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pera@sf.bg.ac.rs

Specialty section:

This article was submitted to

Fractal Physiology,

a section of the journal

Frontiers in Physiology

Received: 14 June 2018

Accepted: 13 November 2018

Published: 04 December 2018

Citation:
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The concept of biological signals is becoming broader. Some of the challenges

are: searching for inner and structural characteristics; selecting appropriate modeling

to enhance perceived properties in the signals; extracting the representative

components, identifying their mathematical correspondents; and performing necessary

transformations in order to obtain form for subtle analysis, comparisons, derived

recognition, and classification. There is that unique moment when we correspond the

adequate mathematical structures to the observed phenomena. It allows application

of various mathematical constructs, transformations and reconstructions. Finally,

comparisons and classifications of the newly observed phenomena often lead to

enrichment of the existing models with some additional structurality. For a specialized

context the modeling takes place in a suitable set of mathematical representations of the

same kind, a set of models M, where the mentioned transformations take place. They

are used for determination of structures M, where mathematical finalization processes

are preformed. Normalized representations of the initial content are measured in order

to determine the key invariants (characterizing characteristics). Then, comparisons are

preformed for specialized or targeted purposes. The process converges to the measures

and distance measurements in the space M. Thus, we are dealing with measure and

metric spaces, gaining opportunities that have not been initially available. Obviously,

the different aspects in the research or diagnostics will demand specific spaces. In our

practice we faced a large variety of problems in analysis of biological signals with very

rich palette of measures and metrics. Even when a unique phenomena are observed for

slightly different aspects of their characteristics, the corresponding measurements differ,

or are refinements of the initial structures. Certain criteria need to be fulfilled. Namely,

characterization and semantic stability. The small changes in the structures have to

induce the small changes in measures and metrics. We offer a collection of the models

that we have been involved in, together with the problems we met and their solutions,

with representative visualizations.

Keywords: measures of biological signals, metrics on biological signals, complexity, dimension, similarity

INTRODUCTION

A biological signal is any mapping (change) of a biological quantity/content into the corresponding
set (codomain), with the purpose to represent the particular process in a form suitable for studying,
monitoring, determination of functional connections (relations, dependence) between the studied
quantity and its relevant constituents.
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The change in biological quantities can have particular
significance and lead to discovering of deep processes hidden
from the direct (e.g., visual) observations. Long ago, it
was discovered that biological organisms function through a
sequence of interconnected processes-results of action of systems
and subsystems within a hierarchically organized functions.

Hence, it is prudent to formally define a biological signal
as a function of the form f :D → M that maps the initial
set of biological phenomena (states, conditions, etc.) D into the
corresponding codomain M of measurement data. For example,
such signals are the usual home or clinical measurement of
the body temperature, arterial pressure or atmospheric pressure,
performed sporadically or at regular intervals. The purpose is to
determine their current values, and to monitor their change in
time in order to identify the presence of pathology, or to control
the side effects of introduced drugs that may have negative impact
on systems regulating vital functions.

Certain biological phenomena such as body temperature or
blood pressure are analog. The number of erythrocytes, or the
number of bacteria per space unit are examples of digital signals,
but with a large number of units. The corresponding measuring
procedures are designed to obtain the suitable approximations
within some finite scale. For example, the body temperature of a
living human is scaled by the degrees in Celsius, withmin = 35◦C
and max = 42◦C. Similarly, the blood pressure is scaled by a
height in millimeters of Hg in a capillary tube, while the number
of erythrocytes is scaled in thousands per space unit etc. The
basic concepts about analog and digital quantities can be found
in textbooks (Attenborough, 2003;Werde and Spiegel, 2010; Hsu,
2014).

On the other hand, measurements are performed in order
to assess the presence or the absence of a property/pathology.
As such, they are composed with the additional binary scale
(absence, presence), ternary scale (absence, presence, strong
presence), and so on. Some phenomena require more complex
structures involving indications of inner dependences, usually
represented by multigraphs.

Regardless of the form of the performed measurements,
the modern computers are at such technical level that
allows implementation of various numerical and symbolic
algorithms related to acquisition, representation, analysis and
transformation/manipulation of biological signals. Hence, the
modern representation of biological signals use mathematical
structures (numerical or abstract) suitable for digitization, exact
representation, deeper insights and finally, classification. In the
very rich variety of biological signals, here we focus on some
mathematical representation and operation aspects involving
broad range of applications, thus illustrating the rich abundance
of phenomena and their mathematical treatment, rather than
trying to havemore complete approach, which needs much larger
space and more complex method coverage.

Automated acquisition and processing of biological signals
has opened the possibility of elimination of subjectivity
in validation and interpretation of a measurement. At
the same time, digitization has enabled application of the
large mathematical apparatus, making possible nontrivial
transformations of the initial content. The large number of
scientific breakthroughs that are made in this way has established

the new, highly prominent scientific discipline involving broad
mathematical modeling and their computer implementations.

Developing some systems for operation with biological
signals, in our group GIS (Group for Intelligent Systems), we
have implemented systems for digital upgrades of the existing
analog research and clinical equipment for the measurement
of e.g., arterial pressure, ECG, EEG, specific neurology,
ultrasound, NMR, and digital microscopy signals. Those
systems have enabled digital acquisition of the various types of
related signals, including biometric parameters like voice and
fingerprints, acquisition of various molecular biology signals like
chromosomes and genetic sequences. We have also implemented
tools for representation, visualization, manipulation and
transformation of signals and integrated it with the CCD
computerized microscopy.

In particular, developed software solutions include: signal
monitoring, acquisition and real time analysis (the first version
was implemented in 1994); image acquisition and analysis (1994);
image spectroscopy (1995), photomorphology (1995–1998),
color combine fluorescent microscopy (1997–1998); automatized
karyotyping involving object recognition, normalization, and
classification (1997).

As mentioned above, before implementation, all
measurements and analyses were performed manually by
direct observation. The improvement in efficiency and precision
was immediately observed by the involved researches. Developed
solutions have been in use for almost two decades at more
than 20 research laboratories at the University of Belgrade,
Lomonosov state university at Moscow, and UC Berkeley, see
(Jovanović, 2001; Jovanović et al., 2014).

In addition, we have also developed hardware for those
laboratories including CCD microscopes, computerized EEG,
ECG, CTG, acoustic RT spectroscopes, equipment for recording
of magnetic field attenuation etc. (see Jovanović, 2001; Jovanović
et al., 2014).

Those systems have enabled precise measurements, significant
reduction of errors previously made by subjective visual
detection of important features, nontrivial numerical, algebraic,
geometrical, topological, and visual transformations of the
acquired signals and integration with other related computerized
systems. In particular, images displayed at Figures 1, 2, 4, 7–9,
12 and 21 were produced by the mentioned software for signal
acquisition, processing and visualization.

In last few decades we are witnessing impressive developments
of technologies and methods implemented in biological signals.
More powerful instrument perception is progressing together
with more powerful and more sophisticated methods.

BASICS

A biological signal, coded in computer as a digital function, is
usually a finite approximation of an analog signal. Consequently,
sampling resolution should be sufficient in order to provide a
quality acquisition, enabling detection, extraction, recognition,
and normalization of important features in signals and
adequate comparison with etalons. Moreover, the successful
implementation of mentioned procedures can be further
enriched to fully or highly automated systems for classification,
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FIGURE 1 | A mammal acoustic signal.

FIGURE 2 | Arterial pressure signals with implanted transducers (rats)

(Jovanović, 2001; Jovanović et al., 2014).

reasoning, and decision making. This aim is the essential
improvement of the previously achieved insights.

The older (we can say classical) methods, that are usually
simple, do not necessarily lead to simplifications, though they are
often ballasted with certain semantic limits. On the other hand,
the more modern and sophisticated methods do not necessarily
improve our knowledge. In the case of careless application,
they might lead to false understanding with broader poor
consequences. Some of issues related tomethods for computation
of Granger causality were discussed in (Kasum et al., 2015).

