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Many functions of the human body possess a daily rhythm, disruptions of which

often lead to disease. Dynamic cerebral autoregulation (dCA) stabilizes the cerebral

blood flow to prompt normal neural function. However, whether dCA is stable across

the day remains unknown. This study aimed to investigate the daily rhythm of dCA.

Fifty-one healthy adults (38.294 ± 13.279 years, 40 females) were recruited and

received six dCA measurements per individual that were conducted at predefined

time points: 8:00, 9:00, 11:00, 14:00, 17:00, and 20:00. Although the blood pressure

fluctuated significantly, there was no statistical difference in phase difference and gain

(autoregulatory parameters) across the six time points. This study demonstrates that dCA

remains stable during the interval from 8a.m. to 8 p.m. and underscores the importance

of stable dCA in maintaining cerebral blood flow and neural function.

Keywords: dynamic cerebral autoregulation, blood pressure, cerebral blood flow, daily rhythm, cerebrovascular

disease

INTRODUCTION

Many functions of the human body have their own circadian rhythms and change over the
course of a day. Dynamic cerebral autoregulation (dCA) is a process to maintain cerebral blood
perfusion at an appropriate state via regulating cerebral vasculature (Budohoski et al., 2013).
Cerebral autoregulation typically works with a mean arterial pressure (MAP) in the range of 60
and 150mm Hg in normal conditions (Paulson et al., 1990). Previous studies have shown that
patients with hemorrhagic stroke (Ma et al., 2016), ischemic stroke (Guo et al., 2014; Salinet et al.,
2018), generalized anxiety (Guo et al., 2018), epilepsy (Lv et al., 2018), and Alzheimer’s disease
(Shekhar et al., 2017) have impaired dCA. Cerebral autoregulation can be affected many factors,
such as CO2 (Meng and Gelb, 2015), nitric oxide (Guo et al., 2016) and altitude level (Jansen et al.,
2007). However, the daily rhythm of dCA and whether the time of measurement interferes with
the evaluation of dCA are unclear. This study aimed to determine the rhythm of dCA during the
interval from 8 a.m. to 8 p.m. in healthy adults.

MATERIAL AND METHODS

Study Protocol
The study performed six dCA measurements at six predefined time points: 8:00, 9:00, 11:00, 14:00,
17:00, and 20:00. All the subjects had no history of chronic diseases or acute infections within the
2 weeks before beginning the study. Subjects with intracranial and/or extracranial major vascular
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stenosis/occlusion diagnosed by a transcranial Doppler (EMS-
9PB, Delica, China) and carotid ultrasound (IU22, Phillips,
Andover, MA) were excluded. All the subjects were informed
of the study protocol 1 day in advance. Subjects were instructed
to refrain from caffeinated drinks and alcohol ingestion for 24 h
before the examination (Claassen et al., 2016). All the subjects
were non-smokers. The subjects were asked to avoid strenuous
exercise, caffeine, and alcohol during the whole research process.
The study was approved by the Ethics Committee of the First
Hospital of Jilin University. Written consent was provided by all
participants.

DCA Measurement
Measurements were performed in the specific examination room
by a professional technician. The room was quiet and had a
controlled temperature of 20◦C to 24◦C. The subjects were
asked to take a relaxed supine position for 10min. First, the
technician measured the arterial blood pressure (ABP) at the
brachial artery by an automatic blood pressure monitor (Omron
711, Japan). The continuous ABP was measured non-invasively
using a servo-controlled plethysmograph (Finometer Model 1,
FMS, Netherlands) at the middle finger. Simultaneously, two 2
mHz transcranial Doppler probes were placed over the temporal
windows to monitor in real-time the bilateral middle cerebral
arteries at a depth of 45–60mm. the probes were fixed with
a customized head frame to make sure cerebral blood flow
velocity (CBFV) was continuously and stably measured. CBFV
and continuous ABP were recorded simultaneously from each
subject for 10min. All data were recorded for further assessment
and analysis.

