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Contraction of cardiomyocytes is dependent on sub-cellular structures called dyads,
where invaginations of the surface membrane (t-tubules) form functional junctions
with the sarcoplasmic reticulum (SR). Within each dyad, Ca2+ entry through t-tubular
L-type Ca2+ channels (LTCCs) elicits Ca2+ release from closely apposed Ryanodine
Receptors (RyRs) in the SR membrane. The efficiency of this process is dependent
on the density and macroscale arrangement of dyads, but also on the nanoscale
organization of LTCCs and RyRs within them. We presently review accumulating
data demonstrating the remarkable plasticity of these structures. Dyads are known
to form gradually during development, with progressive assembly of both t-tubules
and junctional SR terminals, and precise trafficking of LTCCs and RyRs. While dyads
can exhibit compensatory remodeling when required, dyadic degradation is believed
to promote impaired contractility and arrythmogenesis in cardiac disease. Recent data
indicate that this plasticity of dyadic structure/function is dependent on the regulatory
proteins junctophilin-2, amphiphysin-2 (BIN1), and caveolin-3, which critically arrange
dyadic membranes while stabilizing the position and activity of LTCCs and RyRs. Indeed,
emerging evidence indicates that clustering of both channels enables “coupled gating”,
implying that nanoscale localization and function are intimately linked, and may allow
fine-tuning of LTCC-RyR crosstalk. We anticipate that improved understanding of dyadic
plasticity will provide greater insight into the processes of cardiac compensation and
decompensation, and new opportunities to target the basic mechanisms underlying
heart disease.
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INTRODUCTION: DYADIC ORGANIZATION AT THE
MACROSCALE AND NANOSCALE

In mammalian cardiac myocytes, contraction of the cell is elicited by a process known as excitation-
contraction coupling. This process is initiated by electrical excitation during the cardiac action
potential, which triggers the opening of voltage-gated L-type Ca2+ channels (LTCCs) present in
both the surface membrane and within membrane invaginations called the transverse-axial tubule
system (t-tubules). Ca2+ influx through LTCCs triggers release of Ca2+ from ryanodine receptors
(RyRs) in the sarcoplasmic reticulum (SR), and contraction as this released Ca2+ binds to the
myofilaments. Tight control of contractility thus requires efficient crosstalk between LTCCs and
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FIGURE 1 | Plasticity of dyadic structure in ventricular cardiomyocytes.
(A) Dyads form gradually in developing ventricular cardiomyocytes, as
growing t-tubules extend the surface sarcolemma into the cell interior, initially
in a largely longitudinal orientation. Rudimentary junctional SR terminals and
contained ryanodine receptors (RyRs) are present in advance of t-tubule
arrival. Formation of dyadic junctions between L-type Ca2+ channels (LTCCs)
and RyRs requires the anchoring protein Junctophilin (JPH2), and the
membrane sensing and bending protein BIN1. (B) Dyadic density increases
toward adulthood, and assumes a predominantly transverse orientation.
(C) During diseases such as heart failure, levels of JPH2 and BIN1 decline,
and ventricular cardiomyocytes exhibit loss of t-tubules and SR. However,
new dyads in the longitudinal orientation reappear, in resemblance to
developing cells. T-tubule function also declines during heart failure, as L-type
Ca2+ current (ICaL) is shifted to the surface sarcolemma.

RyRs, which is afforded by close apposition of the sarcolemmal
and SR membranes at junctions called dyads (Figure 1; Sun et al.,
1995; Bers, 2001).

Adult ventricular cardiomyocytes generally have a well-
organized network of dyads, with transverse elements
predominantly arranged along z-lines at the ends of each
sarcomere (Fawcett and McNutt, 1969; Brette and Orchard, 2003;
Song et al., 2005; Louch et al., 2010). However, longitudinal or
axial dyads are also present at the level of the A-band (between
z-lines), where they are oriented along the long axis of the cell
(Asghari et al., 2009; Swift et al., 2012; Pinali et al., 2013). Smaller
mammalian species with high heart rates such as mice and rats
exhibit high densities of dyads in both orientations, while a
less dense dyadic network with fewer longitudinal tubules is

present in ventricular cardiomyocytes from larger species (Brette
and Orchard, 2003; Song et al., 2005; Louch et al., 2010). Atrial
cardiomyocytes generally exhibit a lower dyadic density than
ventricular cells, although dyadic organization varies across the
atria (Lenaerts et al., 2009; Smyrnias et al., 2010; Richards et al.,
2011; Dibb et al., 2013; Frisk et al., 2014; Glukhov et al., 2015;
Gadeberg et al., 2016; Arora et al., 2017).

