP solver (Gebser et al., 2011),
and introduces a new alternative implementation based on
decision diagrams.

While complex attractors are well estimated through stable
patterns, their exact identification requires further analysis using
external software tools, adapted to the selected updating mode.
In the synchronous case, the BNS tool (Dubrova and Teslenko,
2011) identifies cyclical attractors of length k using constraint
solving. This approach could be extended to other deterministic
updatings, but can not handle non-deterministic cases. In
contrast, BoolSim uses symbolic exploration for the identification
of complex attractors in the synchronous and asynchronous case
(Garg et al., 2008). While this approach scales better than simple
simulation, it is more sensitive to combinatorial explosion than
approaches based on constraint-solving. To perform the analysis
provided by the BoolSim and BNS tools, bioLQM can convert
models to their respective formats.

4. MODEL MODIFICATIONS

Several software tools propose to emulate biological mutations

by constructing model variants in which one or several logical
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rules have been modified. In bioLQM, the various model

modification tools enable the flexible definition of model
variants. The resulting modified models can have a different set
of components than the original model. Each modification can
be described by a keyword (identifier of the type of modification)
and some parameters. The model modifier API in bioLQM
allows to chain several modifications before model conversion
or analysis. The following describes the various types of model
modifications implemented in bioLQM.

Perturbations
A perturbation (often called mutation) enables to change some
of the logical rules of a model. BioLQM provides three types
of “atomic perturbations” (fixed value, range restriction, and
removal of a regulator) which modify a single logical rule.
They are briefly described below, more formal definitions can
be found in Appendix 3 in Supplementary Material. “Multiple
perturbations” can then be used to combine several atomic
perturbations. The definition of these perturbations is supported
by a simple syntax, as illustrated in section 5.3 and described in
the online documentation.

Perturbations are commonly used to model gene knockouts
by fixing the activity level of the corresponding component to 0,
or ectopic expressions by fixing it to 1. Multi-valued components
can also be fixed to a higher activity level (inside their normal
activity range).

Restricting the activity range of multi-valued components
enables to account for a partially impaired activity ([loss of the
higher activity level(s)] or to set a minimal activity level.

Lastly, it is possible to define the perturbation of a single

interaction, i.e., to remove one of the regulators of a component.
This type of perturbation enables for example the definition of
the loss of a single binding site preventing the action of the
source component on a subset of its targets. The removal of
an interaction amounts to rewrite the logical rule of its target
component. Note that the atomic perturbation describes the
effect on a single target: a single “biological mutation” may
correspond to a “multiple perturbation” in the model if several
targets are affected by the loss of the same binding site. This type
of perturbation is also convenient to evaluate the importance of
an interaction representing an hypothetical effect.

4.1. Model Reduction
Model reduction aims to ease the analysis of models with a
large number of components by constructing a smaller model
involving fewer components, but exhibiting similar dynamical
properties. BioLQM provides a model reduction method which
updates the logical rules of the remaining components to emulate
the effect of the removed components (Naldi et al., 2011; Veliz-
Cuba, 2011). This reduction preserves key dynamical properties
of the model, in particular the stable states and stable patterns.
However, it can affect some dynamical properties, depending on
the choice of reduced components.

This modifier usually relies on the specification of the set
of components to reduce. Some types of reduction can be fully
automated. In particular, bioLQM supports the reduction of
output components, which was shown to preserve attractors

and reachability properties (Naldi et al., 2012), as well as the
propagation of fixed components, which has also been shown to
preserve attractors (Saadatpour et al., 2013).

After reduction, the reduced components are not fully
eliminated from bioLQM: they are no longer allowed to regulate
other components, but they keep a logical rule to allow the
computation of their expected value in the reduced model.

4.2. Boolean Mapping of Multi-Valued
Models
As discussed above, some software tools and formats are limited
to Booleanmodels, for example as they rely on specific theoretical
results or data structures. To apply such software tools to the
analysis of a multi-valued model, we can construct a Boolean
model such that its dynamical properties can be transferred to
the original multi-valued model.