Data Analysis
Data of ABP and CBFV were acquired using MATLAB
(MathWorks, Inc., US). The dynamic relationship between ABP
and CBFV was analyzed by transfer function analysis (TFA)
as follows (Claassen et al., 2016). A cross-correlation function
between ABP and CBFV was used to align the data on in order to
eliminate the possible time lags. An anti-alias filter, a third-order
Butterworth low-pass filter, with cutoff frequency at 0.5Hz was
applied so as to down-sample the data to 1Hz. Welch’s method
was employed to estimate the autospectrum of ABP, Sxx(f ),
and the cross-spectrum of ABP and CBFV, Sxy(f ), in frequency
domain by averaging the periodograms of the down-sampled
ABP and CBFV with a 50% overlapped hamming window of 90 s.
The transfer function, H(f ), was then deviated as:

H
(

f
)

=
Sxy(f )

Sxx(f ).
(1)

Gain and phase difference (PD) can then be calculated from (1)
by Equation (2) and (3), respectively, as:

∣

∣H
(

f
)
∣
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√
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∣
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∣
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2
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∣
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∣
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}

, (2)

θ = tan−1[HI(f )/HR(f )]. (3)

where R and I denote the real and imaginary parts of the transfer
function, respectively. Phase difference (PD), gain, and coherence

function within a 0.06–0.12Hz frequency range were then
derived from TFA to evaluate dCA. A low value of PD indicates
that CBFV follows the changes of ABP passively, whereas a
high value of PD suggests that CBFV is actively regulated against
the fluctuations of ABP (van Beek et al., 2008). Due to the fact that
TFA is a linear model-based method, signals with low coherence
between ABP and CBFV (≤0.40) were excluded from further
statistical analysis.

Statistical Analysis
The statistical analysis of the data was conducted using IBM
SPSS Statistics 24.0 (Armonk, NY, United States), and a two-
tailed P-value< 0.05 was considered to be statistically significant.
The distribution of data was assessed using a one-sample
Kolmogorov—Smirnov test. Data are shown as mean± standard
deviation (SD) for normally distributed continuous variables.
Repeated measurement analysis of variance was performed for
comparing differences in observed values at different time points.

RESULTS

The current study enrolled 51 healthy adults (38.294 ± 13.279
years, 40 females). DCA was measured in each subject for six
times according to the preset procedure. Thus, the study included
306 records in total for dCA analysis. The coherence of all
records was over 0.40. ABP and heart rate of serial measurements
are presented in Table 1. ABP including systolic blood pressure
(SBP), diastolic blood pressure (DBP), andmean arterial pressure
(MAP) was statistically significant at different time points (P <

0.001, Figure 1, Table 1). Heart rate remained stable during the
whole 12 h in a day (Figure 1, Table 1). The results of female
or male independent analysis and whole subject analysis were
consistent (Table 1).

DCA
From 8:00 to 20:00, the PD was not significantly changed within
12 h (P = 0.233). Furthermore, the PD and gain showed no
difference between left and right hemispheres at all the time
points (P= 0.573, 0.388, 0.854, 0.263, 0.200, 0.665). Interestingly,
the PD tended to be higher at 20:00 compared with the value
at 8:00, but it was not statistically significant (Table 1, Figure 1).
The gain did not significantly differ among all study time points
(Table 1, Figure 1).

DISCUSSION

The present study investigated the daily rhythm of dCA and the
relationship between ABP and dCA. The major finding of the
study was that dCA remains at a stable level during the daytime.
Furthermore, dCA did not fluctuate following the changes of
ABP.

Clinically, dCA measurement can correctly reflect most
aspects of the autoregulatory response (Tiecks et al., 1995).
Previous studies have shown that dCA was affected by the
sympathetic nerve (Hamner et al., 2010), cholinergic nerve
(Hamner et al., 2012), myogenic mechanisms (Tan et al.,
2013), and metabolic control (Payne, 2018). Although these

Frontiers in Physiology | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1642

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Guo et al. Daily Rhythm of dCA

T
A
B
L
E
1
|
D
yn

a
m
ic
c
e
re
b
ra
la
u
to
re
g
u
la
tio

n
p
a
ra
m
e
te
r
(p
h
a
se

d
iff
e
re
n
c
e
,
g
a
in
),
m
e
a
n
a
rt
e
ria

lb
lo
o
d
p
re
ss
u
re
,
a
n
d
h
e
a
rt
ra
te

a
n
d
st
a
tis
tic
a
lr
e
su

lts
.