Dyadic density and organization have considerable functional
implications. A high density of dyads ensures that Ca2+ release
occurs evenly across the cell, resulting in a rapid and co-
ordinated rise in intracellular Ca2+ concentration ([Ca2+]i) and
rapid contraction. Of note, findings from a range of species
indicate that RyR organization has greater regularity than the
t-tubule network, resulting in the presence of “orphaned” or
non-junctional RyRs along z-lines which do not have colocalized
t-tubules (Louch et al., 2006; Song et al., 2006; Heinzel et al.,
2008). Ca2+ release at these orphaned RyRs is delayed, as it
is dependent on the diffusion of Ca2+ released from nearby
RyRs. Thus, greater dyssynchrony and slowing of Ca2+ release
is promoted by conditions which trigger loss of t-tubules (and
dyads) including hyperosmotic shock (Brette et al., 2004, 2005),
cell culture (Lipp et al., 1996; Louch et al., 2004), and diseases
such as heart failure (Louch et al., 2006; Song et al., 2006; Heinzel
et al., 2008).

Beyond macroscale considerations of the local presence or
absence of dyads, the nanoscale arrangement of proteins within
dyads is also of key importance. Recent studies employing
electron microscopy (EM) and super-resolution imaging have
indicated that dyads are not completely filled with RyRs, but often
contain multiple, smaller RyR clusters (Baddeley et al., 2009;
Hayashi et al., 2009; Jayasinghe et al., 2018; Kolstad et al., 2018).
These considerations are essential for understanding Ca2+ sparks,
the fundamental units of Ca2+ release in cardiomyocytes (Cheng
et al., 1993). On the t-tubule side of the dyad, LTCCs are arranged
opposite from RyR clusters. Interestingly, recent data suggest that
neighboring LTCCs may be clustered and functionally paired
(Dixon et al., 2012, 2015), in a manner somewhat reminiscent of
groupings of neighboring RyRs (Marx et al., 2001; Sobie et al.,
2006; Cabra et al., 2016). The precise mechanisms by which
individual or grouped LTCCs may be anchored and apposed
from RyRs is unclear, although the dyadic anchor junctophilin-
2 (JPH2) has been shown to interact with both proteins (Jiang
et al., 2016; Munro et al., 2016; Reynolds et al., 2016). More clear
is the role that JPH2 plays in setting a consistent and remarkably
narrow dyadic cleft (12–15 nm) (Sun et al., 1995; Takeshima et al.,
2000) required for efficient LTCC-RyR crosstalk.

The above discussion has illustrated that considerable
progress has been made into understanding dyadic organization
and function in healthy adult cardiomyocytes. However,
accumulating data indicate that these structures also exhibit
remarkable plasticity. Indeed, dyads are known to form gradually
during development (Ziman et al., 2010; Louch et al., 2015),
and to exhibit compensatory remodeling when required (Kemi
et al., 2011; Swift et al., 2012). In contrast, dyadic degradation is
widely described during cardiac disease, where it is believed to
contribute to impaired contractility and arrythmogenesis (Guo
et al., 2013; Orchard et al., 2013; Manfra et al., 2017). In the
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FIGURE 2 | T-tubule plasticity during development and heart failure. (A) Confocal imaging of rat cardiomyocytes isolated at a range of post-natal time points reveals
progressive t-tubule growth. T-tubules initially appear as a sparse network which is largely oriented in the longitudinal orientation, before the dense, predominantly
transverse network is established in adulthood (whole cell images at left, with enlargements at right; adapted from Ziman et al. (2010); scale bar = 10 µm, copyright
permission to reproduce the figure). (B) Typical t-tubule remodeling during heart failure exhibits a return to an immature phenotype, with loss of transverse elements
and re-appearance of longitudinal elements (arrows). In a post-infarction rat model of heart failure, it was observed that remodeling is most marked proximal to the
infarction scar, where in vivo wall stress is particularly elevated (adapted from Frisk et al. (2016), copyright permission to reproduce the figure). These data contribute
to a growing understanding that high workload/wall stress signals t-tubule remodeling in this condition (reviewed in Ibrahim and Terracciano, 2013; Manfra et al.,
2017).

remainder of this review, we will summarize how such plasticity
of dyadic structure/function is attained, with focus on macroscale
changes in t-tubule and SR structure, as well as nanoscale
regulation of LTCCs and RyRs. Particular attention will be given
to an emerging understanding of the drivers of dyadic plasticity,
and their potential targeting for novel therapies.

