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Since brown adipose tissue (BAT) was first identified in the interscapular area of marmots by
Gessner in 1551 (Smith and Horwitz, 1969), views on its functions have continued to evolve
(Table 1). The initial proposition was that it was linked to hibernation, reflecting the fact that
marmots are hibernating animals. This was followed sequentially by the view that BAT was part of
the thymus (1670–1817), an endocrine gland active in the formation of blood (1817–63), a modified
form of fat tissue providing a reservoir for food substances (1863–1902), and again as an endocrine
gland (1902–61) (Afzelius, 1970). It was only in 1961 that the tissue was finally identified as an
effecter of non-shivering thermogenesis (NST) and the “metabolic power” of brown adipocytes
recognized (Smith and Horwitz, 1969).

There were three situations where BAT was understood to be highly active—during arousal
from hibernation, in the response to cold-exposure of certain adult mammals, and in cold-stressed
mammalian neonates (Smith and Horwitz, 1969). The quantitative importance of BAT to NST was
initially unclear. However, in the late 1970’s it was clarified in the case of cold-acclimated rodents
by employing radioactively microspheres to map regional blood flow, these studies demonstrating
that brown fat may account for up to two-thirds of heat from NST (Foster and Frydman, 1978,
1979). The mechanism for heat generation in brown adipocytes was also being explored, and the
uncoupling of oxidative phosphorylation through proton leakage across the inner mitochondrial
membrane was established as the pathway by which thermogenesis occurs (Nicholls and Locke,
1984). This proton conductance pathway was shown to be dependent on, and regulated by, a
cold-inducible mitochondrial uncoupling protein—UCP1 (Ricquier and Kader, 1976; Nicholls and
Locke, 1984; Ricquier, 2017).

Since these pivotal advances, perspectives on the physiology of BAT have continued to evolve.
Here, recent views on the role of the tissue are summarized and the potential implications for the
treatment of obesity considered.

BAT AND NUTRITIONAL ENERGETICS

A major new dimension emerged in the late 1970’s with the establishment of a link between BAT
and energy balance (Table 1). This resulted from two key observations, one of which was that
rats exhibiting high rates of diet-induced thermogenesis on a cafeteria diet are characterized by
an activation of BAT (Rothwell and Stock, 1979), including increased mitochondrial GDP binding
indicative of an activation of the proton conductance pathway (Brooks et al., 1980). The othermajor
observation was of decreased BAT activity, with a reduction in GDP binding, in obese (ob/ob) mice;
this was proposed as a causative factor in the development of their obesity (Himms-Hagen and
Desautels, 1978).

These pioneering observations resulted in a new paradigm in the etiology of obesity (Rothwell
and Stock, 1981; Himms-Hagen, 1983, 1989; Trayhurn, 1989). A tissue and molecular basis for
the reduced energy expenditure on facultative thermogenesis proposed as an important factor in
the development of obesity had been identified. Abnormalities in BAT activity were subsequently
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TABLE 1 | Evolution of perspectives on the physiological functions and

characteristics of brown adipose tissue.

Year Function

1551 Description by Gessner—role in hibernation

1670-1817 Part of the thymus

1817-1863 An endocrine gland—and active in the formation of blood

1863-1902 Modified form of fat tissue which serves as a reservoir for food

substances

1902-1961 An endocrine gland once more

1961- Thermogenic organ—non-shivering thermogenesis

1974-7 Elucidation of unique bioenergetic properties of brown fat

mitochondria (proton leak)

1976-8 Discovery of UCP1

1978 Demonstration of quantitative importance to non-shivering

thermogenesis in cold-acclimated rodents

1978/9- Involved in energy balance (diet-induced thermogenesis) and

obesity

2009- Definitive identification of BAT in adult humans and its metabolic

plasticity

2010/12 Discovery of “beige”/“brite” adipocytes

2011/12 Role in glucose disposal and triglyceride clearance – metabolic

homeostasis

Based partly on Afzelius (1970).

reported in a range of animal obesities, including db/dbmice and
Zucker (fa/fa) rats, and in rodents with experimentally-induced
obesity (Himms-Hagen, 1989; Trayhurn, 2017). The central
role of BAT in nutritional energetics and body fat regulation
was further evident from studies demonstrating changes in
thermogenic activity in a range of physiological conditions—
from fasting to lactation and photoperiod-induced seasonal
changes in body weight (Trayhurn, 2017).

BROWN ADIPOSE TISSUE IN MAN

A widely debated question in the 1980’s was the extent to
which studies on laboratory rodents were relevant to energetics
and obesity in humans. This was effectively two questions—
whether reduced expenditure on thermogenesis underpins the
development of human obesity, and whether BAT is present in
adults and thus the potential locus of impaired thermogenesis.
The first question has been the source of continuing debate, but
what seems clear is that thermogenesis is not a major component
of expenditure in adult humans (Wijers et al., 2007; van Marken
Lichtenbelt and Schrauwen, 2011)—certainly compared with
small rodents such as mice in the cold where it accounts for up
to two-thirds of total expenditure (Trayhurn and James, 1978;
Trayhurn, 1979).