The application of Mathematics and Statistics require
permanent criticism and scrutiny, especially in the points where
these are connected to non-mathematical semantics. The proper
mix of simple and complex modeling could offer substantial
advantages.

The initial signal usually requires preprocessing involving
different types of normalizations. The standard examples are:

• Filtering of electrophysiological signals;
• Filtering of microscopic optic signals and certain

preprocessing operations, e.g., determination of contours
of microscopic objects or their nonlinear transformations, or
determination of contours of spectrogram features.

Discrete and continual counting measures normalized to the
real unit interval are the most prominent measures present in
expression of the observed statistical dependences, statistical
analysis of the experimental data, probabilistic estimations on
finite domains, or on more abstract mathematical structures.

Biomedical statistical analysis involves comparison with the
control group, computation of the relevant statistics (e.g., mean,
variance, correlation coefficient, p−value, F− statistics etc.),
determination of the regression curves (so called curve fitting)
and so on. Statistics has proved to be a very important and
powerful mathematical method in biological experimentation,
indispensable in the contemporary research and scientific
publishing. Conceptual correspondence between the initial
measurement and their statistical interpretation always require
additional observation and unbiased critical analysis of the

initially proposed connections between the natural semantics
of the studied phenomena and the constructed mathematical
(statistical) model. The following examples will illustrate main
issues with semantic stability in the above connection. For basic
concepts about statistics we refer the reader to the textbook
(Spiegel and Stephens, 2018).

Example 2.1 A simple sinusoidal oscillation y = f (x) around
c on the interval

[

a, b
]

will be by the application of the standard

signal energy measure
∫ b
a f (x) dx identified with its mean value,

which is the constant function y = c (Figure 6.)
As a consequence of the integration, any additional

information that the initial signal carry will be lost. �
Example 2.2 Consider the signal y = f (x) defined by

f (x) = 440 · 1[0,1) (x)+ 528 · 1[1,2) (x)+ 660 · 1[2,3) (x)
+ 528 · 1[3,4) (x)+ 440 · 1[4,5](x)

for 0 ≤ x ≤ 5. Its average energy
∫ 5
0 f (x)dx is adequately

represented by its mean value y = 519.2 (see Figure 10).
However, the above signal can be interpreted as a producing

the equal length tunes a, c1, e1, c1, a (frequencies on the y axis,
A-minor chord), while the corresponding mean 519.2, is atonal
and does not have any meaningful connection with the played
melody.

METHOD

Complexity Issues
While dealing with simple signals, with simple changes in
time, the direct simple representation/visualization is often
satisfactory. However, the study of subtler details and processes,
and integration of system insight, requires increased complexity.
Themodern research demands, with invisible important features,
higher complexity in representations, and involved structures.
This is the point of departure from the simple and simplest
representations and measurements, thus opening room for more
complex functions and structures and consequently, for more
complex measures and operations on these structures. It is
very difficult to determine what would be the upper bound
for complexity of mathematical structures when dealing with
biological signals. Especially now when everybody is aware
that neurological signals are directly related to the processing
of sensory information and system control in all variety of
situations. As an illustration, we refer the reader to the concept of
Granger causality that has been extensively used in neuroscience,
see (Granger, 1969, 1980; Granger and Morris, 1976; Geweke,
1982, 1984; Kaminski and Blinowska, 1991; Sameshima and
Baccala, 1999; Baccalá and Sameshima, 2001a; Baccala and
Sameshima, 2001b; Kaminski et al., 2001; Brovelli et al., 2004;
Babiloni et al., 2005, 2007; Wang et al., 2007; Blinowska, 2008,
2011; Kuś et al., 2008; Takahashi et al., 2008; Blinowska et al.,
2010; Brzezicka et al., 2011; Kasum et al., 2015).

Moreover, and much more important, biological signals like
DNA sequences are information bearing structures (even more,
they are knowledge bases) and should be treated as such. The
particular DNA molecule should be also studied by its set of
consequences, not solely by its morphological properties. It seems
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FIGURE 3 | Garden snail neuron activity (Kesić et al., 2014).

FIGURE 4 | (Left): fast EEG; (Right): very fast firing of a neuron (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 5 | Mitosis-two chromosome distributions (Jovanović, 2001;

Jovanović et al., 2014).

prudent to involve the entire data science and a significant part of
mathematical logic into foundations of biology.

For example, propositions “today is Tuesday” and “it is not
true that today is not Tuesday” have the same meaning, but

syntactically are quite different. In terms of Euclidean metrics
(the main tool for the similarity estimation), they are quite
distant. Thus, the syntactical similarity can be quite different
form the more important, semantic similarity. The syntax
similarity only works properly if applied on objects in normal
form (a concept similar to disjunctive or conjunctive normal
form in propositional logic).

Back to DNA, we may ask the following questions:

• Is there a normal form of a DNA sequence?
• If the answer is positive, are the DNA molecules always in the

normal form?
• What are the properties of the “gene to protein” relation?
• Can we produce an axiom system and derivation rules (i.e.,

logic) for the synthesis of proteins?

It is not our attention to dispute the well-established use of
the Hilbert space formalism in acquisition of biological signals.
However, it cannot be the sole mathematical apparatus used in
biology, since it offers nothing about consequence relations and
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FIGURE 6 | RNA dots related to the neuron nucleus (rats) (Jovanović, 2001;

Jovanović et al., 2014).

FIGURE 7 | FISH signal of the same preparation in two different wavelengths

(Jovanović, 2001; Jovanović et al., 2014).

deduction in general. It seems prudent to involve some other
mathematical disciplines related to automated reasoning. For the
reader unfamiliar with the basic concepts of mathematical logic
we refer to (Mendelson, 1997).

This is why more complex methods are finding applications
and are well emancipated in the processing of biological signals.
Here we shortly summarize some elements with their relevant
properties that are already in broader use.

Measures and Metrics
Where there are measurements, immediately there are measures.
The signal processing techniques involve application of
different kind of measures: counting cardinality, probabilistic,
vector valued (non-monotonic), common Euclidean geometry
measures, special probabilistic Boolean ({0, 1}-valued) filters
(those emerge in situations when deciding if an object has
certain property or not) and so on. Usually, the sets occurring
in experiments are fairly simple in the sense that they can
be adequately approximated by finite sets, or by finite
Boolean combinations of intervals and points. As such,
they can be rather directly and easily measured. Original
entities/objects are corresponded to their mathematical
representations. Then obviously, a question arises: to

FIGURE 8 | Gel used in molecular biology (Jovanović, 2001; Jovanović et al.,

2014).

what extent are the representations of a certain kind of
entities similar/identical, which we resolve obviously with
certain distance measurements-metrics between individual
representations. Thus representations, no matter how simple
or complex, become points in the space of representations and
distance measurements directly determine similarity of originals.

However, one should always be aware of the underlying
measure algebra, particularly when dealing with probability
measures. The main cause of so called probability paradoxes is
absence of the precise determination of the underlying measure
algebra, i.e., the absence of the precise definition of the set of
events that can be measured with the given probability function.
For readers unfamiliar with the basic probabilistic concepts
we refer textbooks (Attenborough, 2003; Spiegel and Stephens,
2018).

One of the subjects of the contemporary research is the study
of the impact of quantum phenomena on complex biological
formations, starting from large molecules, to large systems like
brain and related biological phenomena e.g., consciousness.
Along this line has emerged the awareness of the necessity
of precise description and understanding of signals that are
more complex and structures, which leads to utilization of more
complex sets (events) and measures on them.

An example of this kind would be determination of the
geometric probability for the set with fractal or rather complex
boundary. Fractals have become broadly present in Biology in
representation of biological functions and characterization of
their complexity. Functions are sets; events in a probability are
sets.