This model Booleanization step is based on the Boolean
mapping discussed by Didier et al. (2011). In this mapping,
a multi-valued component with a maximal activity level m is
replaced by m Boolean components, each denoting increasing
activity. All possible states of the original model can then be
associated to states of the Boolean model. The logical rules of the
new model ensure that we obtain the same transitions between
these states. However, some states of the Boolean model are not
mapped to states of the original model. These additional states
are called “non-admissible states.”

The dynamical properties observed on the admissible states
of the Boolean model can be transferred to the original model.
The implementation proposed here further ensures that all
synchronous and asynchronous simulations starting with a non-
admissible state can lead to an admissible state after a sufficient
number of steps. This property ensures that no attractor contains
any non-admissible state (see Figure 2).

Model Booleanization is used automatically when converting
multi-valued models to formats supporting only Boolean
models. It can also be performed explicitly, like other model
modifications.

5. USE CASE: ANALYSIS OF THE
P53-MDM2 NETWORK

The cellular response to DNA damage relies on the p53
transcription factor, which induces the synthesis of DNA repair
proteins. The ubiquitin ligase Mdm2 blocks the transcriptional
activity on p53 in the nucleus, while p53 activates the
transcription of Mdm2 and inhibits its nuclear translocation.
In this section, we use a logical model involving DNA damage,
p53, Mdm2 in the cytoplasm and Mdm2 in the nucleus. See
the recently published GINsim tutorial Naldi et al. (2018a) and
the enclosed references for a more complete description of this
system and its encoding into a logical model.

In the following, we define the model in a text file named
p53.mnet, using a simple text format for the definition of
multi-valued logical models (p53 and cytoplasmic Mdm2 are
represented by ternary components). Each line of the file
reproduced below assigns a logical function to one of the
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components of the model. The line starts with the the identifier of
the component, separated from the function itself by a leftwards
arrow (<-). The &, |, and ! symbols stand for the AND, OR,
and NOT operations respectively. The colon character (:) is used
to specify multi-valued thresholds, both for assigning the target
component and inside the functions.

DNAdam <- DNAdam & !p53:2

p53:2 <- !Mdm2nuc

Mdm2cyt:1 <- !p53:2

Mdm2cyt:2 <- p53:2

Mdm2nuc <- Mdm2cyt:2 | (Mdm2cyt & !p53 & !DNAdam)

5.1. Install and Launch bioLQM
Documentation, source code and releases (under the LGPL v3
license) are available on http://colomoto.org/biolqm. BioLQM
is distributed as a JAR file2, which can be launched with the
command java -jar bioLQM.jar. In this section, we will
use the bioLQM command as shorthand.

5.2. Resting State and DNA Repair
We start by looking for the stable states (fixed points) of this
model. For this, we launch bioLQM on the command-line, load
the model from the p53.mnet file defined above, and run the
fixpoints tool. The corresponding command line and its
output are reproduced hereafter.

$ bioLQM p53.mnet -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

In the output, bioLQM displays a first line with the list of
components, followed by a line for each identified stable state,
giving the activity level of each component in the same order.
The p53-Mdm2 model has a single stable state corresponding to
a resting state in absence of DNA damage. In this state, the basal
activity of Mdm2 prevents p53 activation. This analysis shows
all the stable states of the model, but does not identify more
complex attractors.We can then use the trapspace tool to identify
stable patterns, which provide a good approximation of complex
attractors in practice.

$ bioLQM p53.mnet -r trapspace

DNAdam p53_b1 p53_b2 Mdm2cyt_b1 Mdm2cyt_b2 Mdm2nuc

0 0 0 1 0 1

In this output, the two multi-valued components of the model
have been extended to four Boolean components. While this
requires a careful interpretation, it provides fine-grained results
for complex attractors in which multi-valued components can
be restricted to a range of their possible activity levels. Here we
obtain a single pattern corresponding to the previously identified
stable state. Note that this result does not strictly rule out the
existence of a complex attractor, but attractors which do not
correspond to such stable patterns are rare in practice and often
depend on subtle delay effects. In this model, the resting state is
indeed the only attractor.

We can then evaluate the behavior of this network upon
addition of DNA damage to this resting state. For this, we use

2It requires a Java Runtime Environment, see https://www.java.com

the trace tool to perform a synchronous simulation, starting
with an initial state (defined after the -i flag) obtained by adding
DNA damage to the resting state.

