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Long-term peritoneal dialysis (PD) is associated with peritoneal membrane remodeling.
This includes changes in peritoneal vasculature, which may ultimately lead to inadequate
solute and water removal and treatment failure. The potential cause of such alterations
is chronic inflammation induced by repeated episodes of infectious peritonitis and/or
exposure to bioincompatible PD fluids. While these factors may jeopardize the peritoneal
membrane integrity, it is not clear why adverse peritoneal remodeling develops only in
some PD patients. Increasing evidence points to the differences that occur between
patients in response to the same invading microorganism and/or the differences in the
course of inflammatory reaction triggered by different species. Such differences may
be related to the involvement of different inflammatory mediators. Here, we discuss the
potential role of IL-17 in these processes with emphasis on its impact on peritoneal
mesothelial cells and peritoneal vascularity.
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PERITONEAL MEMBRANE DYSFUNCTION IN PD

Although peritoneal dialysis (PD) is a well-established treatment modality and the most commonly
practiced form of home dialysis, its penetration is well below the utilization rate of 25–30%
considered as optimal (Lameire and Van Biesen, 2010). One of the barriers to PD proliferation
is the fear that durability of the peritoneum is limited and that the membrane may become unable
to sustain treatment at some point. It has been estimated that peritoneal membrane dysfunction is
responsible for approximately 30% of all cases of technique failure (Davies et al., 2011). Indeed,
longitudinal studies show that peritoneal ultrafiltration gradually decreases with time on PD
(Davies et al., 1996). The onset of a decline in ultrafiltration capacity occurs usually 2–4 years
after the initiation of PD (Smit et al., 2004) and appears to result from progressive membrane
injury and (to some extent) from the loss of residual kidney function. Studies of peritoneal
structure and function indicate that two major processes occur during long-term PD treatment:
(i) changes in the peritoneal vasculature resulting in increased transport of small solutes, (ii)
changes in the peritoneal interstitium leading to reduced osmotic conductance of the membrane
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(Davies et al., 2011). These processes can be mediated through
a number of intertwined pathophysiological mechanisms
(Figure 1). By applying an extended 3-pore model of the
peritoneum (Davies et al., 2011), it is possible to explain how
the peritoneal membrane displays increased transport rates for
small solutes and, at same time, becomes more restrictive to
water flow. As the transport of small solutes down an osmotic
gradient depends largely on area, formation of new blood vessels
will increase the surface area available for solute diffusion.
On the other hand, fibrotic thickening of the peritoneum will
increase resistance to fluid flux and will ultimately decrease water
flow through the interstitium. Thus, it appears that the gradual
loss of peritoneal ultrafiltration with time is initially related to
increased solute transport leading to proportional dissipation of
the osmotic gradient. Fibrosis that develops at later stages will
then uncouple the osmotic conductance from solute transport
resulting in further, and disproportionately severe, reduction
in ultrafiltration. In the above scenario, neovascularization
plays a key role, both contributing to increased small-solute
transport and fuelling fibrosis (Wynn, 2007). Indeed, it has been
estimated that up to 75% of patients with ultrafiltration failure
may have increased vascular area (Heimburger et al., 1990; Ho-
Dac-Pannekeet et al., 1997). Moreover, peritoneal biopsies taken
from PD patients show that fibrosis occurs significantly more
often in the presence of vasculopathy (Williams et al., 2002),
and the density of peritoneal blood vessels and submesothelial
and perivascular fibrosis are significantly greater in patients with
membrane failure (Mateijsen et al., 1999; Williams et al., 2002).
Animal models of PD confirm the existence of inverse correlation
between increased vascularization and ultrafiltration (Margetts
et al., 2002). These studies also demonstrate that a decline in
ultrafiltration can be partially prevented by anti-angiogenic
therapy (Margetts et al., 2002).

PERITONEAL VASCULATURE
DURING PD

Because the alterations in peritoneal vasculature develop in
relation to the time spent on PD, their causes are likely to
be therapy-related. They may include (i) exposure to PD fluid
components, (ii) a progressive decline in residual renal function,
and (iii) the occasional episodes of peritonitis. Although acute
peritoneal inflammation may cause a profound decrease in
ultrafiltration, a single and uncomplicated episode of peritonitis
will usually have little long-term effect on the peritoneum
(Albrektsen et al., 2004). In contrast, recurrent or clustered
episodes of infection with highly pathogenic species may lead
to a sustained increase in peritoneal solute transport and a
permanent decrease in ultrafiltration (Davies et al., 1996; Wong
et al., 2000). This effect is particularly evident in the first year
of PD treatment, however, at later stages even patients who
never experienced peritonitis may show a similar increase in
solute transport rate (Davies et al., 2011). It appears therefore
that peritonitis can exacerbate the development of membrane
dysfunction over time but it is not the prime and sole determinant
of the process.

