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The accurate generation of forward models is an important element in general research

in electrocardiography, and in particular for the techniques for ElectroCardioGraphic

Imaging (ECGI). Recent research efforts have been devoted to the reliable and fast

generation of forward models. However, these model can suffer from several sources of

inaccuracy, which in turn can lead to considerable error in both the forward simulation of

body surface potentials and even more so for ECGI solutions. In particular, the accurate

localization of the heart within the torso is sensitive to movements due to respiration

and changes in position of the subject, a problem that cannot be resolved with better

imaging and segmentation alone. Here, we propose an algorithm to localize the position

of the heart using electrocardiographic recordings on both the heart and torso surface

over a sequence of cardiac cycles. We leverage the dependency of electrocardiographic

forward models on the underlying geometry to parameterize the forward model with

respect to the position (translation) and orientation of the heart, and then estimate these

parameters from heart and body surface potentials in a numerical inverse problem. We

show that this approach is capable of localizing the position of the heart in synthetic

experiments and that it reduces the modeling error in the forward models and resulting

inverse solutions in canine experiments. Our results show a consistent decrease in

error of both simulated body surface potentials and inverse reconstructed heart surface

potentials after re-localizing the heart based on our estimated geometric correction.

These results suggest that this method is capable of improving electrocardiographic

models used in research settings and suggest the basis for the extension of the model

presented here to its application in a purely inverse setting, where the heart potentials

are unknown.

Keywords: electrocardiographic imaging, inverse problems, respiration, ECGI, forward problem,

electrocardiography, heart tracking

1. INTRODUCTION

Subject-specific solutions to the forward problem of electrocardiography, that is, producing a
mathematical model that can estimate body surface potential maps (BSPMs) from knowledge of
cardiac electrical activity and an individualized thoracic volume conductor model, is important
in a number of settings. These include tools for understanding and pedagogy about the
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ECG (van Oosterom and Oostendorp, 2004), methods to guide
interventions such as ablation through simulation (Trayanova,
2011), and solutions to the corresponding inverse problem
of characterizing cardiac electrical activity from body surface
measurements (commonly known as ElectroCardioGraphic
Imaging, ECGI) (Pullan et al., 2010). The forward solution
is known, from electrostatic theory, to be quasistatic and to
depend only on the geometry of the torso and of the organs
inside of it and their respective conductivities. Moreover, under
specific assumptions about the electrical source models on the
heart this relationship can be accurately modeled as linear.
However, forward solutions depend on the underlying geometry,
since it specifies the boundary conditions for the underlying
partial differential equation, and even though this sensitivity is
well-behaved, it is particularly critical when solving the ECGI
inverse problem, since that inverse problem is ill-posed and
very sensitive to errors in the forward model. Thus methods to
improve forward modeling have received considerable attention
in the ECGI community (Coll-Font et al., 2016a) and there is
open discussion about, for example, what is the “best” forward
model to use, which source models better characterize the
electrical activity of the heart, how many, and which, organs
should be included in the geometry, and how their respective
conductivities should be estimated (Ferguson and Stroink, 1997;
Ramanathan and Rudy, 2001a,b; Weber et al., 2011; Jones et al.,
2013; Bear et al., 2015; Dehaghani, 2015; Potyagaylo et al., 2016;
Punshchykova et al., 2016).

However, there is an additional challenge that is often
ignored in this discussion: the positions of the organs within
the torso, including the heart, are not static; rather they vary
due to respiration and to changes in position of the subject.
The sensitivity of forward solutions to these variations have
been studied (Geneser et al., 2008; Swenson et al., 2011) but
overcoming it remains challenging. It cannot be resolved a
priori with better segmentation and it is not always possible to
address by procedural mechanisms such as requiring the patient
to retain breath-hold position. This challenge also appears in
many phantom and animal experiments, such as validation of
ECGI (MacLeod et al., 2000; Erem et al., 2014; Bear et al., 2015;
Cluitmans and Volders, 2017), where the true position of the
heart is not only unknown but subject to several experimental
uncertainties and might change from beat to beat.

Here we address this limitation by attempting to use the
changes in ECG due to changes in heart position—in other
words, the manifestation of the problem itself—as the source of
a solution. Specifically, since changes in position of the heart
produce changes in the distribution of body surface potentials,
we investigate whether that very variation can be used to track
these positional changes and thus “correct” the forward model.
In this paper we describe a method to estimate and correct
for the translation and rotation of the heart for each heartbeat.
We evaluate our accuracy in doing so by examining geometric
accuracy in a controlled simulation and to what extent estimating
these geometry changes leads to decreased errors in accuracy
of both forward model body surface potential calculations and
of associated inverse solutions. We report results for both
synthetic experiments and in the context of three different

physical experiments carried out with canine hearts suspended
in a human torso-shaped tank phantom.