Macroscale Plasticity
T-Tubules During Development and Disease
In small rodents such as mice and rats, t-tubules form after
birth, growing from the cell surface into the interior of the
ventricular myocyte (Ziman et al., 2010; Louch et al., 2015;
Mackova et al., 2017). Initially, this developing t-tubule network
is rather disorganized in appearance, and oriented largely along
the longitudinal axis of the cell (Figures 1A, 2A). With further
maturation, t-tubule density increases and the network becomes
predominantly transversely organized along z-lines; a process
that continues until surprisingly late periods of adulthood (Ziman
et al., 2010; Øyehaug et al., 2013; Louch et al., 2015; Mackova
et al., 2017). Recent data indicate that sheep myocytes already
exhibit t-tubules in utero (Munro and Soeller, 2016), supporting
species-dependent differences in the time course of ventricular
myocyte development. In either case, prenatal or postnatal
t-tubule maturation coincides with expression of JPH2 (Ziman

et al., 2010; Munro and Soeller, 2016), which critically forms
dyads by anchoring MORN motifs in the t-tubular membrane to
the junctional SR (Takeshima et al., 2000). Indeed, when JPH2
levels are reduced in mice, t-tubules either don’t appear or remain
in an immature longitudinal configuration (Chen et al., 2013;
Reynolds et al., 2013). Full knockout of JPH2 in mice results
in embryonic mortality, consistent with a requirement of the
protein to form dyads at the surface of the cell, in advance
of t-tubule development (Takeshima et al., 2000; Franzini-
Armstrong et al., 2005). The membrane sensing and bending
protein Amphyphisin-2 (BIN1) is also reported to play a key role
in t-tubule growth (Lee et al., 2002), and the intricate folding of
the tubule inner membrane (Hong et al., 2014). Hong et al noted a
particularly important role of a cardiac-specific isoform of BIN1
(isoform 13+17) which is capable of initiating t-tubule growth
even in non-muscle cells (Hong et al., 2014). Assuming that BIN1
is essential for t-tubule development across a range of species, it
is anticipated that this role is prominent at earlier stages in larger
mammals which exhibit t-tubule development in utero.

Evidence of t-tubule plasticity is further supported by
examinations of cardiac disease. A large number of studies
have reported remodeling of t-tubules in left ventricular
cardiomyocytes during heart failure with an array of etiologies,
spanning myocardial infarction (Louch et al., 2006; Swift et al.,
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FIGURE 3 | New insights into t-tubule remodeling during human heart failure. In comparison with ventricular tissue obtained from healthy donor hearts (A) tissue
from heart failure patients undergoing transplant (B) revealed dilation of t-tubules associated with collagen deposition within the t-tubule lumen. Images were
obtained with dSTORM super-resolution microscopy with staining for collagen VI (red) and dystrophin (green); enlargements of the indicated regions are shown at
right (adapted from Crossman et al., 2017, copyright permission to reproduce the figure). Other recent work has indicated that in addition to t-tubule loss,
cardiomyocytes in heart failure patients exhibit fusion of neighboring t-tubules into sheet-like structures (donor example in C, heart failure patient in D). 3D
reconstructions illustrate the surface sarcolemma (gray) and t-tubules (blue), with the indicated tubule enlarged at right (longitudinal and transverse views; left scale
bar = 10 µm, right scale bar = 2 µm; adapted from Seidel et al., 2017a, copyright permission to reproduce the figure).

2008; Lyon et al., 2009; Biesmans et al., 2011; Chen et al., 2012;
Wagner et al., 2012; Øyehaug et al., 2013; Frisk et al., 2016;
Sanchez-Alonso et al., 2016; Figure 2B), aortic stenosis (Wei
et al., 2010; Ibrahim et al., 2013; Pinali et al., 2013), tachycardia
(He et al., 2001; Balijepalli et al., 2003), hypertension (Song et al.,
2006; Singh et al., 2017), chronic ischemia (Heinzel et al., 2008),
and diabetes (Stølen et al., 2009; Ward and Crossman, 2014).
Despite the range of species and disease models employed in these
studies, there is general agreement that overall t-tubule density
is reduced, and commonly accompanied by a re-emergence of
longitudinally-oriented tubules (Figures 1C, 2B). More detailed
analyses have revealed t-tubular swelling in failing myocytes
(Wagner et al., 2012; Pinali et al., 2013, 2017; Crossman et al.,
2017; Figures 3A,B) and the appearance of abnormal t-tubule
“sheets” which may result from fusion of neighboring tubules
(Seidel et al., 2017a; Figures 3C,D). Similar changes in t-tubule
organization have been observed during right ventricular failure
(Xie et al., 2012; Caldwell et al., 2014) and in the atria during heart
failure (Dibb et al., 2009) and atrial fibrillation (Lenaerts et al.,
2009), suggesting that t-tubular remodeling may be endemic to a
variety of cardiac pathologies across the chambers of the heart.