M
e
a
s
u
re
m
e
n
ts

a
t
8
:0
0

M
e
a
s
u
re
m
e
n
ts

a
t
9
:0
0

M
e
a
s
u
re
m
e
n
ts

a
t
1
1
:0
0

M
e
a
s
u
re
m
e
n
ts

a
t
1
4
:0
0

M
e
a
s
u
re
m
e
n
ts

a
t
1
7
:0
0

M
e
a
s
u
re
m
e
n
ts

a
t
2
0
:0
0

F
p

B
o
th

se
xe

s
P
h
a
se

d
iff
e
re
n
c
e
,
d
e
g
re
e

4
8
.1
6
9
±

1
5
.4
8
8

4
8
.2
4
2
±

1
9
.7
3
3

4
9
.1
6
4
±

1
7
.7
4
1

4
9
.2
1
3
±

1
7
.9
0
1

4
6
.0
6
9
±

1
7
.8
4
6

5
2
.4
2
7
±

1
5
.6
4
8

1
.3
7
9

0
.2
3
3

G
a
in
,
%
/%

0
.9
2
5
±

0
.2
8
9

0
.8
9
0
±

0
.3
0
4

0
.8
9
8
±

0
.2
8
2

0
.9
4
0
±

0
.3
1
7

0
.8
8
1
±

0
.3
0
4

0
.9
1
9
±

0
.2
6
2

0
.7
8
3

0
.5
6
3

S
B
P,

m
m
H
g

1
1
3
.7

±
1
4
.7

1
1
0
.1

±
1
5
.9

1
1
0
.5

±
1
4
.7

1
0
6
.1

±
1
3
.6

1
1
6
.8

±
1
5
.0

1
1
8
.1

±
1
3
.4

1
5
.4
0
5

<
0
.0
0
1

D
B
P,

m
m
H
g

7
1
.2

±
9
.4

7
0
.0

±
1
2
.6

6
7
.3

±
1
0
.1

6
5
.5

±
1
0
.0

7
3
.8

±
1
0
.1

7
3
.9

±
9
.7

1
4
.6
9
5

<
0
.0
0
1

M
A
P,

m
m
H
g

8
5
.4

±
1
0
.5

8
3
.4

±
1
2
.9

8
1
.7

±
1
0
.7

7
9
.0

±
1
0
.4

8
8
.1

±
1
0
.6

8
8
.6

±
1
0
.0

1
9
.6
6
3

<
0
.0
0
1

H
R
,
c
p
m

7
1
.8

±
1
0
.2

7
0
.6

±
1
0
.9

7
0
.3

±
9
.7

7
3
.1

±
9
.2

6
9
.9

±
8
.8

7
2
.0

±
9
.7

2
.3
7
4

0
.0
5
2

M
a
le

P
h
a
se

d
iff
e
re
n
c
e
,
d
e
g
re
e

4
6
.3
7
2
±

1
8
.6
4
5

3
7
.9
0
7
±

1
6
.4
6
6

4
1
.0
4
4
±

2
3
.7
8
1

4
3
.6
4
0
±

1
6
.1
7
5

4
0
.1
7
5
±

1
8
.3
1
7

5
0
.1
3
0
±

1
9
.2
5
8

2
.3
7
8

0
.0
5
2

G
a
in
,
%
/%

0
.9
1
8
±

0
.1
9
4

0
.8
9
9
±

0
.2
5
2

0
.8
4
9
±

0
.2
0
9

0
.9
1
2
±

0
.2
4
1

0
.8
2
3
±

0
.2
2
4

0
.8
7
4
±

0
.2
0
5

0
.8
4
0

0
.5
2
8

S
B
P,

m
m
H
g

1
2
1
.7

±
9
.1

1
2
0
.5

±
9
.6

1
1
7
.9

±