Our work builds on previous reports relating changes in
geometry—and thus changes in forward models—to changes in
the ECG. The classical studies described the changes in ECGs
from patients as a function of the respiratory cycle. These studies
showed that the changes can be characterized as a continuous
displacement of the maxima and minima of the body surface
potential maps (BSPM) (Amoore et al., 1988), have different
effects along the PQRST sequence (Adams and Drew, 1997;
Madias, 2006), and are subject specific (Nelwan et al., 2001).
More systematic experiments on animal models and synthetic
data provided methods to estimate the average BSPM and the
variance that can occur due to movement of the heart in a subject
(MacLeod et al., 2000; Swenson et al., 2011). More recently,
cardiac magnetic resonance imaging allowed characterization of
the relationship between standard clinical metrics of the ECG
and changes in the heart geometry (Lyon et al., 2017) and,
specific to ECGI, Cluitmans et al. explored the effects of these
geometry errors on inverse solutions (Cluitmans and Volders,
2017).

Closer to our work, there have been a few reports attempting
to track the changes in position of the heart using BSPM.
Shvelikhova et al. estimated the vertical position of the heart
by characterizing its electrical activity with a moving dipole
whose position was tracked from the ECG (Svehlikova et al.,
2011). Recently, Rodrigo et al. proposed to pre-compute a set
of candidate forward models and then used a metric derived
from the L-curve in Tikhonov regularization to select the “best”
candidate forward model (Rodrigo et al., 2017, 2018). These
approaches produce an optimization problem to be solved
that is computationally tractable, but require pre-computation
of a set of forward models from which to choose, or have
very strong assumptions about the form of the source and
geometry models, which may limit their generalization. In
any case they are complementary to the method described
here.

In this paper we describe the formulation and experimental
validation of our approach. Specifically we reverse the role
of geometric assumptions and cardiac surface potentials with
respect to the traditional inverse problem of electrocardiography;
instead of estimating the electrical sources of the heart from the
ECG measurements and the geometry, we correct the geometric
model (e.g., translations and rotations of the heart) assuming
knowledge of the electrical measurements on both the heart
and the body surface (Coll-Font, 2016; Coll-Font et al., 2016b,
2017). Direct application of this approach is relevant to a
variety of phantom and animal studies where measurements
can be made on both surfaces. A future extension might allow
use of only a limited set of heart surface potentials such as
those acquired during catheter procedures. Future application to
ECGI would require estimating both heart surface potentials as
well as geometry correction parameters and, while preliminary
results are positive, success clearly depends on establishing the
validity and limitations of the geometry correction approach
in its own right, which we attempt to do in the current
paper.
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In the following we describe in section 2 how our method is
applied to this type of data, we present the experiments we used
for validation and the corresponding results obtained sections 3
and 4, respectively, discuss their implications in section 5, and
summarize our conclusions in section 6.

2. METHODS

The work presented here assumes the availability of a nominal
discretized surface model for the heart and torso geometries;
however we do not assume that the position of the heart
within the torso is accurately known. The torso is treated as
homogeneous in the experiments reported here but this is not
required by the method as long as the geometry of any other
organs included in the model is known. The electrical activity of
the heart is modeled as a time series of potentials on a surface that
surrounds the ventricles. (Again, extension to alternative source
models would be straightforward). We further assume that we
have available potentials measured on the heart and torso surfaces
at multiple time instances, denoted xb(t) and yb(t), respectively,
where we index time within a beat by t and heartbeats by b. Under
these assumptions, the electrical forward model is represented in
the form of a forward matrix (denoted A) with the heart at some
reasonable position in the torso volume. We refer to the matrix
A that corresponds to this nominal position in the sequel as the
“nominal” forward solution. We note that this nominal position
will be used as a starting point in our iterative algorithm but that
there is no requirement that it be particularly accurate; we assume
that a nominal model computed from imaging scans will provide
a reasonable “initial guess.” With these assumptions, we have the
following putative nominal relationship between heart and body
surface potentials (MacLeod and Buist, 2010):

yb(t) = Axb(t). (1)

Our work assumes that the heart can change position at every
heartbeat b; thus Equation (1) must be extended to reflect the
corresponding changes in the forward model. We postulate an
equivalent sequence of forward models, A(pb), parameterized by
a joint position and orientation parameter vector pb, that relates
the position of the heart to the measured body and heart surface
potentials.

yb(t) = A(pb)xb(t). (2)