In the early 1980’s, BAT was considered, essentially on
histological criteria, to be absent in humans after the first years
of life. This parallels precocial species such as goats and sheep
in which BAT, while abundant at birth, rapidly loses UCP1 and
thermogenic capacity over the first weeks of postnatal life being
replaced by white fat (Casteilla et al., 1987; Trayhurn et al., 1993).

Until 2009, the widely held view was that BAT (or thermogenic
adipocytes) is absent from adult humans, despite anatomical
studies identifying multi-locular adipocytes (Heaton, 1972), and
more critically: (i) UCP1 being identified in adipose tissue depots
of adults, including elderly subjects (Lean et al., 1986a), (ii)
activation of BAT being demonstrated in phaeochromocytoma
patients (Ricquier et al., 1982; Lean et al., 1986b), and (iii)
UCP1 gene expression in adipose tissue of adults, particularly in
phaeochromocytoma (Bouillaud et al., 1988).

The lack of recognition that adults do contain active BAT
was a key element in the decline of interest in the tissue
by the 1990’s. However, over the past decade several major
developments have led to a renewed focus on BAT. First, studies
from the late 2000’s utilizing FDG-PET (fluorodeoxyglucose
positron emission tomography), commonly employed to track
tumor metastasis, have mapped areas of high glucose uptake
which also contain UCP1, thereby firmly identifying active BAT
in adults (Cypess et al., 2009; Virtanen et al., 2009; Moonen
et al., 2019). Through such studies, increased BAT activity has
been observed in response to multiple stimuli, including cold
exposure (as in rodents), and administration of insulin and the
β3-adrenoceptor agonist mirabregon (van Marken Lichtenbelt
et al., 2009; Virtanen et al., 2009; Orava et al., 2011; Ouellet et al.,
2012; Cypess Aaron et al., 2015). Importantly, the thermogenic
activity of the tissue has been shown to decline with age and
increasing BMI (Cypess et al., 2009; vanMarken Lichtenbelt et al.,
2009; Pfannenberg et al., 2010; Moonen et al., 2019).

RECENT DEVELOPMENTS IN BAT
PHYSIOLOGY

An important development over the past decade, although not on
BAT as such, is the discovery of a third form of adipocyte—“brite”
or “beige” (Petrovic et al., 2010; Wu et al., 2012; Carobbio et al.,
2019). These fat cells contain UCP1, providing the potential for
thermogenesis, and have some of the other molecular signatures
of brown adipocytes (Petrovic et al., 2010; Wu et al., 2012).
Beige adipocytes are found primarily within WAT depots, and
are recruited particularly during cold-exposure and following β-
adrenergic stimulation resulting in the “browning” of white fat
(Carobbio et al., 2019).

A further advance comes from evidence suggesting that BAT
plays an important role inmetabolic homeostasis, the tissue being
a major site of glucose disposal, insulin action and triglyceride
clearance (Bartelt et al., 2011; Stanford et al., 2013; Bartelt and
Heeren, 2014). A high capacity for glucose uptake, which can be
stimulated by insulin and cold, is evident from FDG-PET studies.
Roles for BAT in glucose homeostasis and triglyceride clearance
have led to the proposition that reduced activity in the tissue may
underlie the metabolic syndrome (Nedergaard et al., 2011; Bartelt
and Heeren, 2014; Moonen et al., 2019).

An additional dimension is the function of BAT as a
secretory organ. Apart from the release of fatty acids, brown
adipocytes synthesize and secrete multiple peptide/protein
factors, these “brown adipokines” paralleling the adipokines
of white adipocytes (Villarroya et al., 2013, 2017). While the
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adipokinome of white fat cells numbers several hundred entities
(Trayhurn, 2013), it is unclear whether the secretome from
brown adipocytes is as extensive. The brown adipokinome
includes classical adipokines such as leptin and IL-6 (Villarroya
et al., 2013, 2017), but brown adipocytes are unlikely to be an
important source of these factors.

BAT AS A THERAPEUTIC TARGET—IS IT
REALISTIC?

A major driver behind the renewed interest in BAT relates to its
potential as a therapeutic target to treat obesity. This reflects the
revival of a concept current in the 1980’s, but it is now based
on the firm acceptance that the tissue is present, thermogenically
active and exhibits plasticity in adults. The ability to recruit beige
adipocytes within WAT has further added to the focus on BAT
(Petrovic et al., 2010; Wu et al., 2012; Jespersen Naja et al., 2013;
Sacks et al., 2013), ormore strictly onUCP1-dependent adipocyte
thermogenesis, as a therapeutic route in obesity. But how realistic
is this?