Structural similarities between diseased and developing
ventricular myocytes (Figure 1) have implied that pathological
t-tubule remodeling may result from re-expression of fetal genes
and/or suppression of adult genes in these conditions (Louch
et al., 2015). Although the details of these mechanisms are still
being elucidated, existing studies have already linked t-tubule
remodeling in failing cells to declining expression of JPH2
(Minamisawa et al., 2004; Wei et al., 2010; Landstrom et al., 2011;

Frisk et al., 2016), which is reminiscent of developing cells. An
important role of JPH2 reduction in disease pathophysiology is
supported by the observation that overexpression of this dyadic
anchor protects against t-tubule degradation and heart failure
development (Guo et al., 2014). Xu et al reported that JPH2
expression may be suppressed during disease by upregulation of
microRNA-24 (miR-24), and showed that a miR-24 antagomir
protected against changes in t-tubular architecture (Xu et al.,
2012). Others have reported that JPH2 may be mislocalized in
the failing heart, due to reorganization of microtubules necessary
for its delivery to dyads (Zhang et al., 2014; Prins et al., 2016).
JPH2 may also be degraded during heart failure by calpain
cleavage. Guo et al. (2015) identified four distinct cut sites
on JPH2 which resulted in functionally inactive fragments and
disrupted dyadic junctions. Finally, recent data have suggested
that JPH2’s functionality is dependent on its phosphorylation
status. Quick et al. (2017) showed that JPH2 is phosphorylated by
Striated Muscle Preferentially Expressed Protein Kinase (SPEG)
and that this phosphorylation is reduced in heart failure, with
knockout of SPEG also resulting in t-tubule disarray. These
findings suggest that there may be several mechanisms which
underlie loss of JPH2 expression and/or function during disease
leading to pathologic disruption of t-tubule structure. Thus, JPH2
is an exciting potential candidate for future therapies aimed at
preserving t-tubule integrity (Røe et al., 2015; Manfra et al., 2017).

BIN1 is another regulator of t-tubule structure which plays
key roles in the developing and diseased heart. Indeed, just as
BIN1 is believed crucial for the formation of t-tubules during
development, so too has t-tubule loss and disarray during disease

Frontiers in Physiology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 1773

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01773 December 11, 2018 Time: 12:38 # 5

Jones et al. Dyadic Plasticity in Cardiomyocytes

FIGURE 4 | EM imaging of dyadic structure. (A) Block-face scanning EM performed on a sheep cardiomyocyte illustrates the complex, mesh-like nature of 3D SR
structure (red), and it’s interrelationship with t-tubules (gray). Both longitudinal and perpendicular elements (arrows) are readily apparent, which converge to engulf
t-tubules (enlarged region). Occasional twinning of t-tubules was observed with surrounding junctional SR (dashed elipsoid) (adapted from Pinali et al., 2013,
copyright permission to reproduce the figure). Transmission EM imaging of transversely (B) and longitudinally-oriented dyads (C) revealed similar geometries,
suggesting similar functionality of these structures (t, t-tubule; m, mitochondrion; double arrow, SR; scale bar in C = 100 nm). Ryanodine receptor heads are readily
apparent (single arrow, adapted from Asghari et al., 2009, copyright permission to reproduce the figure). SR degradation during heart failure (Pinali et al., 2013) is
suggested to be linked to reduction in SERCA levels, based on observations in the conditional SERCA knockout mouse (D, control cardiomyocyte; E, following
SERCA knockout, with SR pseudo-colored; adapted from Swift et al., 2012, copyright permission was not required to reproduce the figure).

been linked to its downregulation (Lee et al., 2002; Caldwell
et al., 2014; Hong et al., 2014). While the precise role of BIN1
in t-tubule growth and maintenance is unclear, it has been shown
to group phosphoinositides allowing dynamin-2 polymerization;
steps essential in tubulogenesis (Lee et al., 2002; Picas et al.,
2014). Declining BIN1 levels in heart failure are reported to
promote not only overall t-tubule loss (Caldwell et al., 2014),

but also decreased t-tubule folding (Hong et al., 2014). Based
on mathematical modeling studies, Hong et al. (2014) predicted
that such loss of fine structure augments ion diffusion within the
t-tubule, predisposing for cardiac arrhythmia. These authors have
further proposed that continuous turnover of BIN1 from dyads
in healthy patients maintains high levels in blood, explaining
why decreased BIN1 plasma levels are linked to heart failure in
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patients and predict- future arrhythmia (Hong et al., 2012). These
exciting data suggest that BIN1 may serve as both a biomarker
and therapeutic target in heart failure patients.

While new molecular regulators such as JPH2 and BIN1
are emerging, recent work has also linked control of t-tubule
structure to upstream mechanical signals. Experiments pioneered
by the Terracciano group first indicated that t-tubule loss during
heart failure may be directly triggered by the elevated ventricular
workload in this condition. They observed that unloading
failing hearts by heterotopic transplantation into healthy animals
rescued t-tubule structure (Ibrahim et al., 2012a,b). Indeed, other
strategies that unload the failing heart either pharmacologically
(Chen et al., 2012; Xie et al., 2012; Huang et al., 2016) or via
resynchronization therapy (Lichter et al., 2014), are similarly,
protective. More recent work by our group indicated that elevated
ventricular wall stress, which occurs in the dilated, thin-walled
ventricle of the failing heart, may be the specific mechanical signal
underlying t-tubule degradation (Frisk et al., 2016; Figure 2B).