FIGURE 1 | Pathophysiological alterations contributing to ultrafiltration
dysfunction during PD. An increase in peritoneal vascularity plays a key role,
as it increases vascular surface area available for the transport of
small-solutes, including glucose. This leads to an early loss of the glucose
osmotic gradient and a decrease in fluid removal. In addition, angiogenesis
and adverse vascular remodeling promotes excessive extracellular matrix
deposition and tissue fibrosis.

The components of PD solutions that may be injurious to the
peritoneum include non-physiological pH (approximately 5.2),
lactate buffer, increased osmolality, and high concentrations of
glucose and glucose degradation products (GDPs). A longitudinal
analysis has revealed that extensive use of hypertonic PD
solutions with high glucose contents precedes an increase
in solute transport (Davies et al., 2001). This change in
membrane function may lead to less efficient ultrafiltration,
which creates a vicious circle by increasing the need for
more hypertonic glucose exchanges. These requirements may
be further compounded by loss of residual kidney function and
decreased urine output. GDPs present in PD fluids in proportion
to the concentration of glucose may also contribute to membrane
dysfunction by affecting the peritoneal vasculature. It has been
demonstrated that GDPs can induce capillary recruitment and
vasodilation (Mortier et al., 2002), as well as angiogenesis and
hyperpermeability (Hirahara et al., 2006).

The direct effect of uremia on the peritoneal membrane
function is less clear. It appears that in many uremic patients
some changes in the peritoneum occur even before the start of
PD (Williams et al., 2002). Compared with healthy individuals,
such patients often have vasculopathy and significant thickening
of the submesothelial compact zone (Kihm et al., 2008). These
changes are generally attributed to the build-up of uremic
toxins, however, their exact nature is poorly defined. The
peritoneum of rats made uremic by subtotal nephrectomy shows
increased permeability, focal areas of vascular proliferation
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(Combet et al., 2001), and interstitial fibrosis (De Vriese et al.,
2006).

THE ROLE OF VEGF DURING PD

Vascular endothelial growth factor (VEGF) is a key mediator of
pathological changes in blood vessels (Nagy et al., 2007, 2012).
Its effect on peritoneal vascularity during PD can be inferred
from the association between genetic polymorphisms resulting
in increased VEGF production and increased transport rates for
small solutes (Szeto et al., 2004). Mesothelial cells are the main
source of peritoneal VEGF (Mandl-Weber et al., 2002; Gerber
et al., 2006; Boulanger et al., 2007), which can be secreted in
response to many stimuli. These are related to both PD fluid
exposure and peritonitis (reviewed in Witowski and Jörres, 2011).
Expression of the VEGF gene is tightly regulated at multiple
levels, including transcription, mRNA stabilization, alternative
splicing, translation, and subcellular localization (Arcondeguy
et al., 2013). Owing to this complexity, the exact molecular
mechanism controlling VEGF production during PD is only
partially understood. We have previously demonstrated that
different cytokines, which are present in the dialysate during
peritonitis (e.g., IL-1β, TNFα, TGF-β, and IL-6) can regulate
VEGF production by the mesothelium in a context dependent
manner by engaging different sets of transcription factors (Catar
et al., 2013, 2017).

SOURCES AND FUNCTION OF IL-17

The discovery of IL-17 in the 1990s opened a new chapter in
immunology. It led to the identification of a distinct type of T
helper (Th) cells and shed new light on the role of T cells in
inflammation. IL-17 (also known as IL-17A) is the prototypic,
the most potent and the best-characterized member of the IL-
17 family of cytokines comprising IL-17A through IL-17F (see
Beringer et al., 2016 for review). The source of IL-17 has been
identified as a subset of CD4+ effector T cells that was designated
Th17 as it was clearly different from previously known Th1 and
Th2 subtypes. It has transpired that naïve CD4+ T cells can
differentiate into various subsets of effector Th cells (Th1, Th2,
and Th17) depending on the exact cytokine milieu. Each Th
cell differentiation program is governed by specific transcription
factors [T-bet, GATA3 and the retinoic acid-related orphan
receptor-γt (RORγt), respectively] and each type of terminally
differentiated Th cells produces a specific set of effector cytokines.
The polarizing mediators involved at various stages of Th17
cell differentiation include TGF-β, IL-6, IL-1β, IL-21, and IL-23.
These combined signals activate the transcription factor ROR-γt,
which is required for the production of Th17 cell-specific effector
cytokines, including IL-17, IL-22, IL-26, and CCL20 (Figure 2).