Another example of more complexmeasures involves Boolean
measures on the set of natural numbers N induced by nontrivial
filters and their total extensions.

The first measurements of the more complex curves and
geometric objects were performed with the discovery and
application of the infinitesimal calculus. The definite integral
∫ b
a f (x) dx of a positive function f on

[

a, b
]

returns the surface
area of the corresponding curved trapezium bounded with lines
y = 0, x = a, x = b, and y = f (x).

Frontiers in Physiology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1707

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kasum et al. Measures and Metrics of Biological Signals

FIGURE 9 | Integral computation.

FIGURE 10 | Simple calculation of the mean and its semantics.

Development of calculus has brought the methods for
integration of more complex functions, e.g., functions with
countably many jump discontinuities and functions with
essential discontinuities. The abstract concept of an integral
has been finally shaped with Lebesgue’s theory of measure and
integration.

Starting with the basic geometric measures arising from
Euclidean metrics (length of a straight line, area of a rectangle,
volume of a cube); the measure of more complex sets is
determined by application of the σ−additivity property:

µ

( ∞
⋃

n= 0

An

)

=
∞
∑

n= 0

µ (An)

for pairwise disjoint sets An, n∈ N,
For example, let

A =
∞
⋃

n= 0

[

n, n+ 1

2n

]

.

Since
[

n, n+ 1

2n

]

∩
[

m,m+ 1

2m

]

= ∅

form 6= n, and µ
([

n, n+ 1
2n
])

= 1
2n , we obtain that

µ (A) =
∞
∑

n= 0

1

2n
= 1.

The main feature of the zero−measure sets. Precisely, if E is a set
of the positive measure, Z is a zero−measure set (i.e., µ (Z)= 0),
then for any Lebesgue integrable function f , the following is true:

∫

E
f (x) dµ =

∫

ErZ
f (x) dµ.

This was a significant improvement of the Riemann integral.
The modern understanding of a probability is as a normed

measure on a probability space. More precisely, probability space
is a triple (�,A, P), where � is a nonempty set of elementary
events, A is a σ−complete subalgebra of the powerset algebra
P (�), and P :A → [0, 1] is a σ−additive function such that
P (�) = 1. In particular, P is total if A = P (�). These notions
can be similarly defined for any other kind of measure.

The additivity add (µ) of a measure µ is defined as the
smallest cardinal number κ such that there is a family Z =
{Zi : i ∈ κ} satisfying the following two properties:

• µ (Zi) = 0 for all i ∈ κ;
• µ

(
⋃

i∈κ Zi
)

> 0.

Some examples:

1. Calculating area of the curved trapezium;
2. Calculating area of the figure whose boundary has finitely

many stepped discontinuities;
3. Calculating area of the figure whose boundary has countably

many stepped discontinuities;
4. Calculating geometric probability of the set with simple

boundary;
5. Calculating geometric probability of the set with fractal

boundary (e.g., Weierstrass function).

Note that add (µ) = ω means that µ is k−additive for all finite
k. Measures of various additivity are investigated in theory and
used in practice, when additivity can be arbitrary large.

The notions of metrics and measure play important part
in modeling of similarity. In the study of information bearing
structures, most notably formal deductive systems, it is often
easier to define measure than metrics. For example, a consistent
propositional theory (set of formulas) T naturally induces the
corresponding binary measureµT on Lindenbaum algebra LA by

µT ([φ]) =
{

1, T ⊢ φ
0, T 0 φ

Here φ is a propositional formula and [φ] = {ψ : ⊢ ψ ↔ φ}.

Frontiers in Physiology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 1707

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kasum et al. Measures and Metrics of Biological Signals

One of the most common ways to generate metrics from a
given measure µ is to measure symmetric difference:

d (A,B) = µ (A△ B) .

The obtained metrics d do not satisfy condition d (A,B) = 0 ⇒
A = B, so it is a pseudo-metrics.

Dimension
The most commonly knownmeaning of the notion of dimension
is that it is the cardinal number of any basis of the given vector
space. For example, dimension of the Euclidean space R

n is, as
expected, equal to n. Recall that two vector spaces over the same
field are isomorphic if and only if they have equal dimensions.
This theorem establishes dimension of the vector space as its
most important characteristics.

Another important concept of dimension is topological
dimension. We shall omit a rather cumbersome technical
definition, and try to illustrate the concept in the case of charts.
A k−dimensional chart in R

n for k < n is any subset of R
n of the

form

M = {(x1 (t1, . . . , tk) , . . . , xn (t1, . . . , tk)) : (t1, . . . , tk)

∈ I1 × . . .× Ik} ,

where each Ii ⊆ R is an interval and each xi : I1 × . . .× Ik→ R is
a smooth function. For example, a sphere with radius R = 5 and
center at origin is represented by the chart

S = {(5 cos (s) cos (t) , 5 sin (s) cos (t) , 5 sin (t)) : 0 ≤ s < 2π ,

− π

2
≤ t ≤ π

2

}

.

Generally, a plain curve can be intuitively described as the set of
the form

s =
{(

x(t
)

, y (t) : t ∈ I
}

,

where I is an interval. However, various conceptual problems
emerge when the additional conditions on coordinate functions
x(t) and y(t) are omitted. This was explicitly shown by
Weierstrass, Dirichlet, Peano, Hilbert, Sierpinski, and others,
who constructed quite exotic functions. Some of them are
continuous and nowhere differentiable (Weierstrass functions,
Koch triangle etc.), space filling (Peano curve is a continuous
surjection of the segment [0, 1] onto the square [0, 1] × [0, 1])
and so on. The basic concepts of calculus can be found in
textbooks (Attenborough, 2003; Werde and Spiegel, 2010; Hsu,
2014; Spiegel and Stephens, 2018).

Note that if l is a graph of a Weierstrass function, then, every
two points on it are, measured along l, at infinite length. The same
is true for fractal curves.

Higuchi fractal dimension procedure became popular with
the expanding applications on biological, especially neurological
signals. It has been used alone or in combination with other
signal analysis techniques in the revealing complexity patterns

in the single neuron activity as well as in EEG/ECoG signals
that originate from complex neuronal networks in different
physiological and pathophysiological conditions (Kesić and
Spasić, 2016).

Example 3.3.1 (Higuchi fractal dimension) In (Kesić et al.,
2014) authors use Mean of the empirical HFD distribution
to investigate the changes in the complexity of snail Br
neuron activity after the treatment application. HFD measure
allows fast computational tracking of variations in signals
and in this study has been used in combination with
the normalized mean of the empirical HFD distribution
because the signal of Br neuron activity is non-stationary
(Figure 3). This study, among other factors, showed that the
normalized mean of empirical HFD distribution method is
a significant mathematical invariant in monitoring the effects
of different treatments on modulation of bursting neuronal
activity.

On Figure 11 is shown typical electrophysiological activity of
garden snail Br neuron (60 s) and corresponding Higuchi’s fractal
dimension (HFD) values in control condition (left column) and
after treatment application (right column). Mean of empirical FD
distribution of the group in control condition and after treatment
application behaves as the mathematical invariant characterizing
system modulation.

In 1918 Felix Hausdorff introduced a generalization of the
notion of topological dimension in order to classify objects with
fractal boundaries.

Definition 3.3.2. (Hausdorff measure) Let
(

X, d
)

be a metric
space and let λ ≥ 0. The Hausdorff measure Hλ :P (X) →
[0,+∞] is defined by

Hλ (S) = sup
δ > 0

inf

{ ∞
∑

n= 0

d (Un)
λ

: S ⊆
∞
⋃

n= 0

Un ∧ (∀n∈ N) d (Un) < δ

}

. �

The connection between Hausdorff measure and Lebesgue
measure is rather strong, as it is stated by the following theorem.