How does mechanical overload lead to t-tubule degradation?
While the precise mechanisms are unclear, it is important
to consider that elevated workload and wall stress regulate
not only cardiomyocyte remodeling but also promote changes
in the extracellular matrix, including significant fibrosis. An
exciting new study by Crossman et al., 2017; has shown
striking localization of fibroblast filopodia and collagen within
the t-tubular lumen in failing ventricular cardiomyocytes
(Figures 3A,B). The authors suggested that such collagen
deposition may directly drive t-tubular dilation in this condition,
although it may also stiffen the t-tubule membrane, and impair
normal mechanosignaling (McNary et al., 2012). Perhaps such
changes mark a t-tubule for degradation (Louch and Nattel,
2017). In support of this view, regions of the failing heart with
the most pronounced fibrosis, such as those proximal to an
infarction, exhibit the most marked t-tubule loss (Frisk et al.,
2016; Seidel et al., 2017b; Figure 2B). The Terracciano group
has proposed that the stretch-sensitive protein titin cap (TCap)
may play a key role in integrating these mechanical signals
(Ibrahim and Terracciano, 2013; Ibrahim et al., 2013). With
established binding proteins in the t-tubule membrane as well as
partners in the cytoskeleton, TCap certainly appears to be well-
positioned to serve such a function. Direct manipulation of the
cytoskeleton has also been shown to regulate t-tubule structure, as
cytoskeletal disruptors inhibit t-tubule loss during culture (Tian
et al., 2012; Hodne et al., 2017). Recent data from the Song
laboratory have further implicated protein kinase C activation as
a critical determinant of cytoskeletal reorganization and t-tubule
degradation (Guo et al., 2018). Taken together, these data raise
the intriguing possibility that, by sensing local load, the t-tubule
can regulate its own structure via signals transmitted from the
extracellular matrix to the cytoskeleton.

Not all changes in t-tubule structure appear to be detrimental.
At early stages of heart failure, longitudinal tubules appear
before transverse elements have disappeared (Louch et al., 2006);
changes which are suggested to be compensatory since additional
Ca2+ influx at these sites supports the Ca2+ transient (Swift et al.,
2012). However, a full understanding of the consequences of
t-tubule dynamics for cardiomyocyte function requires detailed

knowledge of SR structure, as well as the regulation of LTCCs and
RyRs within these membranes. These topics are discussed in the
following sections.

Plasticity of SR Structure
In comparison with t-tubule structure, SR structure has, in
general, been less extensively studied. This is in part due to the
fact that t-tubule structure is rather easily assessed by simple
membrane staining and confocal microscopy; techniques which
can be extended to 3D with relative ease. Direct staining and
fluorescence imaging has not proven to effectively reveal SR
structure, although junctional SR localization has been inferred
from confocal immunostaining of RyRs (Bootman et al., 2006;
Song et al., 2006; Swift et al., 2012) or calsequestrin (Terentyev
et al., 2003). Greater detail has been provided by studies
employing transmission EM, which revealed that the SR consists
of a complex, branching network (Franzini-Armstrong, 1980).
3D structure has more recently been unveiled by serial block-face
imaging with scanning EM, showing that the SR network is in fact
contiguous between each t-tubule, is in regular contact with the
surface membrane, and is variable between species (Pinali et al.,
2013; Figure 4A). Importantly, the junctional SR forms dyads
not only with the surface sarcolemma and along transversely-
oriented t-tubules at z-lines, but also with longitudinally-oriented
tubules within the A-band. EM studies have reported that these
longitudinal dyads have similar dimensions to their transversely-
oriented counterparts, suggesting that the two types of dyads may
have similar functionality (Asghari et al., 2009; Pinali et al., 2013;
Figures 4B,C).

Accumulating data suggest that, like t-tubules, SR structure
is also malleable. Transmission EM imaging of developing
hearts has shown that the junctional SR forms dyads with
the surface sarcolemma from early stages of embryonic
ventricular development (Franzini-Armstrong et al., 2005).
However, rudimentary junctional SR terminals (cisternae) appear
at internal sites along z-lines during the late embryonic stage
(Korhonen et al., 2010), and remain present during the neonatal
period prior to the arrival of growing t-tubules (Ziman et al.,
2010). Thus, wavelike Ca2+ release patterns are observed,
traveling from the cell membrane toward the cell interior, as
Ca2+ release propagates between as yet “orphaned” RyRs. The
subsequent arrival of t-tubules and formation of internal dyads
synchronizes Ca2+ release across the cell, and has been linked to
the presence of the dyadic anchoring protein JPH2, as described
above (Chen et al., 2013; Reynolds et al., 2013).