We chose a specific parameterization that effectively
characterizes the expected translation and rotation of the
heart due to respiration. In particular, although the respiratory
movement of the heart is subject specific, there are common
features that can be leveraged to describe it: the heart translates
vertically and undergoes rotation around a tethering point on the
left atrium (Netter, 2006; Coll-Font et al., 2011; Aras et al., 2015).
Based on this description, we defined translation parameters
using a standard coordinate system (from the EDGAR database
formulation; Aras et al., 2015), and defined rotations with respect
to two anatomical references: one is an anchor point placed at
the centroid of the atria and the other a septal axis that crosses
the heart through the septum from that atrial anchor point to the

FIGURE 1 | Depiction of the parameterization of the translation and rotation

coordinates. Left: Standard orthogonal projection views of the torso and heart

for three different position/angle combinations. Translation coordinate axes are

defined following the convention presented in the EDGAR repository (Aras

et al., 2015). The magenta box shows the translation bounding box for the

assumed anchor point. As described in the text, the translation and angle

constraints are defined such that the heart geometry can never intersect the

torso surface. Right: Rotation angles defined on the heart. Pitch (θ ): the angle

formed between the Z axis and the septal axis. Yaw (φ): the angle that the

septal axis projected on the X/Y plane forms with the X coordinate. Roll (ρ): the

rotation of the heart around the septal axis.

apex (see Figure 1 for illustration). Based on these references the
rotation angles are defined as:

• Pitch (θ): the angle formed between the Z axis and the septal
axis.

• Yaw (φ): the angle formed between the septal axis projected on
the axial plane and the X axis.

• Roll (ρ): the rotation of the heart around the septal axis.

Once this parameterization is defined, the generation of
forward matrices requires moving the heart to the position and
rotation described by the parameters pb and then computing
the corresponding forward matrix with an appropriate forward
solver.

The implicit function A(pb) defined in this formulation is a
manifold in the space of matrices. It is a non-linear, continuous
and smooth function—i.e., small variations in the position of
the heart will lead to small changes in the forward matrix—and
hence it can be used in an optimization framework. Specifically,
we need to solve an optimization problem that searches for
the translation and rotation parameters of the heart—within
some reasonable bounds—that minimize the error between ECG
potentials synthesized using Equation (2) and the potential
measurements on both surfaces. The main assumption in this
optimization problem is that the dominant error observed in
the synthesized potentials is caused by errors in the position
and orientation of the heart and that other sources of error can
be modeled as additive white Gaussian noise or are negligible.
This results in a non-linear least-squares problem over the
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six-dimensional vector pb, restricted in each dimension to a
hyper-rectangle as in Equation (3).

min
pb

∑

t

‖yb(t)− A(pb)xb(t)‖
2
2

st.pb ∈ 4

(3)

were the norm is taken over both time and space. The hyper-
rectangle constraint, illustrated in Figure 1 and denoted as 4,
was defined a priori to prevent any intersection between the heart
geometry and the torso surface.

This constrained non-linear optimization problem can be
solved with any off-the-shelf solver. In the particular case of these
experiments, we used MATLAB’s default iterative solver of the
fmincon function1, which implements an Interior-Point method
with numerically approximated gradients and Hessians..

We note that in this problem the solution is constrained to
lie on a non-linear manifold induced by the parameterization
in a high-dimensional subset of matrices restricted to be
approximations to the underlying PDE. Thus the problem is
difficult to analyze mathematically and, in particular, we have
no guarantee that it is well-posed2. However these restrictions
imposed on the solution are highly constraining. Thus we believe
it is reasonable to hypothesize that solutions are stable. Our
experimental results, as reported below, support this hypothesis.

3. EXPERIMENTS

The immediate purpose of the work presented here is to
determine if in fact the translation and rotation of the heart
estimated by our proposed algorithm can reduce the effects of
model errors present in the numerical and physical experiments
we studied. To that purpose, we both created synthetic data
to model respiratory movement and employed data recorded
during three different torso-tank canine experiments conducted
at the Cardiovascular Research and Training Institute (CVRTI),
University of Utah.

Synthetic Data:

We generated synthetic respiratory motion influenced data
using the sock2 heart and body surface geometry described
below and the potentials from a single beat on the epicardial
surface recorded with an electrode mesh, also as described
below. Starting from a nominal position inside the homogeneous
torso model, we moved the heart to 10 different positions and
orientations following a respiratory-like trajectory described in
(Coll-Font et al., 2011).3 For each of these positions/orientations,
we synthesized one heartbeat of BSPM using a forward model

1Beyond the default configuration, we set the function and objective tolerance at
10−6 and extended the function evaluations to 1010
2In theory rotational symmetries of the heart geometry could produce non-
uniqueness of the parameterization itself, but this is not a practical concern with a
realistic heart shape, and in addition in the setting under study here we have access
to the potentials on both surfaces, so that even rotational symmetries are removed
modulo a highly improbable symmetry in the heart surface potentials as well as its
geometry.
3The respiratory-like trajectory was interpolated from a time series of sagittal MRI
scans of the torso at different phases of the respiratory cycle

computed from that geometry using the Boundary Element
Method (BEM) provided with the SCIRun software system
(SCI-Institute, 2014)4 and added independent Gaussian noise
to achieve an SNR = 30 dB. We then fed the epicardial and
body surface data and the (incorrect) nominal forward model
into our algorithm and attempted to estimate the corrected
position and orientation of the heart for each of the 10 beats. We
repeated this procedure 10 times for different realizations of the
pseudorandom noise.