$ bioLQM p53.mnet -r trace -i 1011

1011

1010

1110

1210

0220

0221

0121

0011

In this simulation trace, we see that the introduction of DNA
damage in the resting state leads to the inactivation of Mdm2 in
the nucleus, enabling the activation of p53. This triggers DNA
repair and allows Mdm2 to accumulate in the cytoplasm. Finally,
Mdm2 can enter the nucleus and inhibit p53, coming back to
the resting state. In this simulation, we assume that all possible
transitions happen synchronously in each state, which could lead
to artefactual trajectories. Asynchronous simulations are widely
considered as more reliable, but they lead to a large number of
alternative branches and are not well suited for simple command-
line simulations. We can however perform a random walk in the
set of possible asynchronous trajectories using the random tool.
In this case, all asynchronous trajectories eventually lead to the
same stable state (not illustrated here).

5.3. Definition of Model Perturbation
We then apply a perturbation to study the impact of a p53
knockout on the list of stable states. The -m perturbation

parameters trigger the construction of a modified model. The
following parameters (up to the next flag starting with a minus
sign) define the modified functions. Here p53%0 describes a loss
of p53 activity.

$ bioLQM p53.mnet -m perturbation p53%0 -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

1010

We see that the resting state is still valid in the p53 knockout,
however a new stable state appears in which DNA damage could
not be repaired.

Instead of a full knockout of p53, we then evaluate a more
subtle perturbation in which only its ability to trigger the DNA
repair machinery is impaired. This corresponds to the removal of
the interaction between p53 and DNAdam in our model.

$ bioLQM p53.mnet -m perturbation p53:DNAdam%0 -r fixpoints

DNAdam p53 Mdm2cyt Mdm2nuc

0011

$ bioLQM p53.mnet -m perturbation p53:DNAdam%0 -r trapspace

DNAdam p53_b1 p53_b2 Mdm2cyt_b1 Mdm2cyt_b2 Mdm2nuc

0 0 0 1 0 1

1 - - 1 - -

Here we see that this perturbation does not affect the stability
of the resting state, and does not create an additional stable state
as in the full p53 knockout case. However, the trapspace tool
reveals the creation of a complex attractor involving oscillations
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of p53 andMdm2. Note that these oscillations exist transiently in
the original model but lead back to the resting state after DNA
repair.

5.4. Model Conversion Enables
Interoperability
As discussed in section 2, the analysis of complex models can
combine several software tools. After running the following
command, the new p53.sbml file will contain the functions
defined above in the SBML qual format. This format is suitable
for use in several other tools, or for submission in the BioModels
database (Chelliah et al., 2013).

$ bioLQM p53.mnet p53.sbml

5.5. Definition of Complex Analysis as
Scripts
More complex analysis tasks can use the integrated scripting

interface. Based on the java scripting engine, it supports scripts
written in javascript (as part of the java platform) or in another
supported language by providing additional libraries (including
python and lua). The following sample script generates all
possible individual knockout perturbations, and saves each
modified model.
filename = lqm.args[0]

model = lqm.load(filename)

nodes = model.getComponents()

for (i in nodes) {

node = nodes[i]

perturbed = lqm.modify(model, ’perturbation’, node+’%0’)

lqm.save(perturbed, filename+"_"+node+"_KO.mnet")

}

This script can be launched using the -s flag, followed by the
script file name. Additional arguments can be used to adapt the
behavior of the script. In this example, we specify the name of the
original model file.

$ bioLQM -s generate_perturbations.js p53.mnet

The recently introduced CoLoMoTo Docker image (Naldi
et al., 2018b) provides a python API integrating several
complementary software tools. This environment includes a
dedicated python API for bioLQM, which plays a central role in
model conversion.

6. SUMMARY AND DISCUSSION

The increasing use of logical models of biological regulatory
networks led to the development of multiple complementary
software tools for their analysis. The recent introduction of the
SBML qual format (Chaouiya et al., 2013) and the formation of
the CoLoMoTo consortium (Naldi et al., 2015) aims to facilitate
the exchange of models between tools. The bioLQM toolkit
enables the use of additional software tools through conversion
to their native formats. It provides model conversion operations
in the CoLoMoTo notebook (Naldi et al., 2018b), enabling the
delineation of analysis workflow involving a series of different
tools.