Restructuring of the SR is also apparent during disease. Pinali
et al. (2013) reported an overall loss of SR in sheep following
tachypacing-induced heart failure, with local patchiness and
disorder of SR observed near sites of abnormal mitochondrial
clustering. The implications of such remodeling are unclear but
imply that there may be disruption of Ca2+ fluxes within the
network SR in diseased cells. Results from the SERCA knockout
mouse suggest that SR degradation may be driven directly by
SERCA loss during heart failure (Swift et al., 2012; Figures 4D,E).
However, despite evidence of overall SR loss during heart failure,
most report that the junctional SR and associated RyRs remain
present along z-lines, at least in a rudimentary arrangement (Song
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et al., 2006; Swift et al., 2008; Pinali et al., 2013; Frisk et al.,
2016). Thus, there is an increased presence of orphaned RyRs in
diseased cells reminiscent of the developing heart (Louch et al.,
2015). With fewer RyR clusters served by a t-tubule, Ca2+ release
becomes desynchronized, as uncoupled CRUs are recruited by
diffusion (Louch et al., 2004, 2006; Song et al., 2006; Heinzel et al.,
2008). The resulting overall slowing and reduced amplitude of
systolic Ca2+ release has been linked to reduced cardiac output
in this condition (Bøkenes et al., 2008; Mørk et al., 2009; Guo
et al., 2013; Røe et al., 2015). At sites where the junctional SR
remains coupled to t-tubules, Wu et al. (2012) reported that there
is shortening of the interface in failing cells as the SR terminals
are shortened. This implies that there is less available space for
LTCCs and RyRs within the dyad, which may impair triggering of
Ca2+ release beyond effects associated with loss of t-tubules and
reduced Ca2+ release synchrony. Importantly, while there may
be some loss of SR structure along z-lines, there appears to be
growth or at least specialization of SR within the A-band, allowing
the formation of dyads with newly-grown longitudinal t-tubules
(Song et al., 2006; Swift et al., 2012). It is hypothesized that these
new dyads somewhat counterbalance those lost along z-lines, at
least at early stages of disease, to help maintain Ca2+ release (Swift
et al., 2012).

The above discussion has illustrated that t-tubule and
SR structure exhibit considerable plasticity, which enables a
malleable arrangement of dyads important for controlling the
synchrony of Ca2+ homeostasis. In the following section we will
describe emerging data indicating that there is also impressive
plasticity of LTCCs and RyRs within dyads, consistent with
nanoscale control of dyadic function.

NANOSCALE PLASTICITY

Plasticity of LTCC Localization and
Function
Whilst much is known of how the LTCC localizes to the triad
in skeletal muscle, targeting of LTCCs to the cardiac dyad is
more poorly understood. In skeletal muscle, LTCC positioning
appears to be stabilized by both the presence of STAC3 (Nelson
et al., 2013; Polster et al., 2016; Campiglio and Flucher, 2017)
and direct physical interaction between the II-III loop of the
channel and the skeletal muscle ryanodine receptor (RyR1) (Lu
et al., 1994; El-Hayek et al., 1995). These interactions enable
the formation of a distinctive tetrad arrangement, with 4 LTCCs
apposed from 4 RyRs (Franzini-Armstrong et al., 1998; Takekura
et al., 2004). However, cardiac muscle does not express STAC3 or
a homologous protein nor does the cardiac isoform of the LTCC
have a physical interaction with RyR (c.f. Dulhunty et al., 2005),
leading to the question of how the channel is targeted.

At both the surface of cardiomyocytes and within t-tubules,
LTCCs are found resident within caveolae. The bulk of channel
delivery to these caveloae appears to be dependent on BIN1,
which couples the channels to microtubules (Hong et al., 2010).
However, the actin filament cytoskeleton is also proposed to play
a role in LTCC trafficking, at least in neurons and recombinant
cell lines (Hall et al., 2013; Ghosh et al., 2018). Once delivered,

LTCCs are maintained within the dyad via links between the
caveolae and cytoskeleton (Head et al., 2006; Balijepalli and
Kamp, 2008). Interestingly, BIN1 may also help maintain LTCC
positioning, as BIN1-induced microfolds within the t-tubule
membrane are suggested to prevent lateral movement of the
caveolae (Basheer and Shaw, 2016). Further evidence of the
importance of BIN1 for LTCC maintenance is provided by Hong
et al. (2012), who showed that in human heart failure there is
no change in LTCC expression but a significant reduction in
dyadic channels. Such loss of dyadic LTCCs correlates well with
a reduction in the expression of BIN1, both in failing patients
(Hong et al., 2012) and sheep (Caldwell et al., 2014). Finally,
evidence from skeletal muscle indicates that JPH2 may also play
a role in maintaining LTCCs as part of a dyadic protein complex
(Golini et al., 2011), suggesting that JPH2 reduction during heart
failure could have complex effects on both LTCC localization
and overall dyadic structure. The mechanism by which un-
anchored LTCCs are degraded is presently unclear, although
indirect evidence showing that dynasore increases surface LTCC
expression indicates that channel internalization may occur via
dynamin-dependent endocytosis (Hong et al., 2010).