Theorem 3.3.3 Suppose that E ⊆ R
n is a Borel set and that µn

is the Lebesgue measure on R
n. Then,

µn (E) =
π

n
2

2nŴ
(

n
2 + 1

)Hn (E) . �

Now the Hausdorff dimension is defined by

dimH(S) = inf
{

λ ≥ 0 : Hλ (S) = 0
}

.

A consequence Theorem 3.3.2 is the fact that topological
dimension of any smooth manifold M is equal to its Hausdorff
dimension dimH (M). In particular:

• dimH(D
n) = n, where Dn = {x ∈ R

n
: ‖x‖ ≤ 1}

is the n − dimensional unit ball in R
n;

• dimH([0, 1]n) = n;
• dimH({x}) = 0 for any x ∈ R

n;
• dimH([0, 1]× {0}) = 1.

The more interesting examples are related to various fractals.
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FIGURE 11 | Higuchi’s fractal dimension (Kesić et al., 2014).

FIGURE 12 | Construction of Cantor set.

FIGURE 13 | Construction of Koch line.

Example 3.3.4 (Cantor set) Arguably, the most important
fractal construction method was given by Georg Cantor with his
iterative construction of the nowhere dense subset of the real unit
interval that is equipotent with the unit interval (i.e., has the same
cardinal number). In particular, Cantor set C is defined by

C =
∞
⋂

n=1

3n−1−1
⋃

k=0

([

k

3n−1
,
3k+ 1

3n

]

∪
[

3k+ 2

3n
,
k+ 1

3n−1

])

.

The intuitive definition goes as follows:

• Start with C0 = [0, 1];
• Remove the middle third from C0. More precisely, C1 = C0 r
( 1
3 ,

2
3

)

. Note that C1 =
[

0, 13
]

∪
[ 2
3 , 1
]

;
• Repeat the above procedure on each closed subinterval. For

example, C2 =
[

0, 19
]

∪
[ 2
9 ,

1
3

]

∪
[ 2
3 ,

5
9

]

∪
[ 8
9 , 1
]

;

C =
∞
⋂

n= 0

Cn.

The corresponding Hausdorff dimension of the Cantor set is
given by

dimH(C) = log3(2) . �

Example 3.3.5 (Cantor comb)
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FIGURE 14 | Construction of Koch snowflake.

FIGURE 15 | Construction of Sierpinski triangle.

FIGURE 16 | Construction of Sierpinski carpet.

The Cantor comb is the set CC = C × [0, 1]. The
corresponding Hausdorf dimension is calculated as follows:

dimH(CC) = dimH(C)+ dimH([0, 1]) = log3(2)+ 1. �

Example 3.3.6 (Koch line and Koch snowflake) A Koch line is
a planar fractal .whose iterative construction is a modification of
the construction of the Cantor set. Instead of deleting the middle
segment, over it is constructed equilateral triangle, then its base
is removed, as shown on Figure 13.

This procedure is repeated ad infinitum. Similarly, Koch
snowflake is constructed from the equilateral triangle by
transformation of its edges into Koch lines, as shown on
Figure 14.

The Hausdorff dimension of both Koch line and Koch
snowflake is equal to log3 (4).

Example 3.3.7 (Sierpinski triangle and Sierpinski
carpet) Another modification of Cantor’s iterative fractal
construction was introduced by Sierpinski. The corresponding
transformations are shown on Figures 15, 16.

The Hausdorff dimension of Sierpinski triangle is equal to
log2 (3), while the Hausdorff dimension of Sierpinski carpet is
equal to log3 (8). �

Boundary-Interior Index
One of the natural questions involving metric characteristics of a
given subset of a metric space is to compare measures of sets and
their boundaries. Amotivation can be found in classical problems
of finding a figure with fixed type of boundary (or fixed measure)
with maximal or minimal area or volume. An example of this
kind is finding a figure of maximal area whose boundary has the
fixed length l.

Definition 3.4.1 Let A be a measurable set in R
n. We define

the boundary-interior index (BI) of A by

bi (A) =
{

µn−1(∂A)
µn(A)

, if division is possible
(

µn−1 (∂A) ,µn(A)
)

, otherwise
. �

In the following examples we shall calculate BI for several
important sets illustrating characteristic cases.

Example 3.4.2 (BI of a circle) Let S be a circle of radius R.
Then,

bi (S) = µ1(∂S)

µ2(S)
= 2Rπ

R2π
= 2

R
.

Moreover, circumference l = µ1(∂S) and radius R are connected
by the well-known equation l = 2Rπ, so in terms of
circumference l we can express the BI of a circle by bi (S) = 4π

l
�

Example 3.4.3 (BI of n−dimensional ball) Let Dn
a,R =

{x ∈ R
n

: ‖a− x‖ ≤ R} be the n−dimensional ball with center

a and radius R. Since µn

(

Dn
a,R

)

= 2πn/2

nŴ( n2 )
Rn−1 and µn

(

∂Dn
a,R

)

=
2πn/2

Ŵ( n2 )
Rn−1, it follows that bi

(

Dn
a,R

)

= n
R . �

Example 3.4.4 (BI of n−dimensional cube) Let A = [0, a]n

where a > 0. Clearly, µn (A) = an. On the other hand,
µn−1 (∂A) = 2nan−1. Thus, bi (A) = 2n

a . �
Example 3.4.5 Let H be the area in Euclidean plane R

2

bounded with y = 0, x = 1 and xy = 1. Then,

µ1 (∂H) =
∫ ∞

1

√
x4 + 1

x2
dx ≥

∫ ∞

1
dx = +∞

and

µ2 (H) =
∫ ∞

1

dx

x
= +∞.

Hence, bi (H) = (∞,∞)

On the other hand, let T be the region in Euclidean space R
3

that is formed by rotation of H along the x axis. Then,
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µ2 (T) = 2π +2π

∫ ∞

1

√
x4 + 1

x3
dx ≥ 2π + 2π

∫ ∞

1

dx

x
= +∞,

and

µ3 (T) = π

∫ ∞

1

dx

x2
= π .

Thus, bi (T) = (∞,π). �
Example 3.4.6 (BI of Koch snowflakeKS) LetKSn be the figure

obtained in the n−th iteration of the construction of the Koch
snowflake. Then, µ1 (∂KSn) = 3

( 4
3

)n
and µ2 (KSn) = 3

√
3

16

( 4
9

)n

for n > 0 and µ2 (KS0) =
√
3
4 , so

µn−1 (KS) = 3 lim
n→∞

(

4

3

)n

= +∞

and

µn (KS) =
√
3

4
+ 3

√
3

16

∞
∑

n=1

(

4

9

)n

= 2
√
3

5
.

Thus, bi (KS) =
(

∞, 2
√
3

5

)

. If the length of the base of the

equilateral triangle KS0 is equal to a > 0, then bi (KS) =
(

∞, 2a
2
√
3

5

)

. �

Example 3.4.7 (BI of Sierpinski triangle ST and Sierpinski
carpet SC) Similarly as in the previous example, let STn be the
figure obtained in the n−th iteration of the construction of
Sierpinski triangle. It is not difficult to see that µ1 (∂STn) =
3a
( 3
2

)n
and µ2 (STn) = a2

√
3

4

( 3
4

)n
, so

µ1 (ST) = lim
n→∞

3a

(

3

2

)n

= +∞

and

µ2 (ST) = lim
n→∞

a2
√
3

4

(

3

4

)n

= 0.

Thus, bi (ST) = (∞, 0). Here a > 0 is the length of the base of
the initial equilateral triangle ST0.

In the case of Sierpinski carpet, µ2 (SCn) = a2
( 8
9

)n
and

µ1 (∂SCn) = a
2

( 8
3

)n
, so similarly as in the case of Sierpinski

triangle we obtain that bi (SC) = (∞, 0) �

Example 3.4.8 (BI of Cantor comb CC) Let CC = C × [0, 1]
be the Cantor comb and let CCn be the figure obtained in the
n-th iteration of its construction. Since µ1 (C) = 0 and Fubiuni
theorem is true for the Lebesgue integral, µ2 (D) = 0.