IL-17 can originate not only from Th17 cells but also from
innate-like immune cells including CD8+ T cells, invariant
natural killer T cells (iNKT), lymphoid tissue inducer (LTi)
cells, group 3 innate lymphoid (ILC3) cells, CD4−CD8−-double
negative (DN) αβ T cells, and unconventional T cells, such as γδ T

cells and mucosal-associated invariant T (MAIT) cells (Figure 3).
And it came as a surprise when the main source of IL-17 turned
out to be not the expected Th17 cells but γδ T cells, which
constitute only a small fraction of lymphocytes. In contrast to
naïve Th cells, γδ T cells do constitutively express IL-23R and
can immediately respond to IL-23 by secreting IL-17 (Papotto
et al., 2017). As IL-23 is derived mainly from sentinel cells such
as dendritic cells or macrophages, IL-17-producing γδ T cells can
also be viewed as belonging to the category of cells performing
surveillance tasks and responding quickly to pathogens.

BIOLOGICAL ACTIVITY OF IL-17

By virtue of its ability to induce several cytokines and
chemokines, IL-17 has typically been linked to inflammation.
In this respect, IL-17 is critically involved both in essential
protection against infections and in several disorders
characterized by chronic inflammation. By blocking IL-17
signaling in murine models, it has been demonstrated that
IL-17 contributes to host defense against extracellular bacterial
and fungal pathogens. These include Klebsiella pneumoniae,
Staphylococcus aureus, Candida albicans, Salmonella enterica,
Streptococcus pneumoniae, Listeria monocytogenes, Helicobacter
pylori, Citrobacter rodentium, and Trypanosoma cruzi (see Gu
et al., 2013 for review). Here, IL-17 acts mainly as a potent
inducer of neutrophil recruitment and granulopoiesis. It does so
by promoting the release of chemokines that specifically attract
neutrophils (e.g., CXCL1, CXCL6, and CXCL8) and stimulate
granulopoiesis in the bone marrow (e.g., IL-6, G-CSF, and
GM-CSF). Interestingly, IL-17-producing Th17 cells produce
also CCL20 that serves to attract more Th17 cells to the site of
inflammation (Figure 3).

Acting together with IL-22, another mediator of sentinel cells,
IL-17 contributes also to the maintenance of tissue integrity by
enhancing the synthesis of tight junction proteins (claudin) and
a number of antimicrobial proteins such as defensins, lipocalin,
lactoferrin, and regenerating (REG) and S100A proteins (Cua
and Tato, 2010). Moreover, it has been shown that early innate
production of IL-17 can influence the generation of antigen-
specific Th17 or γδ T cells and contribute to adaptive immunity.
Thus generated memory cells persist as long-lived tissue-resident
cells, which generate more robust effector responses enhancing
pathogen clearance (Lalor and McLoughlin, 2016).

IL-17 SIGNALING

IL-17 signaling from the cognate IL-17 receptor has been
partially deciphered (reviewed in Gu et al., 2013 and Song
and Qian, 2013). It involves the adaptor protein Act1 as
evidenced by unresponsiveness of Act1-deficient mice to IL-17
(Qian et al., 2007). Upon IL-17 stimulation Act1 recruits
tumor necrosis factor receptor associated factor-6 (TRAF6)
that mediates transcription of several target genes through
activation of NF-κB and AP-1 transcription factors. In addition,
Act1 forms a complex with TRAF5 and TRAF2 to operate
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FIGURE 2 | Differentiation of CD4+ T cells into Th17 cells. Naïve CD4+ T cells can differentiate into Th1, Th2, or Th17 cells according to their specific cytokine
milieu. For differentiation of CD4+ cells into Th17 cells, TGF-β, IL-6, and IL-1β, as well as IL-21 and IL-23, are required. Cytokine receptor binding initiates an
intracellular signaling cascade leading to the translocation of RORyt into the nucleus, inducing the transcription of various cytokines such as IL-17, IL-22, IL-26, and
CCL20. Their secretion promotes the Th17-mediated immune response.