Experimental Data:

Data was generously provided to us from canine experiments
that had been carried out for previous studies with applicable
IACUC approval. These experiments consisted of unipolar
recordings of potentials on or near the epicardial surface
of an explanted canine heart measured simultaneously with
similar recordings on the surface of a torso-shaped tank in
which the heart was suspended (MacLeod et al., 1995a,b). The
tank was filled with conductive medium. The homogeneous
conducting medium and the availability of unipolar recordings
on both surfaces match the assumptions described in section
2. During the experiment, the suspended heart was kept alive
through retrograde perfusionwith blood from a “support” animal
that provided circulation through the left anterior descending
(LAD) artery. This setting allowed the experimenters to both
pace the heart at different locations, through electrodes placed
intramurally or on the heart surface, and to induce ischemia by
either accelerating the pacing rate or by occluding the LAD. At
the end of the experiment, the heart was vertically raised from its
position during the experiment and the 3D coordinates of several
electrodes were digitized and used to register the heart geometry
to its estimated position within the tank. This registration
procedure includes the measured vertical displacement of the
heart, thus assuming that it was raised and lowered into the tank
with no inclination with respect to the tank geometry. Note that
buoyancy effects and tension from electrical cables and blood
supply tubing might introduce error in the geometry that is not
corrected by the registration.

We used this measured geometry to construct our nominal
forward model, again computed with the SCIRun BEM solver,
and then used the recorded potentials on both surfaces over
multiple beats in the method described above to estimate the
position and orientation of the heart on a beat-by-beat basis.

Two different experimental methods were used to record
the heart surface potentials. In one experiment, the heart was
enclosed in a small wire cage with electrodes on the cage itself. In
the other two, a mesh, or “sock,” that had been wired with a large
number of electrodes was stretched around the heart surface and
tightly tied around the ventricles. Figure 2 shows visual examples
of the apparatus during an experiment. These two heart surface
potential measurement approaches have respective benefits and
drawbacks. The cage electrodes are placed at some distance

4The SCIRun BEM solver is a standard BEM implementation for potential sources
on an interior closed (epicardial) surface and measurements on an bounding
closed (torso) surface, based on the classical “solid angle” integrations. Boundary
conditions are the known epicardial potentials and an insulating boundary on the
body surface; electrodes are treated as point electrodes with infinite impedance.
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FIGURE 2 | Pictures of the recording devices on the heart using a cage geometry (Left), a sock geometry (Middle), and the entire experimental apparatus (Right).

from the heart and thus measure its electrical activity over a
rather broad area, resulting in considerable spatial smoothing
of potential distributions compared to measuring them directly
on the heart surface. In contrast, the sock electrodes measure
more local, spatially resolved, electrical activity. However, the
sock is flexible and hard to fix in place on the heart surface,
and its geometry is sensitive to contraction, swelling of the heart,
and any other changes in heart shape, and in addition may be
displaced during any interventions. Moreover the sock moves
as the heart moves, and the heart was not securely fixed in a
consistent, repeatable, and accurately measurable location during
the entire experiment. In contrast the position of the cage is easier
to both measure and maintain throughout the experiment. Thus
sock recordings are more prone to error in the geometric model,
including time-varying errors, than are cage recordings. Another
technical limitation of the sock is that the electrodes only cover
the ventricles, leaving an opening around the atria. In order to
use BEM forward solvers, the heart geometry must form a closed
surface, thus requiring the generation of “extra” nodes closing the
geometry for which there are no actual measurements available.
By contrast the cage has electrodes that completely surround the
heart surface.

Two views of the nominal geometries are shown for the three
experiments are shown in green (torso) and black (heart) in
Figure 8.