On the other hand, µ1 (CCn) = 2n+1 3n+1
3n , so µ1 (CC) =

+∞. It follows that BI has the same value as in the case of
Sierpinski triangle and Sierpinski carpet, i.e., bi (CC) = (∞, 0).

Note that for any A ⊆ R
2 of positive measure disjoint to CC, the

set B = A ∪ CC satisfies condition bi (B) =
(

∞,µ2(A)
)

.
On the other hand, boundary of Cantor comb contains 2ℵ0

disjoint copies of the segment [0, 1], so, its rectification produces
a very long line: a concatenation of 2ℵ0 copies of [0, 1]. Clearly, it
cannot be represented by a real number, which opens possibility
of facilitating some other types of orderings, e.g., Suslin lines. �

Example 3.4.9 (BI of Cantor set C) It is well known that
µ1 (C) = 0. Furthermore, µ0 (C) = |C| = 2ℵ0 , so bi (C) =
(

2ℵ0 , 0
)

. For readers unfamiliar with the basic concepts of set
theory we refer to the textbook (Jech, 2006).

The case bi (A) = (0, a) for a ∈ (0,+∞) is not possible.
Indeed, µn−1 (∂A) = 0 implies that the topological dimension of
A satisfies condition dim (∂A) ≤ n− 2, hence either interior or
exterior of A is empty. Consequently, µn (A) = 0 (case int (A) =
∅) or µn (A) = ∞ (case ext (A) = ∅).

With respect to objects in R
n for n > 1 with fractal

boundaries, BI behaves like a filter: for fractal ∂A, it is either
µn−1 (∂A) = 0 or µn−1 (∂A) = ∞.

When there is a need to calculate energy under fractal curve,
or further integrate it as with spectrograms, we immediately
switch to the 2D or 3D objects with complex-fractal boundary.

Chromosomes
The early image processing initiated the efficient algorithms to
penetrate images (Haralick et al., 1973). Extracting objects and
operating with them toward desired aims demanded more, e.g.,
(Vukosavic et al., 2001; Cermak et al., 2016). Every analysis of
chromosomes begins with identification of single chromosomes
and continues with matching of homolog couples using specific
banding patterns, thus reaching the basic karyotyping. The
careful visual inspection of small objects in direct observation
on photography was the only operation made in genetics for
decades. This was seriously extended with CCD microscopy
(Jovanović, 2001), when chromosomes became available for
mathematical modeling and unprecedented detailed analysis.
The gain was lost of subjectivity present in earlier direct visual
observations (as illustrated on the Figures 17–20).

Genetic content is well ordered within chromosomes,
with individual genes located at specific positions, organizing
chromosomal coordinate system. Chromosomal (karyotype)
classification reached in importance since any change, small or
smaller is related to most important life aspects of the studied
organism.

The methods and techniques applied in these analyses
are expanding at an accelerated rate. Besides karyotyping
and its comparisons with the developing standards toward
the localization and classification of the individual genes,
identification of irregular chromosomes with backtracking of
the genetic material forming them, as well as the localization
of hardly perceptible (small) fractures and their extraction and
further analysis, have been in the research focus (Jovanović et al.,
2014).

In the formation of microscopic preparations of
chromosomes, they get bent forms randomly. The images
(patterns) of light absorption correspond to the absorption
intensity two-argument functions are 3D manifolds with
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FIGURE 17 | Identification of the central meridian-line of a chromosome

before normalization-“rectification,” the feature preparation for the

metric-comparison (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 18 | Normalized chromosomal structure detail in chromosomal

coordinate system (Jovanović, 2001; Jovanović et al., 2014).

characterizing distribution of convex and concave parts (dark
and light segments).

The longitudinal distortions bending, unless negligible make
direct geometric analysis and comparison hard or non-
reasonable.

What initially remains is the investigation of algebraic and
topologic invariants of the representing manifolds. Following
with multitude of single chromosome shapes we are forced
to operate with this representations collected into large sets
which is a serious complication. In this preliminary part
of chromosomal analysis we recommended a rather simple
controlled normalization procedure, as follows (Jovanović et al.,
2010).

After the initial contour definition, we form the original
chromosomal coordinate system with the orthogonal section
lines on the central meridian line. This determines the initial
geodesics and the corresponding metrics. By preserving of this
central meridian in its original length, using Euclidean distance
(which departs substantially from digital-pixel wise distance),
rectifying it and positioning the orthogonal lines in the original
points, we obtain the receiving Euclidean coordinate network
(mesh). This mesh is used to map the original pixels into the
receiving orthogonal mesh.

The inflections of the meridian will demand interpolation
of pixels in the receiving network, and they correspond to
the convex side. The concave-symmetric part will demand
pixel fusions in the receiving image, which is the rectified
chromosome. Such normalization is very suitable for applications
of metrics in order to determine the degree of chromosome
similarity with other compared chromosomes, leading rather
straight to classification. Thus, rectifying-normalization is
intended to produce image of the studied chromosome, as it
would be if the chromosome did not have any inflections in the
preparation production.

Clearly, smaller inflection enables more precise rectification
of the particular chromosome. In cases when the inflection angle
induces substantial detail damage, the rectification procedure
can be frozen at each desirable angle, thus preserving important
image sections, or, extend necessarily the chromosome length.

The alternative procedure is to generate narrow longitudinal
bands concentric to the original curved meridian. Those bands
should contain the smaller features that are undesirably distorted
in the above normalization of the whole chromosome, and rectify
only the selected narrow band. This approach will reduce the
above disadvantage to negligible.

Once normalized, chromosomal images are well positioned
over the simple rectangular domain. Obviously, the algebraic-
topological invariants in the original chromosomes are now
algebraic-geometric invariants, in the (almost) orthogonal
chromosomal coordinate system.

In the early nineties, zooming the chromosome into the
chip diagonal, we managed to obtain close to 100 k pixel per
chromosome resolution. Now with pixels reduced hundredfold,
the number of pixels per chromosome increases proportionally,
offering high resolution orthogonal chromosomal systems. The
consequence is significant improvement of accessible details
within the observed genetic structures. Once when the real
chromosome 3D high resolution images become reality, we will
deal with the 3D chromosomal orthogonal cylindrical geometry,
with appropriate metrics.

In this way, the original chromosome manifold MChi
(

x, y
)

converts to the normalized manifold Mi

(

x, y
)

. In order to
determine chromosomal invariants we determine the following
two corresponding sets

Mmaxi =
{

(

x, y
)

:

∂

∂x
Mi

(

x, y
)

= 0 andMi

(

x, y
)

is local max

}

and

Mmini =
{

(

x, y
)

:

∂

∂x
Mi

(

x, y
)

= 0 andMi

(

x, y
)

is local min

}

,

assuming that the central meridian is collinear with the x−axis.
The absorption bands tend to form parallel reefs, which will result
in certain accumulations along some orthogonal lines on the
meridian line. When projected to the meridian (for y = 0), they
will converge to narrow bands. As representatives of these bands,
we take their midpoints and collect them into sets (vectors)Maxi.
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FIGURE 19 | 3D representation of absorption in chromosomes; top left, non-normalized –example, the lowest chromosome from Figure 5; the other examples are

normalized (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 20 | Chromosome measurement, comparison and classification (Jovanović, 2001; Jovanović et al., 2014).