at the post-transcriptional level and control mRNA stability
(Sun et al., 2011). This IL-17 function is aided by the RNA-
binding protein HuR (Herjan et al., 2013). Although Act1
serves primarily as an adaptor protein linking the intracellular
domain of the IL-17 receptor with transcription factors (typically
of the NF-κB pathway), it has recently been discovered that
Act1 itself may exert transcriptional activity by binding to the
promoter region of IL-17-responsive genes (Velichko et al.,
2016). Although these mechanisms have been found to control
the expression of many IL-17-induced cytokines and neutrophil-
attracting chemokines (Shen et al., 2006), it is not known whether
they are also involved in the regulation of other IL-17 target genes
that do not fall into these categories or are expressed in cell types
not previously examined.

IL-17 IN THE PERITONEUM

IL-17 is virtually undetectable in a healthy human peritoneum,
but it can be found in peritoneal biopsies from patients
undergoing PD (Rodrigues-Diez et al., 2014). The cells expressing
IL-17 were identified as predominantly Th17 cells and γδ T cells,
and occasionally as mast cells and neutrophils. The appearance of
these cells seemed to correlate with the duration of PD treatment
and the extent of tissue fibrosis (Rodrigues-Diez et al., 2014).
Using a model of daily PD fluid injections in mice (Gonzalez-
Mateo et al., 2009), it has been demonstrated that after 30 days of
exposure to PD fluids, but not to control saline, the peritoneum
became markedly infiltrated by Th17 and γδ T cells, and its
thickness increased in correlation with the levels of IL-17 in
the peritoneal cavity (Rodrigues-Diez et al., 2014). Moreover,
this increased presence of IL-17-producing cells was associated

with increased activity of IL-6, TGF-β, and RORγt, all being
instrumental in differentiating Th17 cells. To confirm that IL-
17 did indeed contribute to PD fluid-induced alterations, the
same experiments were performed in the presence of anti-IL-
17 antibodies. These studies showed that the neutralization of
anti-IL-17 alleviated the extent of peritoneal fibrosis. Conversely,
repeated intraperitoneal administration of exogenous IL-17 led to
increased expression of several fibrosis-related genes (fibronectin,
TGF-β, α-smooth muscle actin, and fibroblast specific protein-
1) and build-up of extracellular matrix (Rodrigues-Diez et al.,
2014). Interestingly, a study assessing paricalcitol, a synthetic
activator of vitamin D receptor, showed that in the same
experimental setting in mice the addition of paricalcitol to PD
fluids reduced the extent of peritoneal fibrosis (Gonzalez-Mateo
et al., 2014). This effect was attributed partially to inhibition
of IL-17-mediated responses as both the numbers of IL-17-
producing T cells and the intraperitoneal IL-17 concentrations
were significantly reduced (Figure 4).

As indicated earlier, MAIT cells can be another important
source of IL-17 (Xiao and Cai, 2017). Like γδ T cells, they
accumulate in the peritoneum of patients receiving PD and
expand significantly during infections caused by pathogens
producing appropriate ligands (Liuzzi et al., 2016). Less clear
is the role of IL-17-producing DN T cells in the dialyzed
peritoneum. Their contribution to intraperitoneal IL-17 can be
surmised from the observation that DN T cells accumulate
and secrete IL-17 in the peritoneum of mice infected with
L. monocytogenes (Riol-Blanco et al., 2010). It will be interesting
to see whether DN T cells infiltrate the peritoneum as a result
of kidney failure and uremia. In this respect, it has been
demonstrated in murine models that DN T cells expand in the
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FIGURE 3 | Sources and functions of IL-17. IL-17 secretion is not limited to Th17 cells. When released, IL-17 is involved in various pathophysiological mechanisms.
These include adaptive immunity, autoimmunity, and inflammation. The latter is a key element of host defense, but can also lead to chronic inflammatory disorders
and tissue remodeling. Additionally, IL-17 regulates tissue integrity and is a potent inducer of neutrophil recruitment and granulopoiesis.

kidney after acute ischemia-reperfusion injury (Martina et al.,
2016) and are an important subset of IL-17-producing cells in the
inflamed kidney (Turner et al., 2012).