3.1. Additional Details for the Experimental
Datasets
Wenote that these three experiments were carried out at different
times on three different animals, one using the cage and two using
socks; for clarity we label these experiments in what follows as
cage, sock1, and sock2. We describe further details about each of
these experiments next.

cage: In this experiment the electrical activity of the heart
was measured with a cage geometry containing 599 electrodes
surrounding the heart and with 192 electrodes on the tank
surface. The experimental procedure consisted of recordings
during a series of ventricular pacings at four different sites
followed by three series of ischemic episodes, as described above,
all during sinoatrial pacing.

sock1: The sock used was outfitted with 247 electrodes and
again there were 192 electrodes on the tank surface. Extra nodes,
with no corresponding measurements, were added to the sock
geometry to close the surface above the base of the ventricles,
leading to a total of 337 nodes in the epicardial geometry mesh
model. Ischemic interventions were interleaved with control
periods; in this experiment there were 4 such ischemic episodes.
All heartbeats during the experiment were paced at the sinoatrial
node.

sock2: The sock, epicardial mesh model, and tank had the
same dimensions as in sock1. The interventions consisted of an
ischemic experiments with sinoatrial pacing followed by a series
of ventricular pacings at five different locations. The specific
sequence of interventions was: two initial series of sinoatrial
paced control recordings, a series of ventricular pacings at various
locations, and then a sequence of two ischemic interventions
interleaved with control recordings, all under sinoatrial pacing.
One important difference between this experiment and the others
is that, after the first of the two initial series of control recordings,
the heart was raised above the top of the tank and needle
electrodes were inserted into the myocaridal wall (to be used for
the ventricular pacing), and then the heart was lowered to the
original nominal position. This difference plays a significant role
in the results reported below.

Preprocessing: Before using the experimental data in both
synthetic and experimental settings, we extracted the QRS
complex from each heartbeat of both heart and torso surface
recordings and applied a moving average filter of length 20 ms
to both sets of signals to reduce noise. In the synthetic setting,
only the heart surface recordings from one beat were used, while
in the experimental setting all the data from both surfaces were
used.

3.2. Computational Procedure and
Validation Details
We applied our geometry correction method to estimate the
rotation and translation of the heart for each synthesized
or recorded heartbeat. Given those estimated parameters we
computed a corrected forward matrix for each heartbeat,
synthesized the corresponding corrected BSP using the measured
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FIGURE 3 | Bottom: RMSD of the nominal heart (red dots) vs. corrected (blue dots) for all respiratory phases. Top: corresponding true heart geometry (green) and

corrected (red) for one repetition.The horizontal axis is normalized respiratory phase on a scale from −1 to 1.

heart potentials as described in Equation (2), and computed
two sets of inverse solutions using the synthesized / measured
BSP and both the nominal and corrected forward matrices.
We calculated inverse solutions using a zero’th order Tikhonov
regularization solver (Equation 4).

min
xb(t)

‖yb(t)− Abxb(t)‖
2
2 + λ2‖xb(t)‖

2
2 (4)

where the norm was taken over both space and time within a
single QRS. We used the L-curve method with 100 lambdas
equally spaced between 10−6 to 1 on a logarithmic scale. We
computed each point of the L-curve using all time instances
within a beat to determine a single regularization parameter (λ)
(Hansen, 2007) per beat.

Given these results, we calculated the relative error for beat
b as the sum squared differences across all electrodes (l) and
time instances (t) between measured BSP (yb(l, t)) and BSP
synthesized using the corrected geometry (ŷb(l, t)) divided by the
sum-of-squares of the measured BSP (Equation 5).

relErrb =

∑
l

∑
t(yb(l, t)− ŷb(l, t))

2

∑
l

∑
t yb(l, t)

2
(5)

To show the degree of improvement, we also computed the
BSP relative error using the nominal geometry in the same
fashion. Similarly, we computed the relative errors for the
estimated cage/sock potentials for both corrected and nominal
geometries. In the case of the synthetic experiment, where the
true heart geometry was available, we also computed the root-
mean-squared error (RMSD) between the true and corrected
geometries as the square root of the average sum-of-squares of
per-node errors (thus combining translation and rotation errors)
across all nodes on the heart.

4. RESULTS

In the synthetic experiments, as described above, we calculated
the misplacement after correction at each time instant. The

average RMSD after correction was 0.1 ± 0.04mm, compared to
an average error of 13.7 ± 8mm before correction. To illustrate
this result we plot the evolution of the RMSD and true and
corrected heart geometries as a function of respiratory phase in
Figure 3. As expected, the error of the nominal heart increased
when approaching maximum inhale position, reaching 22.7 mm.
This increase in error corresponds to the vertical displacement
and slight rotation of the heart geometry. On the other hand, the
RMSD for the corrected geometries was close to 0mm for most
beats with a maximum RMSD of 0.19mm. This small RMSD can
be observed in the almost indistinguishable true and corrected
geometries shown in the figure.