BioLQM can also be used to apply various perturbations
to the converted models, enabling the study of model variants
emulating a knockout, an ectopic activity, or the loss of an
interaction. Model modifications include the booleanization
of multi-valued models for analysis with tools restricted to a
Boolean formalism, as well as model reduction, decreasing the
number of components to ease the analysis of complex models.

Finally, bioLQM provides several internal tools for the
dynamical analysis of logical models. Two of the included tools
allow the construction of deterministic and stochastic simulation
traces, based on a comprehensive collection of updating modes.
BioLQM also implements non-deterministic updating modes,
which can be used as core components of complete simulation
engines, as done by the GINsim (Naldi et al., 2018a) and Epilog
(Varela et al., 2013) software suites. Two other tools enable the
efficient identification of stable states and the approximation of
most complex attractors.

The features described above are organized in a flexible
architecture to facilitate the addition of new modules (file
formats, model modifications, analysis tools) and to provide a
consistent API. In the next version, the configuration API of
analysis tools will be further improved to improve their use
through python scripts in the new CoLoMoTo notebook.

Hardware requirements strongly depend on the size and
structure of models and the operations performed. The
complexity of individual logical rules can be a limiting factor:
components with tens of regulators could have intricate rules
with high computational cost. Fortunately, such rules are seldom
used in biological models. Any desktop computer should be
able to load and convert most models, including large ones.
However, detailed dynamical analysis of models beyond 30
components can rapidly fill the available memory. In bioLQM,
the fixpoints and trapspace analysis tools rely on efficient
constraint-solving methods, which can scale to hundreds of
components. The trace and random simulation tools are
designed to work on large models as well by avoiding to
store all visited states and interrupting the simulation when a
stable state is reached or after a limit on the number of steps.
In future versions, these tools will further use the identified
trapspaces to interrupt the simulation when reaching a complex
attractor.

BioLQM uses decision diagrams to store the logical rules
internally, which enforces a normalized representation of the
function, depending on the ordering of components. It has
the advantage of providing guarantees on the number of tests
to perform to evaluate a function, but it replaces the original
representation of the function, making it harder to manipulate
by the user afterwards. Future version will include several
alternative representations to preserve hand-crafted logical
functions through conversion (when the output format allows it).

Logical models are non-deterministic when using the
asynchronous updating, however individual logical rules are
deterministic: they associate a single “target value” to each state
of the system. The ability to lift this limitation is considered
in the design of the new internal data structure, but is not an
immediate goal: the next releases of bioLQM will remain focused
on deterministic functions.
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In logical models (and by extension in bioLQM), each
component is associated to its own logical rule, however the Petri
net and automata network formalisms separate components from
transitions. This separation allows in particular the definition
of transitions affecting several components simultaneously. Such
behaviors could be emulated in logical models through the
addition of synchronizing components. Proper support for this
use case would require extensions of the SBML qual specification,
as well as changes in the internal data structure.

Like most modeling tools, bioLQM is currently centered on
logical rules, however a complete model may contain important
additional information, such as annotations and graphical
layout information. Model annotations are supported in SBML
core (without additional extensions), however annotations can
be defined in any format, hindering interoperability. Further
discussions are needed within the community to delineate best
practices and ensure that annotations can be shared efficiently.
Graphical layout information can be stored along with SBML
qual models using a dedicated extension. This information is
currently supported by JSBML and GINsim, it will be integrated
in future versions of bioLQM. JSON “sidecar” files could then be
used to facilitate the integration of such additional information
with file formats which do not support it directly.

The reproducibility of model analysis relies on sharing both
the model itself and the definition of simulation parameters, in
particular initial states and updating modes. A single initial state
can be defined in the SBML qual file. Additional initial states
and simulation parameters fall in the scope of the Simulation
Experiment Description Markup Language (SED-ML) format

(Bergmann et al., 2015), which does not yet support qualitative
models. Ongoing discussions should lead to extensions of the
SED-ML format and the Kinetic Simulation Algorithm Ontology

(Courtot et al., 2014) to describe model modifications and
simulation parameters. These extensions will then be integrated
into bioLQM and other qualitative modeling software.
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