It is thought that the differentiation of Th17 cells and their
activity during PD can be critically modulated by regulatory
T cells (Treg) (Liappas et al., 2015). In this respect, CD69, a
membrane glycoprotein induced rapidly on lymphocytes upon
activation, has been implicated in promoting Treg development
and limiting Th17 differentiation (Martin et al., 2010). In
comparison with wild-type mice, the exposure of cd69−/− mice
to PD fluids for 40 days led to an increase in Th17/Treg ratio and,
consequently, to augmented Th17 cell infiltration and increased
IL-17 production and peritoneal fibrosis (Liappas et al., 2016).
Significantly, exacerbated fibrosis in cd69−/− mice could be
alleviated by the blockade of IL-17. On the other hand, the
effects seen in cd69−/− mice could be reproduced in wild-type
mice by intraperitoneal administration of CD69-neutralizing
antibodies. Similar results were achieved by transplantation of
a mixture of bone marrow cells obtained from Rag2−/−

γc−/−

double mutant mice and from either cd69−/− or wild-type
animals. As Rag2−/−

γc−/− mice lack lymphocytes, these were
derived only from cd69−/− or wild-type mice. This elegant

strategy made it possible to demonstrate that CD69 expression
in the lymphocytic rather than myeloid compartment of the bone
marrow is responsible for controlling Th17 cells (Liappas et al.,
2016).

Interestingly, CD69 appears to be constitutively expressed at
low levels by tissue-resident memory T (TRM) cells and by non-
recirculating sessile innate-like lymphocyte subsets, including γδ

T cells and MAIT cells (Kimura et al., 2017). The exact role
of CD69 expression on these cells is not fully understood, but
it appears to be important for cell retention in tissues (Kimura
et al., 2017). There is a growing appreciation of the contribution
of tissue-resident lymphocytes both to the maintenance of
tissue homeostasis and to swift response to infection (Fan and
Rudensky, 2016; Gebhardt et al., 2018). In this respect, it has
been observed that γδ T cells in mice rapidly produced IL-17 in
response to peritoneal infection with E. coli, which preceded the
influx of neutrophils (Shibata et al., 2007).

It has been proposed that supplementation of PD fluids
with the dipeptide alanyl-glutamine (Ala-Gln) could restore
an impaired stress response in peritoneal cells and improve
peritoneal host defense (Kratochwill et al., 2012, 2016). Indeed,
the administration of Ala-Gln to rats and mice treated with
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FIGURE 4 | Role of IL-17 in the peritoneum. IL-17 may be critically involved in initiating peritoneal fibrosis. IL-17 is produced primarily by γδT cells and possibly by
other innate-like tissue-resident lymphocytes. The increase in IL-17 is associated with increased peritoneal levels of IL-6, TGF-β, and RORγt, leading to the formation
of additional IL-17-secreting Th17 cells in a vicious circle. Moreover, Th17 cells release CCL20, a chemokine that boosts the recruitment of further Th17 cells. In the
peritoneum of PD patients, IL-17 promotes thickening of the submesothelial compact zone. In addition, inflammation-induced angiogenesis leads to increased small
solute transport. In this respect, we previously demonstrated that peritoneal inflammation is linked with angiogenesis through IL-6- and TGF-β-induced VEGF
production involving c-Fos and SP4 transcription factors. In rodents, the attenuation of IL-17-mediated responses reduces the extent of peritoneal fibrosis.

PD-fluids markedly reduced the associated peritoneal fibrosis
(Ferrantelli et al., 2016). Interestingly, this effect was paralleled
by a reduction in peritoneal IL-17 expression and was thus
attributed to inhibition of IL-17-driven reactions.

While the above studies clearly documented the peritoneal
expansion of IL-17-producing cells in animals infused repeatedly
with PD fluids, it remains to be determined, which PD fluid
components are responsible for the effect. It has recently
been observed that the fraction of IL-17-expressing T cells in
peritoneal lavage fluid was greater in mice treated for 8 weeks
with a conventional lactate-based PD solution with low pH and
high GDP contents than in mice treated with a new neutral-
pH low-GDP solution buffered with a mixture of lactate and
bicarbonate (Vila et al., 2018). The new solution is viewed as
more biocompatible and its use has also been associated with
an increase in the dialysate levels of cancer antigen 125 (CA125)
(Jones et al., 2001; Fusshoeller et al., 2004; Pajek et al., 2008). As
CA125 is thought to reflect mesothelial cells mass (Krediet, 2001),
one may hypothesize that less IL-17-mediated inflammation
contributes to a better preserved mesothelium.