Similarly form Mini for the minimums. In this way we can
use Maxi as a single simple chromosomal invariant and define
measures on such representations which would indicate the level
of chromosome similarity and provide general classification.
Then for two representation vectorsMaxi andMaxj we can define
the metrics by

d
(

Maxi,Maxj
)

=
n
∑

k=1

∣

∣xi,k − xj,k
∣

∣ (∗)

The alternative is to calculate the relative distances of nonzero
coordinates ofMaxi andMaxj and use these vectors in the metric
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(∗). For the alternative purposes we apply more or less refined
metrics based on Euclidean metrics, e.g., less refined for global
comparisons, more refined for detail inspections.

Earlier we defined some normalized and fuzzy metrics
using simplified chromosomal representations. If more detailed
and more precise similarity measurement is needed, for the
representing set Maxi we can take all local extreme structures,
instead of the point-wise projections on the meridian lines (thus,
2D structures).

Other complementary structural study of images of
chromosomes is supporting operations on chromosomes
with multiple FISH signals, and detection of very small features
on chromosomes, see (Jovanović et al., 2014), which would
include small structural changes and localization of individual
genes in the chromosomal coordinate system.

FOURIER SPECTROSCOPY

Infinite dimensional function spaces, in particular Hilbert spaces,
have become a natural mathematical background for signal
processing. A Hilbert space H is a normed vector space with
a scalar product 〈 , 〉 which is also complete, i.e., each Cauchy
sequence in H is convergent.

A countable Fourier basis of H is any subset B = {bn : n∈ N}
of H with the following properties:

• 〈bn, bn〉 = 1 for all n∈ N;
•
〈

bi, bj
〉

= 0 for i 6= j;
• x =

∑∞
n= 0 〈bn, x〉 bn, for all x ∈ H.

The number x̂n = 〈bn, x〉 is called the n-th coordinate of x
in the basis B. Moreover, the first two properties say that B is
an orthonormal system of vectors, while the last property says
that each vector can be expanded in Fourier series. Moreover,
coefficients x̂n are uniquely determined in the following sense:
x =

∑∞
n= 0 anbn H⇒ (∀n∈ N) an =x̂n.

A number of semantic distortions and complications occur
if the system B is not orthonormal, and have serious impact on
the validity of the spectroscopic analysis. In (Blinowska, 2008)
authors developed a system of base functions that is neither
orthogonal, nor normed, unintentionally opening a serious
question of the exact meaning of the observed harmonics. More
precisely, beside the regular harmonics, such spectroscopy always
induces virtual harmonics and do not preserve projections. In
particular, projections of certain signal components often do not
carry the samemeaning as in the regular case, in fact they become
meaningless.

Note that Fourier basis can be uncountable. However, the
number of the nonzero coordinates is at most countable, which is
the statement of the classical theorem that is stated below:

Theorem 4.1. Suppose that B = {bi : i ∈ I} is any Fourier
basis of the Hilbert space H and that x ∈ H. Then the set
{

i ∈ I : x̂i 6= 0
}

is at most countable. �
In signal processing, the standard Hilbert space is the

completion of the space of continuous functions on the closed
interval [−π ,π]. Recall that the scalar product is defined by

FIGURE 21 | FFT spectrogram as a part of the acoustic melody recognition

(Jovanović, 2001; Jovanović et al., 2014).

〈

x, y
〉

=
∫ π

−π
x (t) y (t) dt.

The corresponding standard Fourier basis B is defined by

B =
{

1√
2π

,
cos (t)√
π

,
sin (t)√
π

,
cos (2t)√

π
,
sin (2t)√

π
,

cos (3t)√
π

,
sin (3t)√

π
, . . .

}

.

Discrete Fourier transform and the fast Fourier transform
(FFT) are the most common and most popular methods for
the expansion of the numerical vector x (t) in the standard
Fourier basis. Starting from its development in late sixties, it has
founded a quite remarkable application in signal processing. In
particular, it has enabled discovery of the efficient method for
determination of periodic components of the given signal. The
usual preprocessing involves various normalization techniques
that ensure semantic stability. Readers unfamiliar with the basic
concepts of the Fourier spectroscopy we refer to (Attenborough,
2003; Hsu, 2014).

One of the main assumptions is that a given signal x(t) is
stationary, or relative stationary on the observed time interval
L, i.e., that x(t) do not have significant changes for t ∈ L.
It is often a case that authors present and analyze single FFT
spectra, without any consideration of signal dynamics. If the
signal contains multiple frequency components, say disjoint on
the time axis but all within the domain L of the performed FFT,
then the present frequency components will be detected without
time resolution.

Consequently, in order to isolate and extract disjoint periodic
component of a signal, it is necessary to successively perform the
FFT with a t time slide at each iteration and the corresponding
shortening of the initial signal. Note that this procedure requires
appropriate sample rate and resolution.

Frontiers in Physiology | www.frontiersin.org 13 December 2018 | Volume 9 | Article 1707

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Kasum et al. Measures and Metrics of Biological Signals

For instance, performing FFT for the signal from the Example
2.2 with L ≥ 5, we can detect all frequency components 440,
528 and 660, but without time separation, i.e., they will appear
simultaneously. However, performing five FFT’s with time sliding
1t = 1 five times, each time at the interval

[

k− 1, k− 1+1t
]

,
we shall obtain five spectra, each of them containing exactly one
of the frequency components.

Furthermore, reducing L to 0.5 and 1t to 0.1 will produce 45
spectra each of them with a single frequency components, or two
at the switch zones. In this way, we have approached the criterion
of spectral stability and obtained time spectra—a spectrogram
with separated tones and melodies within the signal, with the
more precise determination of the basic frequencies, intensities,
and duration of its components, conditions present in the change
of frequency components. This provides a more complete insight
into dynamics of a signal.

In particular, with a spectrogram with 50 equidistant spectra
we can compensate possibly or certainly erroneous insight and
understanding of circumstances induced by analysis of single
spectra. Applying some interventions on Fourier spectrograms,
e.g., (Jovanović et al., 2010; Spasić et al., 2010), it is possible
to achieve very sharp time resolution of the present frequency
components and their realistic magnitudes.

The example on Figure 22 (Culić and Šaponjić, 1998;
Japundzic-Zigon, 1998, 2001; Japundzic-Zigon et al., 2004)
with hemorrhage offers insight into the effects of different
substances on AP, the modulators of AP regulating system.
Different approaches are available for single sort of experiment.
For example presence/absence of major frequency features
and their relative relationship, like frequency shifts and power
ratios. The low frequency range LF and high frequency-
HF, at the middle of frequency interval are essential
features in these experimentation, yielding spectrogram
characterizations of investigated physiology, which converge
to the binary measure form- Y/N, filters, if/when, for
example, distinguishing between control, and experimental
group, as in the experiment in Figure 23, distinguishing
spectral morphology of normal-control state and modulated
spectrogram after administration of scopolamine methyl
nitrate.

Some other issues are related to semantics of the signal
processing by Fourier spectroscopy, see Spasić et al. (2010).
Here we shall emphasize the following two important moments.
A good time spectrogram can contain features significant for
the studied process. Such content often require higher order
spectroscopy, with or without the preprocessing involving
normalization and application of various measurement, (see
Jovanović et al., 2010; Perović et al., 2013).

Secondly, if the spectrogram contains small, hardly detectible,
or imperceptible components in some cases they can be detected
and extracted by application of the specific methods developed
for the image processing. Some of them are applied for the
analysis and detection of small features in chromosomes (e.g.,
Bradski, 1998; Bouguet, 2000; Welch and Bishop, 2004).

We can conclude that measures applied in various
classification problems have better semantic correspondence
with the reality when used on sufficiently resolute spectrograms

or on their features. Furthermore, it is clear that all relevant
measures will involve similar invariants-features, with high
context dependence.

Specific situations often change the approach for choice of the
adequate measure for the complexity of features. In the case of
chromosomes, the Euclidean geometry is replaced by the local
chromosomal geometry induced by the corresponding geodesics
(contours, meridians). In spectroscopy, possible measures will
focus on some of the following.