1
2
.1

1
1
8
.0

±
7
.8

1
2
6
.6

±
1
1
.8

1
2
8
.1

±
6
.6

4
.9
9
2

0
.0
0
8

D
B
P,

m
m
H
g

7
4
.0

±
5
.7

7
6
.1

±
1
0
.8

7
0
.5

±
6
.5

7
1
.3

±
9
.3

7
9
.2

±
1
1
.1

7
7
.2

±
7
.0

2
.9
4
4

0
.0
2
1

M
A
P,

m
m
H
g

8
9
.9

±
5
.9

9
0
.9

±
1
0
.1

8
6
.3

±
7
.8

8
6
.8

±
8
.4

9
5
.0

±
1
0
.8

9
4
.2

±
6
.1

4
.4
3
8

0
.0
0
2

H
R
,
c
p
m

7
2
.2

±
1
3
.4

7
2
.7

±
9
.0

6
7
.9

±
7
.5

7
4
.9

±
7
.3

6
9
.4

±
6
.2

6
9
.9

±
9
.5

1
.6
7
5

0
.1
5
8

F
e
m
a
le

P
h
a
se

d
iff
e
re
n
c
e
,
d
e
g
re
e

4
8
.6
6
3
±

1
4
.7
3
8

5
1
.0
8
4
±

1
9
.7
8
2

5
1
.3
9
7
±

1
5
.3
2
4

5
0
.7
4
5
±

1
8
.2
3
6

4
7
.6
8
9
±

1
7
.6
0
1

5
3
.0
5
9
±

1
4
.7
2
0

0
8
5
8

0
.5
1
0

G
a
in
,
%
/%

0
.9
2
8
±

0
.3
1
3

0
.8
8
7
±

0
.3
2
0

0
.9
1
2
±

0
.3
0
0

0
.9
4
7
±

0
.3
3
7

0
.8
9
7
±

0
.3
2
3

0
.9
3
1
±

0
.2
7
7

0
.5
3
7

0
.7
4
8

S
B
P,

m
m
H
g

1
1
1
.5

±
1
5
.3

1
0
7
.3

±
1
6
.2

1
0
8
.5

±
1
4
.8

1
0
2
.9

±
1
3
.0

1
1
4
.2

±
1
4
.8

1
1
5
.4

±
1
3
.6

1
1
.6
2
0

<
0
.0
0
1

D
B
P,

m
m
H
g

7
0
.4

±
1
0
.1

6
8
.4

±
1
2
.6

6
6
.4

±
1
0
.8

6
3
.9

±
9
.7

7
2
.3

±
9
.4

7
3
.0

±
1
0
.2

1
2
.4
4
9

<
0
.0
0
1

M
A
P,

m
m
H
g

8
4
.1

±
1
1
.2

8
1
.3

±
1
2
.9

8
0
.4

±
1
1
.2

7
6
.9

±
1
0
.0

8
6
.2

±
9
.9

8
7
.1

±
1
0
.4

1
5
.9
9
4

<
0
.0
0
1

H
R
,
c
p
m

7
1
.7

±
9
.4

7
0
.1

±
1
1
.4

7
0
.9

±
1
0
.2

7
2
.7

±
9
.7

7
0
.1

±
9
.5

7
2
.6

±
9
.8

1
.8
5
4

0
.1
0
4

S
B
P,
s
ys
to
lic

b
lo
o
d
p
re
s
s
u
re
;
D
B
P,
d
ia
s
to
lic

b
lo
o
d
p
re
s
s
u
re
;
M
A
P,
m
e
a
n
a
rt
e
ri
a
lp
re
s
s
u
re
;
H
R
,
h
e
a
rt
ra
te
;
c
p
m
,
c
o
u
n
ts
p
e
r
m
in
u
te
s
.