Clinical PD is frequented by episodes of peritonitis. It has been
observed that the effluent concentrations of IL-17 in stable PD
patients are very low (typically <5 pg/ml) but increase many-
fold at the onset of peritonitis (Lin et al., 2013; Zhang et al.,

2017). The magnitude of this increase depends clearly on the
class of an invading microorganism; the highest IL-17 levels were
recorded during peritonitis caused by Gram-positive bacteria
other than streptococci and coagulase-negative staphylococci
(e.g., by S. aureus) (Zhang et al., 2017). Moreover, it has been
reported that patients with a delayed response to seemingly
adequate antibiotic treatment had persistently low IL-17 levels
(Wang et al., 2011). These observations suggest that IL-17 is
an important component of peritoneal host defense. In this
respect, it has recently been demonstrated that γδ T cells are the
predominant source of IL-17 during S. aureus-induced peritonitis
in mice (Murphy et al., 2014). Intriguingly, there were two
waves of γδ T cell recruited with two distinct γδ T cell subsets
involved. An initial rapid influx of Vγ1+ and Vγ2+ cells was
followed by a more sustained infiltration by Vγ4+ cells. These
Vγ4+ cells were retained in the peritoneum and responded by
augmented IL-17 production during secondary infection. This
led to increased phagocyte recruitment and enhanced bacterial
clearance. Accordingly, transfer of S. aureus-primed Vγ4+ T cells
to naïve hosts offered protection against S. aureus infection.

On the other hand, it has been observed that extensive
peritoneal accumulation of IL-17-producing cells after infection
or surgical injury may precede formation of peritoneal adhesions
and intra-abdominal abscesses (Chung et al., 2002, 2003).
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FIGURE 5 | Induction by IL-17 of mediators with angiogenic activity in mesothelial cells. The mechanism behind IL-17 induction of angiogenesis is poorly
understood. It may involve the secretion of chemokines with angiogenic activity by mesothelial cells stimulated with IL-17 (Mechanism I). It may also be related to
IL-17-induced mesothelial production of IL-6, which may then form a complex with sIL-6R, stimulating VEGF synthesis (Mechanism II). Other, so far unknown
scenario(s), cannot be excluded (Mechanism III).

These could be prevented by neutralization of either IL-17 or
IL-17-induced CXC chemokines that promote intraperitoneal
neutrophil trafficking (Chung et al., 2002). In this respect,
we have demonstrated that the peritoneal mesothelium is the
main source of CXC chemokines released in response to IL-
17 (Witowski et al., 2000). Moreover, IL-17-treated peritoneal
mesothelial cells secrete G-CSF that acts to sustain neutrophil
production (Witowski et al., 2007). In addition, we have
previously demonstrated that mesothelial cells are the main
source of intraperitoneal IL-6 (Witowski et al., 1996), which
can exert some effects through so-called IL-6 trans-signaling
(Chalaris et al., 2011). These include selective recruitment of
T-cells into the peritoneal membrane (McLoughlin et al., 2005)
and maintenance of their Th17 phenotype (Jones et al., 2010).

IL-17 IN ANGIOGENESIS

It has long been suspected that IL-17 may impact on
the vasculature, as it can induce CXC chemokines with a
characteristic ELR (glutamic acid-leucine-arginine) motif, which
are potent angiogenesis promoters (Keeley et al., 2011). These
chemokines, including CXCL1, CXCL5, CXCL6, and CXCL8, act

via the receptor CXCR2 on endothelial cells stimulating their
migration and proliferation. The angiogenic activity of ELR+-
CXC chemokines has been documented in several animal models
of disease, including cancer, corneal neovascularization, and
fibrosis (reviewed in Strieter et al., 2007; Keeley et al., 2011, and
Santoni et al., 2014). The potential role of IL-17 in angiogenesis
was further inferred from the observations that microvessel
density in tumors correlated with the number of infiltrating IL-
17-producing cells (Numasaki et al., 2003; Zhang et al., 2009;
Wakita et al., 2010; He et al., 2011; Meng et al., 2012; Pan et al.,
2015a; Huang et al., 2016). Moreover, it has been found that IL-
17-transfected cancer cells formed larger and more vascularized
tumors when transplanted in mice (Numasaki et al., 2005; Huang
et al., 2016), and these effects could be significantly abrogated
by the blockade of the CXCR2 receptor. Similarly, an increase
in synovial vascularization observed in IL-17-induced arthritis in
mice could be reduced by the administration of antibodies against
the ELR+ chemokine CXCL5 (Pickens et al., 2011).