We obviously cannot calculate actual misplacement for the
three canine experiments, but we can study the differences
between measured and synthesized signals both before and after
correction. We plot these results in terms of relative error, as
described above, in the form of histograms in Figure 4. To
make comparisons easier, we used color to allow us to report
all results for a single experiment on one plot. We report errors
for both nominal geometries (top row of panels) and corrected
geometries (bottom row) and for both errors in body surface
potentials (left panels) and reconstructed EGMs (right). Color
designates the specific experiment as shown in the legend. Each
bar in the histogram shows the number of beats with relative
error in the bin designated by the value on the horizontal axis
at the position of the bar. So, for example, the red bars in
the top left panel show that relative errors in the body surface
potentials for the nominal geometry were distributed between 0
and 0.25, while after correction, in the bottom left panel, they
were concentrated very close to zero, indicating the improvement
after the correction.

From the top-left panel, we see that for the synthetic

experiment the relative error between nominal and uncorrected
forward-computed BSPM is rather evenly distributed between
0.0 and 0.17. For the cage experiment the relative error is in
the same range and very stable across heartbeats—the average
± standard deviation BSPM relative error was 0.1 ± 0.01. For
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FIGURE 4 | Histograms of relative errors for forward-computed BSPM (Left) and inverse-computed cardiac electrograms (EGM) (Right) potentials for all four

experiments. Top row shows the relative error computed using the nominal geometry, bottom row using the corrected geometry. Data is shown from all four

experiments in each panel: synthetic (red), cage (blue), sock1 (green), and sock2 (yellow).

sock1 the relative error was again stable across all the recorded
heartbeats but larger in magnitude (0.79 ± 0.06). In contrast for
sock2 although the mean relative error was similar to sock1, the
variability was considerably larger (0.8± 0.25).

In the case of the inverse-computed EGM solutions, shown in
the right column of the same row, the first notable observation
about results from the nominal geometry is that the range of
relative errors is, as might be expected due to ill-posedness,
much higher than for the BSP. However within this range we
note similar differences among results for the four experiments:
a uniform distribution for synthetic data (0.76 ± 0.06), lower
mean error and small variability for the cage data (0.5 ± 0.03),
higher mean error but again small variability for the sock1 data
(1.3 ± 0.39), and much higher variability for the sock2 data
(3.8 ± 6.8). We also can observe that here the mean error for
sock2 was also higher than for sock1, in contrast to the results
for the BSP’s.

The bottom panels indicate a clear reduction in the relative
error when geometry correction is applied. Numerically, the
improvement in BSP relative error—measured as the difference
between corrected and nominal relative error— was 0.07 ± 0.04
for synthetic, 0.02 ± 0.005 for cage, 0.1 ± 0.02 for sock1, and
0.3±0.11 for sock2. The corresponding improvement in inverse-
computed heart potential relative error was 0.067 ± 0.06, 0.02 ±
0.01, 0.4 ± 0.4, and 3 ± 6.4, respectively. Thus we see that the
improvement is more pronounced for the inverse solutions than
for the synthesized BSP, and greater in sock2. We also note that
in general the improvement in inverse solutions, on average,
accounted for much of the error we found using the nominal
models.

We show some illustrative potential maps taken as a snapshot
at the QRS peak to give more insight into these summary
results in Figure 5, which shows isopotential maps on the body
and heart surfaces for representative beats. Maps of measured
potentials are shown in the top row, maps of the nominal
potentials in the middle, and maps of the corrected potentials

in the bottom. The columns correspond to different example
cases. The left column shows the heartbeat whose improvement
in BSP relative error is closest to the median relative error of
0.18 across all three canine experiments, while themiddle column
shows the heartbeat with smallest relative error improvement,
0.006, and the right column shows the heartbeat with the biggest
improvement, 0.56, again across all beats in all experiments.
The median beat was sinoatrially paced and from sock2, the
beat with biggest improvement is a ventricularly paced beat, also
from sock2, and the smallest improvement beat comes from the
cage experiment. Visually, the geometry correction provides a
noticeable improvement for the “biggest” example beat, moderate
improvement for themedian example, and no obvious change for
the “smallest” example.

Since the results for sock2 were significantly more dramatic
than those for sock1 we examined the results from that
experiment more carefully, as reported in Figure 6. We divided
this experiment into into 11 consecutive stages that correspond
to different control, pacing, and intervention epochs, briefly
described in the table at the bottom of Figure 6. The errors
summarized in the whisker plots at the top of the figure have
considerable variability across all beats and interventions and
decrease when using the corrected geometry. This decrease is
more pronounced in the EGM inverse solutions, which appear to
be very sensitive to the variations in the geometry. One noticeable
result is that the first sequence of sinoatrial pacings—before the
insertion of the needles—shows smaller relative error using the
nominal geometries and correcting the geometry does not yield
much improvement.