The Case in Favor
There are substantive points in favor of BAT as a target—which
in principal can be through increasing the thermogenic
activity/capacity of pre-existing brown adipocytes, by
recruitment of new brown adipocytes, or a combination of
the two. Additionally, there is the potential to recruit beige cells
through “browning.” BAT has the conceptual attraction of being
a clearly defined target with a precise molecular end-point in
the amount and activity of UCP1. It also centres on one specific
element of energy balance—adaptive energy expenditure—so
augmentation is a logical approach. Furthermore, as well
as increasing expenditure it has the potential of improving
metabolic homeostasis through its role in glucose utilization
and lipid clearance (Nedergaard and Cannon, 2010; Bartelt and
Heeren, 2014; Moonen et al., 2019).

The Case Against
There are, nevertheless, also substantive arguments against
BAT as a realistic target. A key requirement is that the
stimulation of energy expenditure through BAT does not lead
to a compensatory increase in energy intake, which would
be counter-productive. It is uncertain whether compensation
would occur under normal circumstances; however, increased
intake is very evident in rodents in the cold, with for example
mice consuming three times more food at 4◦C than at
thermoneutrality (Trayhurn, 1981), suggesting that increased
BAT activity is linked to higher intake.

A critical issue is the quantitative importance of BAT
thermogenesis to energy expenditure in adults. Clearly, if the
contribution is minimal then it is a less obvious target for
modulating energy balance—though a small, but sustained,
imbalance between expenditure and intake would be effective.
Estimates of the importance of BAT in energy expenditure range
from 1 to 5% of RMR, but these are in effect basal values and it is
argued that with stimulation the value will be higher at up to 16%

of RMR (van der Lans et al., 2013; Moonen et al., 2019)–this can
be viewed as part of the “case in favor.”

A number of approaches to increasing the thermogenic
activity and capacity of BAT have been proposed. The initial
route was to design selective β3-agonists, reflecting the centrality
of the β3-adrenoceptor in the regulation of thermogenesis,
and several were developed (Arch, 2002). However, although
the first generation compounds were effective in stimulating
expenditure and reversing obesity in rodents, their efficacy
and potency in humans is poor due to a combination of
factors including sequence differences between the human and
rodent β3-adrenoceptor (Arch, 2002). Nevertheless, selective β3-
agonists continue to be of interest with mirabegron having
recently been shown to stimulate RMR and glucose uptake
by BAT (Cypess Aaron et al., 2015). Alternative strategies
have been proposed and these include central stimulation of
the sympathetic innervation to BAT, brown fat transplantation
and stem cell therapy (Gunawardana and Piston, 2012; Nishio
et al., 2012; Guénantin et al., 2017; Carobbio et al., 2019).
While potentially feasible, it is difficult to regard transplantation
and stem cell therapy as practical approaches to obesity
treatment.

Recruitment of beige cells would augment the number of
thermogenic adipocytes, and multiple factors can facilitate this
process (Bartelt and Heeren, 2014; Nedergaard and Cannon,
2014; Carobbio et al., 2019). There are, however, potential
constraints on whether beige adipocytes may provide significant
amounts of heat—apart from any intracellular limitation. To
make a significant contribution to NST, close proximity to an
extensive vascular network would be expected, both to rapidly
dissipate the heat generated and to provide oxygen and other
nutrients to fuel high rates of thermogenesis. Furthermore,
thermogenesis requires noradrenergic stimulation, and the
recruitment of beige adipocytes needs to be accompanied by local
growth of the sympathetic innervation. A report that alternatively
activated macrophages stimulate thermogenesis in BAT through
the secretion of catecholamines (Nguyen et al., 2011) has not
been supported subsequently (Fischer et al., 2017); however,
the hormone meterorin-like promotes browning through M2
macrophage activation (Rao et al., 2014).

The final reservation to treating obesity through the
stimulation of BAT thermogenesis lies in the potential
cardiovascular risk. While this may be small, and needs to
be balanced against the risks associated with obesity itself,
regulatory agencies are likely to be ultra-cautious given the
readiness with which previous anti-obesity drugs have been
withdrawn following evidence of adverse effects.

CONCLUDING COMMENTS

Our understanding of the functions of BAT has continued to
evolve and it is evident that the tissue hasmultiple actions beyond
a core thermoregulatory role. Recognition of its involvement in
nutritional energetics and the etiology of obesity in the late 1970’s
transformed perspectives on the tissue. Over the past decade
there has been a renaissance of interest in BAT, following clear
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evidence of its presence andmetabolic plasticity in adult humans.
There is currently considerable focus on BAT as a therapeutic
target in the treatment of obesity and its associated metabolic
disorders, aided by the identification of beige adipocytes and the
phenomenon of browning of WAT. However, it is suggested that
in totality there are formidable barriers to this approach and
that the stimulation and recruitment of thermogenic adipocytes

is unlikely to provide a realistic anti-obesity/anti-metabolic
syndrome strategy in the near-future.
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