While the above discussion has highlighted an important
role of caveolae in clustering LTCCs within dyads, accumulating
data suggest that these structural arrangements also critically
regulate channel function. Recent studies have shown that
Caveolin-3 (Cav-3), which is known to play an important
role in the formation of caveolae and t-tubules (Parton et al.,
1997), interacts with both LTCCs and protein-kinase A (PKA)
to enable PKA-mediated phosphorylation of the channel and
augmentation of L-type current (Kamp and Hell, 2000). Indeed,
using peptide mimics of the scaffolding domain of Cav-3 to
disrupt this interaction, Bryant et al. (2014) observed reduction
in both basal L-type function and its response to β-adrenergic
stimulation. More recently the same group has gone on to
show that in heart failure the loss of t-tubular Cav-3 reduces
t-tubular L-type current, despite the continued presence of L-type
channels (Bryant et al., 2015, 2018; Figure 1C). Thus, while
loss of t-tubules promotes dyssynchronous release in failing
ventricular cardiomyocytes, as discussed above, it seems that
there is also an important Cav-3-dependent loss of functionality
in remaining tubules which further compromises Ca2+ release
in this condition. Interestingly, the loss of t-tubular L-type
current appears to be paralleled by increased current on the
cell surface (Bryant et al., 2015; Sanchez-Alonso et al., 2016),
likely explaining why many groups have reported unchanged
overall current density in heart failure (Gomez et al., 1997;
Benitah et al., 2002; Kamp and He, 2002; Mørk et al., 2009).
The Gorelik group has proposed that increased LTCC activity
on the surface sarcolemma results from physical movement of
channels out of dyads and onto the membrane crests present
between Z-grooves (Sanchez-Alonso et al., 2016). They further
suggest that the delocalization-induced increase in channel
activity promotes instability of myocyte membrane potential
and a concomitant increase in arrhythmias often associated
with heart failure (Sanchez-Alonso et al., 2016). These findings
raise the possibility that nanoscale LTCC localization might be
therapeutically targeted in disease.
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FIGURE 5 | Super-resolution imaging of RyR clusters and plasticity. (A) RyRs on the cell surface of ventricular cardiomyocytes form clusters primarily along either
side of the z-lines (double rows of RyRs). The limited resolution of conventional confocal imaging (shown red) is markedly improved using the dSTORM technique
(green), which reveals the range of size and morphologies of RyR clusters. dSTORM also allows the visualization of smaller clusters and single RyRs (arrows, from
Baddeley et al., 2009, copyright permission was not required to reproduce the figure). (B) Neighboring clusters can form superclusters or Ca2+ release units (CRUs)
(dotted line; upper panel). DNA-PAINT reveals that RyRs within clusters are found in various orientations and groupings (lower panel, from Jayasinghe et al., 2018,
copyright permission to reproduce the figure). (C,D) During heart failure, RyR clusters are broken apart, resulting in dispersed CRUs (from Kolstad et al., 2018,
copyright permission was not required to reproduce the figure). (E,F) In contrast, RyR cluster size is increased in response to JPH2 overexpression (from Munro
et al., 2016, copyright permission to reproduce the figure).

Finally, exciting recent data indicate that LTCC activity is
also critically regulated by the physical clustering of the channels
themselves. Using single channel electrophysiology and optical
channel recordings in neonatal myocytes, Navedo et al. (2010)
found that clustered LTCCs open together more frequently than
stochastic opening would predict. The same group went on
to show in ventricular myocytes that this functional coupling
of LTCCs occurs through the physical interaction of their
C-terminal tails (Dixon et al., 2012, 2015). It is likely that such
coupling ensures that Ca2+ influx is rapid and large enough to
drive efficient RyR opening during Ca2+-induced Ca2+ release.
In light of findings described above, it seems plausible that loss of
t-tubular L-type current during heart failure (Bryant et al., 2015;
Sanchez-Alonso et al., 2016) may, at least in part, result from
loss of channel clustering due to downregulation of Cav-3, BIN1,
and/or JPH2.