• Position of dominant lines;
• Dispersion;
• Second order FFT performed on extracted features;
• Counting/comparing of picks within certain frequency range

with the threshold ε;
• Binary 0 − 1 measures defined by filters and maximal filters,

for example connected to the position of higher harmonics.

Additional treatment of measures on spectra and spectrograms in
more general settings is given and discussed in the next section.

BRAIN CONNECTIVITY MEASURES

The EEG resolution (the number of electrodes on the scull)
has exceeded 28 points more than a decade. Higher density
of electrodes-signals for EEG will increase with technology
development, and is expected to reach thousands soon.

The relationship of different signals within integrated
neurological functions received significant attention in the last
few decades. The focus was mainly on the problem of modeling
brain connectivity. Developed models have led to the broad
range of applications in numerous experimental laboratories,
contributing to the rich discourses of fundamental importance
in neuroscience.

Clearly, as every processing in the brain involves certain signal
processes in the brain, any investigation of neurological signals
almost certainly faces the most complex kind of signals. It is also
well known that a highly complex system behavior mimics highly
chaotic random systems.

For this reason, the successful modeling of stock market
trends by Cleave Granger in late sixties and early seventies
(Granger, 1969, 1980; Granger and Morris, 1976), soon after
found application in the modeling of brain processes, namely
brain connectivity.

The initial Granger causality model improved by Geweke
which for vector variables has a form

x (t) =
p
∑

j=1

A
(

j
)

x
(

t − j
)

+ E (t) ,

where x (t) = (x1 (t) , . . . , xn(t)) is a vector of variables,
A
(

j
)

, j = 1, . . . , p is a coefficient matrix defining variable
contributions at step t − j, E(t) are prediction errors. In terms of
frequency, Geweke in (Geweke, 1982, 1984) defined the causality
model by

x (λ) = A−1 (λ)E (λ) = H (λ)E(λ),
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FIGURE 22 | Shown are FFT spectrograms of arterial pressure –AP in hemorrhage experiments, exhibiting the actions of AP modulators present in the AP regulation

(system antagonists: renin angiotensin, of sympathetic nervous system and vasopressin). (A) hemorrhage 10%; (B) hemorrhage 10% pretreated with captopril; (C) the

same, pretreatment withy phentolamin; (D) pretreatment with the substance V2255 (Jovanović, 2001; Jovanović et al., 2014).

FIGURE 23 | Spectrograms showing the normal AP state and the spectrogram changes and regular feature destructions after administration of scopolamine methyl

nitrate (Jovanović, 2001; Jovanović et al., 2014).

where

A (λ) = −
p
∑

j=0

A(j)e−2iπλj,

A (0) = I and H (λ) is the system transfer matrix. Then he
defined the measure of linear causality of two vectors of variables
x and y at frequency λ by

fy→x (λ) = ln

(

|Sxx (λ)|
∣

∣Hxx (λ)62 (λ)H
∗
xx (λ)

∣

∣

)

.

Here H∗
xx (λ) is the Hermitian transpose of Hxx (λ), | | denotes

determinant and Sxx (λ) is the upper left block of the spectral
density matrix S (λ) defined by

S (λ) =
[

Sxx(λ) S∗yx(λ)
Syx(λ) Syy(λ)

]

= H (λ)62 (λ)H
∗
(λ) ,

H (λ) =
[

Hxx(λ) Hxy(λ)
Hyx(λ) Hyy(λ)

]

.

Finally, 62 (λ) is the matrix of error variance.
The idea of Geweke that directed causality between the

two nodes i and j of the graph consisting of precisely located
electrodes-signals needs to be analyzed frequency wise was a
substantial improvement, which was followed by other brain
modeling teams, some of which received major attention and
spread broadly.

In the implementations the major connectivity measures are
estimating:

• Connectivity between two nodes i and j;
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• Direction of connectivity between i and j;
• Intensity of connectivity between i and j. (1)

All of this properties are integrated into a single measure,
while generally neglecting the frequency λ at which causality is
constructed, replacing it with the maximum over a frequency
interval3.

Following Geweke, Kaminski, and Blinowska introduced a
modification called direct transfer function, defined by

DTFij (λ) =
∣

∣Hij (λ)
∣

∣

√

∑n
k=1 |Hik|2

,

measuring causality from j to i at frequency λ. Initially they
started with non-normalized form of DTF using the expression of
Geweke (Kaminski and Blinowska, 1991; Kaminski et al., 2001).

Sameshima and Bacala proposed somewhat different
approach in modifying Geweke measure (Sameshima and
Baccala, 1999; Baccalá and Sameshima, 2001a; Baccala and
Sameshima, 2001b), with their partial directed coherence,
measuring influence of signal at the node i to the signal at the
node j at frequency λ, formally defined by

PDCij (λ) = πij (λ) =
Aij (λ)

√

a∗j (λ) aj (λ)
.

Here Aij (λ) is the i, j-th entry of A (λ), aj (λ) is the j-th column
of A (λ) and a∗j (λ) is the Hermitian transpose of aj (λ).

Earlier, they also introduced the direct coherence measure
with the intention to estimate direct connectivity between nodes
i and j at frequency λ. It was defined by

DCij (λ) =
σjjHij (λ)

√

∑n
k=1 σ

2
kk
|Hik (λ)|2

.

More recently Sameshima and Baccala introduced information
PDC and DTF (Takahashi et al., 2010), for which they claimed to
measure the information flow from the signal at the node j to the
signal at the node i by

iPDCij (λ) = Aij (λ) σ
−1/2
ii

(

a∗j (λ)6
−1
w aj (λ)

)−1/2

and

iDTFij (λ) = Hij (λ) ρ
1
2
jj

(

h
∗
j (λ)6

−1
w hj (λ)

)− 1
2
.

Here 6w=E
(

w (n)wT (n)
)

is a positive definite covariance
matrix of the so called zero mean wide stationary process w(n),
and ρjj is the variance of the so called partialized innovation
process ζj (n) defined by ζj (n) = wj (n)−E(wj(n)/{wl (n) : l 6=
j}).

Let us mention that numerous experimental teams used the
above measures in their discoveries where the above measures

reached highest popularity in the formation and formulation of
the key conclusions and results, including further modifications
(Brovelli et al., 2004; Babiloni et al., 2005, 2007; Schelter et al.,
2005; Chen et al., 2006; Singh et al., 2007; Wang et al., 2007).

In (Kasum et al., 2015) we undertook a thorough analysis of
these approaches studying all tiny details in the computation
and comparison of these measures on the authors data sets,
discovering certain inconsistencies and problems involving these
measures which substantially compromise their application in
some important issues (Kuś et al., 2008; Takahashi et al., 2008;
Blinowska et al., 2010; Blinowska, 2011; Brzezicka et al., 2011).

Presenting three qualities (1) integrally, we are neglecting
differences in their importance and masking the most important
aspect—being connected. For this reason, we proposed their
separated analysis with certain additions, which can result in the
different insight of the local inconsistency in the above methods.
This is briefly shown on the Figure 24 for a reduced small subset
of the system involving 20 × 20 graphs.

On the left diagram is shown connectivity difference between
the two measures with corrected statistical zero value. The right
diagram contains the same connectivity difference between the
two connectivity measures after the natural harmonization of
the two experimental zeroes. The consequence is the loss of the
connectivity difference in the example illustrating by the authors
of PDC the difference and the advantages of their method.
Manipulating with different values of statistical zero, one can
reach arbitrarily desirable conclusions. Since, we earlier have
shown that the DTF is exposing abundant connectivity, when
almost everything is connected (D. Adams axiom), now the same
will be true for PDC as well, only if sensitivity is sufficiently
adjusted, not as far as in the original measure comparisons
(Sameshima and Baccala, 1999).

Some alternative approaches were suggested by other research
teams (Kroger et al., 2006; Watkins et al., 2006; Jovanović and
Perović, 2007; Liu et al., 2007; Aoyama et al., 2009; Klonowski
et al., 2009).