Frontiers in Physiology | www.frontiersin.org 3 November 2018 | Volume 9 | Article 1642

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Guo et al. Daily Rhythm of dCA

FIGURE 1 | (A) The autoregulatory parameter (phase difference and gain) derived from the transfer function analysis and estimated over a range (0.06–0.12Hz, the

yellow area) at 8:00, 9:00, 11:00, 14:00 ,17:00, and 20:00. Each colored line denotes the averaged PD or gain estimated from all subjects at one particular time point

that we collected the data. (B) Statistical analysis of serial dCA, arterial blood pressure, and heart rate of serial measurements. The solid point represents means, and

the whiskers denote standard deviation. *P < 0.05 for comparison of different time points by repeated measurement analysis of variance. HR, indicates heart rate;

cpm, counts per minutes; SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure.

mechanisms have their own change rules, we showed that dCA
is maintained at a stable level. The present study may indicate
that the daily rhythm of dCA is independent of the change rule of
one single mechanism.

Cerebral autoregulation functions to stabilize cerebral blood
flow and metabolism while the ABP changes (Lassen, 1959).
When dCA was impaired, the cerebral blood flow would change
with fluctuations in blood pressure, leading to cerebrovascular
disease. ABP fluctuation has been found to be a potent risk
factor for cerebrovascular disease (Yano and Kario, 2012). Due
to the morning blood pressure surge, most strokes occur in
the morning hours (Marler et al., 1989; Yano and Kario, 2012).
Similar to previous studies (Atkinson et al., 2010; Douma and
Gumz, 2018), the present study reproduced the finding of ABP

fluctuations. However, we found that dCA was independent of
ABP fluctuations during the daytime.

Our analysis indicated that healthy adults have stable and
functional dCA to maintain brain perfusion, similar to the

findings of a previous study (Brys et al., 2003). Chi et al have
demonstrated that dCA was interchangeable and effective by
assessing from the internal carotid artery compared with that
from the middle cerebral artery (Chi et al., 2017). Also, dCA
assessed by using a 5min recording was identical with that
using a 10min recording in the clinical application (Chi et al.,
2018). Despite the stability of different recording time and
different measuring locations, we have discovered the stable
rhythm of dCA during the 8:00–20:00 interval. And, conversely
to the abundant literature showing differences in cerebral blood
flow between sexes (Barnes, 2017) and the influence of sex on
circadian rhythms (Yan and Silver, 2016), the present study has
shown the same results for both sexes.

In the literature, dCA was reported to be reduced at

6 a.m.−8 a.m. (Ainslie et al., 2007), which is different from the
present study. We speculate that the differences might arise
from three reasons: (1) different detection time of cerebral
autoregulation: Ainslie et al performed the morning dCA
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measurement in the early morning (6 a.m.−8 a.m.), while our
study performed the morning dCA measurement at 8 AM.
Because we don’t know the differences between “early morning”
and “morning” of the dCA, we cannot exclude the difference
caused by the detection time points; (2) the sex of the subjects:
Ainslie et al recruited all male subjects, while the present study
recruited both male and female subjects; (3) the age of the
subjects; Ainslie et al recruited young subjects with a mean age
of 25. However, our study recruited middle-aged subjects with a
mean age of 38.

The present study shows that dCA is a reliable indicator
and remains at a stable level during the daytime and was not
affected by fluctuations of ABP. Thus, given its stability and
reliability, it possible to assist in diagnosing and assessing the
cerebrovascular function of cerebrovascular diseases, generalized
anxiety, epilepsy and Alzheimer’s disease. Simultaneously, the
dCA also can be used to evaluate the treatment effect of the above
disease.

However, there are several limitations to the study. The
current study lacks the nocturnal and early morning rhythm
of dCA. The main reason is that monitoring dCA requires
the subjects to stay awake. If night monitoring is carried out,
subjects may not sleep well, which may affect daytime results.
Furthermore, due to the nature of the observational study, we
did not collect the blood samples at different time points to test
the changes of biomarkers. These questions should be pursued in
future studies.

In summary, the rhythm of dCA keep was steady during the
8 a.m.−8 a.m. interval in healthy adults, and it is not influenced
by the fluctuations of ABP. For evaluating dCA, one random
measurement of dCA is reliable.
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