In Figure 7, we show heart potential maps at peak QRS
of a representative beat for each of the above stages of this
experiment, as indicated by the headers using the codes from
the table in Figure 65. We note that in all stages after the

5In each case the illustrated beat was selected as the beat with BSP relative error
closest to the median of each group
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FIGURE 5 | Potential maps of representative examples across all real experiments at QRS peak. The left column corresponds to the beat closest to the median BSP

across all three canine experiments of the relative error improvement (0.18 in sock2), the middle column to the smallest improvement (0.006 in cage) and the right

column to the biggest improvement (0.56 in sock2) across all experiments. Each row shows the BSP and EGM maps of the measured potentials (A), maps

synthesized with the nominal geometries (B) and maps synthesized with the corrected geometry (C).

insertion of the needles the inverse maps are more similar
to the originals when the corrected geometry is used, and
that the ventricularly paced beats show the most noticeable
improvement.

Looking at the reconstructed geometries themselves, in
Figure 8 we illustrate the torso-tank geometries (in green), the
nodes of the nominal heart geometry (in black) and the nodes of
all corrected heart geometries (all other colors), from the three
canine tank experiments. The behavior of the solutions varies
depending on the experiment, although they cluster around
a central location in each. As expected, the cage experiment
does not show much change from the nominal geometry. The
root mean square distance (RMSD) between the nodes of the
nominal and corrected geometries is 4.5 ± 0.8 mm. On the
other hand, the sock experiments show considerable variability
across heartbeats. Specifically, sock1 has an RMSD of 22.6 ± 4.8
mm and sock2 51.3 ± 4.8 mm. The average translation and
rotation of the θ angle—pitch of the heart—of the corrected
hearts with respect to the nominal position are 20.3 mm and
19.1◦ for sock1 and 37.2 mm and θ = 51.8◦ for sock2.
Importantly, the heart in sock2 has an estimated pitch rotation
of ∼ 50◦ after the insertion of the needles with respect to
before the needles were inserted. To illustrate this change,
Figure 8 shows the median estimated position and orientation
of the heart before and after insertion of the needles in this
experiment.

5. DISCUSSION

The results presented above support the hypothesis that our
method does improve the quality of the forward models. The
method reliably corrected the heart geometry for the synthetic

experiment, where ground truth was known, and provided
considerable improvement in relative error of the inverse
solutions. Moreover, although there is still unexplained error
after applying our geometry correction to the real experiments,
the estimated translations and rotations of the heart provide
considerable improvement in both the synthesized BSP and
all inverse solutions, in terms of both relative error and
visual features of potential maps. In addition we note that
inverse solutions improved notably even in some cases when
the reduction in BSP error was small. The improvement was
particularly strong for the sock2 experiment, in which the broad
spread of the error distribution of the inverse solutions with the
nominal geometry was reduced to a much more concentrated
one, similar to what was seen with sock1, after the correction.

We also observe that the positions of the heart estimated by
this method are not randomly distributed throughout the torso,
but rather show a physically meaningful structure: in particular,
the largest correction factor is rotation near the anchor point
above the atria. Moreover, the large rotation in sock2 appears
only after the insertion of the needles, suggesting that the needle
cables could have been pulling the apex in an upwards direction.
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FIGURE 6 | Summary of results for sock2. Top: whisker plots show relative error of BSPM (Left) and EGM (Right). Blue whiskers correspond to relative error

computed using the nominal geometry and orange using the corrected geometry. Bottom: the table contains a brief description of the type of intervention and

summary statistics of the results.

By contrast, the small change in the cage geometry experiment
confirms the stability of the algorithm when the geometry
is already accurate.These results suggest that the algorithm is
detectingmeaningful changes in position and orientation and not
just overfitting to the noise.

On the other hand, there are some characteristics of the
solutions in the sock experiments that are not consistent with
the experimental setup. In particular there is a beat-to-beat
variability around the central position that exceeds what might
be expected, and the heart appears to be translated toward the
edge of the bounding box of the optimization, well beyond
what the experimental apparatus would permit. We believe
that these errors are introduced by unmodeled sources of
noise such as error in the shape of the heart and the lack
of measurements around the atrial surface.6 Perhaps future
developments, including estimating shape deformations as well
as translation and rotation, as well as better characterization of

6The sensitivity of the solutions to the lack of measured data on the atria
can be taken as another indication that solutions are indeed sensitive to the
measurements, that is, that the problem is reasonably well-posed.

the missing measurements (as was done in the cage experiment)
could reduce these effects.

We also observe that although sock2 showed considerable
variability in the relative error of inverse solutions, the variability
of the estimated position of the heart was relatively small
(standard deviation of RMSD is 5.7 mm after the insertion
of the needles). In fact, sock1 showed much less variability in
inverse solution relative error despite a similar standard deviation
in RMSD (5.8 mm). The main difference between these two
experiments was, however, in rotation correction, which was
much larger for sock2, suggesting that rotation accuracy is a
rather important factor in geometry model errors for ECGI.