Less clear is the relationship between IL-17 and VEGF. It has
been reported that serum concentrations of IL-17 and VEGF
correlate both with each other and with adverse prognosis in
patients with colorectal (Liu et al., 2011) and non-small cell
lung cancer (Pan et al., 2015a). In this respect, IL-17 has been
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shown to directly induce VEGF in several malignant cell lines,
including gastric (Meng et al., 2012), breast (Amara et al., 2016),
and lung cancer (Pan et al., 2015b; Huang et al., 2016), as well
as in tumor-associated neutrophils (Benevides et al., 2015). IL-17
can also stimulate VEGF release by normal fibroblasts from the
lung, skin, and cornea (Numasaki et al., 2004, 2016; Suryawanshi
et al., 2012), by synoviocytes (Honorati et al., 2006; Ryu et al.,
2006), and chondrocyte-like cells from the nucleus pulposus (Hu
et al., 2016). Such an effect, however, does not seem to be a
general phenomenon, as VEGF secretion was not detected in IL-
17-stimulated dermal microvascular endothelial cells (Takahashi
et al., 2005) and in a number of cancer cell lines (Wu et al., 2016).
In the latter, the absence of VEGF induction was attributed to the
lack or weak expression of functional IL-17 receptor (Wu et al.,
2016).

The exact mechanism of VEGF induction in cells responsive
to IL-17 is poorly understood. It appears to be largely cell
type-dependent. Few reports presented to date indicate that the
regulation of IL-17-VEGF axis may occur via either STAT3- (Pan
et al., 2015b; Hu et al., 2016; Wu et al., 2016) or STAT1-controlled
(Huang et al., 2016) pathways. Interestingly, it has been suggested
that IL-17-stimulated STAT3 activation in some cells required
IL-6 induction (Wang et al., 2009). However, in other cells
types (e.g., in corneal stromal fibroblasts) IL-17-induced VEGF
production did not appear to be related to IL-6 and could not
be inhibited by the IL-6 receptor blockade (Suryawanshi et al.,
2012). The relationship between IL-17 and VEGF in tumor
microenvironment may become even more complex during anti-
VEGF therapy. It has been demonstrated that treatment with
anti-VEGF drugs leads to an increase in IL-17 in the tumor
micro-environment, which initiates a paracrine network that
elicits an angiogenic response independently of VEGF and thus
contributes to drug resistance (Chung et al., 2013).

IL-17 AND PERITONEAL VASCULATURE

IL-17 can affect peritoneal vasculature through at least three
mechanisms, all involving mesothelial cells (Figure 5). Firstly,

IL-17 can stimulate mesothelial cells to produce ELR+ CXC
chemokines such as CXCL1 (GROα) and CXCL8 (IL-8), which –
in addition to being powerful neutrophil chemoattractants –
do possess angiogenic activity. Secondly, IL-17 can stimulate
mesothelial cells to release IL-6. During peritonitis mesothelial
cell-derived IL-6 interacts with soluble IL-6 receptor shed
from neutrophils and the complex activates mesothelial
cells to produce VEGF. Finally, IL-17 can probably directly
induce VEGF in mesothelial cells through as yet undefined
mechanism.

It is not known what determines the choice of a given
pathway in vivo. It is probably the presence of a specific
combination of cytokines which drives a particular mechanism
in mesothelial cells. Not only may such a cytokine cocktail
promote differentiation of IL-17-producing cells, but also
modulate the effector functions of IL-17. For example, TNFα can
synergistically amplify IL-17-induced CXCL1 secretion through
both transcriptional and post-transcriptional mechanisms
involving stabilization of mRNA transcripts (Sun et al., 2011).
Thus, this specific cytokine microenvironment (with IL-17
included) may arise in response to different types of infection
and determine the course of inflammation and lead ultimately to
changes in peritoneal vasculature.
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