On the other hand, we introduced the concept of weak
connectivity (Kasum et al., 2015), which might be essential in
some processes and might remain hardly noticeable or even
imperceptible for the current methods. We offer some alternative
methods for detection of such phenomena. One of them is rather
simple and goes as follows.

For a set E of signals we say that there is connectivity of E at
frequency λ if

πE (λ) =
∏

f∈E
PS
(

f
)

(λ) 6= 0.

Here PS(f ) is the power spectrum of f , PS
(

f
)

(λ) is the λ-th
coordinate of PS(f ), and

∏

is the coordinate-wise product.
The use of E with multiple signals instead of binary E might

enhance some hardly noticeable periodic components which are
present in the whole group of signals. Then, we can say that E is
connected if πE 6= 0, i.e., if πE (λ) 6= 0 for some λ.

Besides the above considerations, we also recommended the
connectivity being considered over the time interval T, rather
than at a single point in T. The intention is to obtain insights
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FIGURE 24 | Connectivity difference between DTF and PDC (Kasum et al.,

2015).

in the time dynamics of connectivity. In this way the usual
connectivity directed graphs, after some adaptations, can be
substituted with their integration over time. Consequently, this
will produce dynamic graph movies instead of single directed
graphs, analogous to the spectra—spectrogram integration.

For the power spectra product of the initial time point t we
can integrate πE (λ) = πE (λ, t) over t ∈ T and λ ∈ 3 to obtain

πE (λ,T) =
∫

t∈T

πE (λ, t) dt

and

πE (λ,3) =
∫

λ∈3

πE (λ, t) dλ

as connectivity measures over the time interval T and the
frequency interval3.

Other methods to establish connectivity on these higher
structures are available. Once connectivity between the sets of
signals is established, we might consider other two properties: the
connectivity direction and intensity.

DISCUSSION

Biological research, centered on biological signals is in explosive
expansion, with neurological contents leading in complexity.
With 100 B (Billion) neurons and some its exponent of neuronal
connections, the individual brain, as an information processing
system responsible for all knowledge accumulated in history, plus
a lot of other behavior, exceeds by far the complexity of the
whole Internet processing, with all rich parallelism and powerful
computational nuclei.

The unknown complexity of individual working brain is far
out of reach of our understanding yet. Certainly, it is the most
powerful function humanity met in history. Numerous of the
processes are multi valued, certain processes binary, dispersed
over a range of frequencies. It is the hardest possible approach
to learn the unknown functionality from the hardware and
individual signal sources. With the simple personal computer it
would be a very hard way to reach understanding of software
system controls involved, especially all the components of the
operating system.

Yet, there are already conferences and discoveries related to
the operation of human consciousness, which was until very
recently a “nonscientific category.” The approach of parallel
investigation of multitude of tasks is promising, as some of the

issues are being resolved from multiple projections. The number
of combined teams of scientists engaged in brain research is
growing, engaging significant resources, which might prove
useful.

Mathematical methods briefly discussed here and much more
are a product of the brain, thus having its representation and
life within the brain much before it is used in brain modeling.
Thinking in this way we could be sure all of Mathematics so far
applied in biological signals is anything but too complex, as we
never experienced the situation when very complex is completely
described by very simple.

Nevertheless, we shouldmention some issues that will be faced
sooner in much simpler environments like Quantum Physics
and Cosmology. People usually consider Mathematics as a tool
set sitting on the shelves, ready to be applied by whomever
in whatever capacity and fragments of its developed contents,
with all time growing complexity, as natural scientists and
engineers are learning more of Mathematics. And this is good,
as Mathematics is a public property. The history teaches us that
it is hard to guarantee, even for the most abstract parts, that any
of discovered Mathematics will never be needed by application.
This is the only security for the future of Mathematical funding.

With the growing complexity of the applied mathematical
concepts, we are approaching some serious issues of foundations
of Mathematics. Before that, let us mention that the symbol ∞
does not represent infinity uniquely since Cantor’s discoveries in
1873, when he showed that arithmetical and geometric infinity,
i.e., natural numbers and real line are different infinite quantities.
As a consequence, infinity has been scaled in terms of pairwise
different cardinal numbers. However, the size of this scale is
enormous; it cannot be coded by any set. This was the creation
of Set theory, and the beginning of the studies of foundations of
Mathematics, which is probably never ending.

When dealing with simplest measurements and simplest
Euclidean measures we think that everything can be measured.
One can only imagine the disappointment of Lebesgue who
developed the beautiful completion of measure and integration,
when Vitali find a rather simple set on the real line which is not
Lebesgue-measurable. In fact there are 2ℵ0 Lebesgue-measurable

sets, while there are 22
ℵ0 subsets of R.

The existence of immeasurable sets is highly counterintuitive.
These sets cannot be sketched, they are totally amorphous. Sets
with fractal boundaries can be seen as a bridge toward the
intuitive visualization of immeasurable sets.

From earlier examples, namely, from Lobachevski discovery
of non-Euclidean geometries, in twenties of 19th century, which
was against all believes of the nature of Geometry, after he showed
equiconsistency of the first non-Euclidean Geometry with the
anciently perfectly founded Euclidean Geometry which we still
learn in the schools, we learned that Mathematical theories,
packed around their axioms can be at the same level of logical
certainty, while obviously impossible mixed together since with
colliding axioms.

And within very short time-a few decades, that discovery
gave rise to the huge developments in Geometry, immediately
picked up by the most prestigious theoretical physicists as proper
Cosmometry (Geometry of the Universe, or its specific parts,
e.g., environments of black holes). Concerning the issues related
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to all measures, we have to say that numerous depend on the
axiomatics for Mathematics which is the defining Geometry
of the Universe of Mathematics. And there are alternatives
combining a smaller set of fundamental axioms and their weaker
or stronger versions.

Without entering a discussion that does not belong here,
let us just say that AC (Axiom of Choice) is very much
needed in the foundations of Mathematics, but there are
alternatives. AC implies that Lebesgue measure is not total.
However, it implies that there are numerous mentionedmeasures
that are total. Banach proved that there is a total extension
of Lebesgue measure which is countably-additive, while, as
the Solovay theorem shows (Solovay, 1970, 1971; Pap, 2002),
the existence of a total countably-additive extensions of the
Lebesgue measure is equconsistent to a very strong property.
Some of the functions close to the above-examined fractals
are complex enough to open the fundamental issues (for a
survey on recent developments in Measure theory see e.g., Pap,
2002).

On the other hand, we can stay on the flat Earth and deal only
with short approximation of the phenomena, avoiding entering
the zone of the complex Mathematics and its fundamental issues.
Yet, as proved by Goedel, we cannot escape the hot issues even
remaining only in Arithmetic, nor in any theory containing its
copy (like Geometry).

Other Approaches
Our aim was not to deliver a comprehensive overview of the
all metrics and measurements involved in the contemporary
biological studies. We have been focused primarily on our work.
However, it is prudent to at least mention some of the important
topics that are missed here.

The first is related to methods for fractal analysis developed
initially for the fractal dimension of observed time series from
human physiology and performance. We refer the reader to
(Holden et al., 2013).

The second is related to measurement of self-affine structures
and a spectrum of scaling parameters. An example of this kind
is the detrended fluctuation analysis presented in (Kantelhardt
et al., 2002).

The third is related to the recurrence quantification analysis
based on the Taken’s theorem. For more information we refer the
reader to (Webber and Marwan, 2015).

The fourth is related to properties such as ergodicity,
anomalous diffusion and multiplicative interactions presented in
(Molenaar, 2004; Hasselman, 2013).

The fifth and the final is related to application of non-
commutative probabilities presented in (Brovelli et al., 2004;
Busemeyer and Bruza, 2012).
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