In order to avoid constraining this approach to a specific
forward solver, we used a black-box optimization method to
solve Equation (3). For specific forward solvers and definitions
of the geometry transformation, it should be possible to derive
the corresponding gradients and Hessians for A(pb) such as
in (Babaeizadeh and Brooks, 2007; Babaeizadeh et al., 2007)
where we previously described how to compute Jacobians of both
BEM and FEM models with respect to translation; Jacobians
for rotation should also be possible to compute based on this
work via the chain rule and appropriate rotation matrices.These
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FIGURE 7 | Representative examples of each stage of the sock2 experiment. Each row shows EGM maps at QRS peak of the measured potentials (A), synthesized

with the nominal geometries (B) and synthesized with the corrected geometry (C). Each column corresponds to a representative solution from each stage of the

experiment, as described in the table in Figure 6.

analytical derivations should speed up the optimization and
reduce the current computational demands of the method.
However in the current work, since the computational demands
were modest and easily within the scope of the Matlab solver we
employed, and since as noted we preferred to be as general as
possible in our presentation, we leave working out the details
of such an approach to future work. However in cases with
more densely sampled geometries, inclusion of more organs, or
more complex source models, it might be necessary to explore
alternative optimization approaches that are computationally
less demanding. For example, in addition to analytically-based
derivative computation, it may be useful to approximate the
geometry with a smaller mesh or interpolate the manifold
of forward matrices A(pb) with a continuous function that
provides simpler analytic gradients and faster computation (Coll-
Font, 2016). A second algorithmic consideration is that we are
solving a non-linear optimization problem, which can have local
minima. We have observed in our experiments to date that the
nominal position of the heart is a good initial guess for global
convergence using convex optimization solvers. However, this
might not be applicable to all geometries and heartbeats and
could be addressed, for example, by restarting the algorithm with
different initial guesses or using global optimization techniques.
An example of the latter that also addresses computational
efficiency challenges is the class of Bayesian Optimization
methods (Coll-Font et al., 2017), which carry out smart sampling
of the unknown objective function based on a probabilistic
representation that approximates it.

We want to point out that we used the zero-th order Tikhonov
inverse method because it is so widely used for ECGI and
its behavior is well-understood. However, this method tends

to produce overly smooth inverse solutions with high relative
error, even for ideal geometries, which may impact numerical
results. Future work using other inverse methods might provide
a better understanding of the interplay between regularization
methods and geometry errors. Moreover, in settings where
our simplified geometry assumptions—homogeneous torso and
epicardial surface model—do not hold, we speculate that inverse
solutions might show greater sensitivity to the accuracy of the
position of the heart and thus benefit even more from the
methods presented here.

A significant challenge for validation of our methodology is
the lack of datasets with a reliable measurement of the real time-
varying (e.g., from respiration) position of the heart. All existing
ECGI datasets that we are aware of assume a static heart geometry
and only provide a measure of its position at the beginning or
the end of the experiment. Thus, existing datasets either have
a highly accurate nominal geometry—which is not generally
representative of clinical practice—or have geometry errors that
pose a challenge to most ECGI methods. To better validate the
method presented here, it would be helpful in the future to
generate datasets with a continuous measure of the position of
the heart using an external measurement modality such as with
ultrasound.

Finally, an important follow-up to this work will be to
incorporate estimation of the heart potentials along with the
geometric changes, thus allowing extension of the scope of
this method to clinical ECGI settings. Our initial work on
this approach indicates that such an extension is possible
and may provide useful results (Coll-Font, 2016; Coll-
Font et al., 2017); a more extensive evaluation is currently
underway.
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FIGURE 8 | Left: Close-up of the nominal torso (green) and heart (black) geometries. The hearts corrected with the algorithm are overlaid in a different color per

heartbeat. Top geometry is cage, middle is sock1 and bottom is sock2. Right: Median position of the heart in sock2 before the insertion of the needles (top) and

after the insertion of the needles (bottom).

6. CONCLUSIONS

In this work, we have introduced an approach to correct for
the position and orientation of the heart inside the torso based
purely on changes in electrocardiographic recordings along with
an initial, nominal, geometry. We have shown that this approach
can improve the forward models for both forward and inverse
estimation of potentials and that it can provide useful insight for
current experimental procedures used to validate ECGI methods.
Moreover, the algorithm may be a first step toward solving the
problem of joint estimation of the potential distribution on the
heart and the heart’s position and orientation within the torso.

We also add that our method may have implications beyond
improving forward models in ECGI since the ability to non-
invasively track the position of the heart might impact a number
of other clinical problems, for example, improving catheter
registration in ablation procedures.
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