Plasticity of RyR Organization
Inter-Cluster RyR Dynamics
While it was traditionally believed that dyads in ventricular
myocytes are uniformly packed with RyRs, more recent super-
resolution microscopy studies have indicated that dyads are in
fact composed of sub-clusters (Baddeley et al., 2009; Hayashi
et al., 2009; Jayasinghe et al., 2018; Kolstad et al., 2018;
Figures 5A,B). Neighboring RyR clusters with sufficiently short

distances between them (<100 nm in Sobie et al., 2006; <150 nm
in Macquaide et al., 2015) are suggested to concertively generate
Ca2+ sparks, as released Ca2+ can effectively jump from one
cluster to the next. These functional groupings have thus been
termed “superclusters” or Ca2+ release units (CRUs) (Baddeley
et al., 2009), and may provide opportunities to fine tune spark
dynamics (Walker et al., 2014). EM data suggest that RyR
clusters, and presumably CRUs, are assembled gradually during
development, first at the cell surface and then within the cell
interior (Franzini-Armstrong et al., 2005). This process may be
reversed during disease, as emerging data from our laboratories
indicate that RyR clusters are broken apart (Macquaide et al.,
2015; Kolstad et al., 2018; Shen et al., 2018; Figures 5C,D, 6).
We have specifically linked dispersion of RyR clusters and CRUs
during post-infarction heart failure to slowing of Ca2+ spark
kinetics, due to the time lag inherent as multiple clusters are
sequentially activated (Louch et al., 2013; Kolstad et al., 2018;
Shen et al., 2018). Slowing of Ca2+ sparks in these cells was
additionally linked to de-synchronization and slowing of the
overall Ca2+ transient (Louch et al., 2013; Kolstad et al., 2018).
We observed similar fragmentation of RyR clusters and slowing
of Ca2+ spark kinetics during atrial fibrillation (Macquaide et al.,
2015). An associated increased fraction of RyRs located between
Z-lines was further predicted to augment propagation of pro-
arrhythmic Ca2+ waves. Thus, accumulating data indicate that
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RyR clusters exhibit marked plasticity of their organization and
function, and that this malleability has important implications for
pathophysiology.

What is the timescale of RyR cluster dynamics? Some
insight has been provided by a recent study employing direct
visualization of RyR clusters using GFP-labeled RyR in live
cells (Hiess et al., 2018). The authors observed that clusters
close to the periphery of cells can undergo movement either
laterally along the cell surface or down toward the interior. This
movement altered cluster size as both cluster fusion and fission
were observed. Remarkably, over a 12 min period movements
of up to 1 µm occurred, which was sufficient for clusters
to traverse half a sarcomere. Importantly, not all neighboring
clusters repositioned, suggesting that cluster rearrangement was
not an artifact due to SR movement (Hiess et al., 2018).

Importantly, inter-cluster dynamics appear to be controlled
by external stimuli. Stimulatory conditions such as high Ca2+

were found to promote movement whereas conditions known to
suppress RyR function such as low Ca2+ and tetracaine retarded
their movement (Hiess et al., 2018). This raises the possibility that
hyperactivity of the RyR, a hallmark of diseased cardiomyocytes
(Bers, 2014; Dries et al., 2018), directly promotes its migration.
However, it has been suggested that RyR localization is also
dependent on associated dyadic proteins. BIN1 is reported to
traffic RyRs to the t-tubule during β-adrenergic stimulation (Fu
et al., 2016), with a time scale that appears to be consistent
with the rate of RyR cluster movements reported by Hiess et al.
(2018). JPH2 may also play a role in RyR arrangement, as
overexpression of the protein was observed to augment RyR
cluster size (Munro et al., 2016; Figures 5E,F). Interestingly, in
these larger clusters JPH2 expression appears to stabilize RyR
activity (van Oort et al., 2011; Beavers et al., 2013; Reynolds et al.,
2016). These observations suggest that both dispersion of RyRs
and increased channel activity during heart failure and atrial
fibrillation could be linked to downregulation of BIN1 and JPH2
in these conditions.

Intra-Cluster RyR Dynamics
Although super-resolution imaging techniques such as dSTORM
have yielded a wealth of information about RyR cluster size and
distribution, their ability to examine intra-cluster architecture is
limited. A recent breakthrough by the Soeller group employed
the DNA-paint technique, which yielded <10 nm resolution
(Jayasinghe et al., 2018). These measurements allowed the
first visualization of single channels using optical means.
Jayasinghe et al found that most clusters contained largely
disordered channels with a relatively low packing density
(Jayasinghe et al., 2018). This finding disagrees with historical
assumptions of ventricular cardiomyocyte RyR packing based on
EM descriptions of skeletal muscle, which showed a crystalline
checkerboard arrangement of RyR1 (Ferguson et al., 1984;
Franzini-Armstrong et al., 1999). More recent EM studies have
suggested a somewhat structured arrangement with cardiac RyRs
predominantly organized in a checkerboard pattern (∼50%
of channels) but with many channels present in side-by-side
or disordered arrangements (Asghari et al., 2014; Figure 6).
Strikingly, as with clusters themselves, the orientation of channels

FIGURE 6 | RyR cluster conformations. (A) Skeletal muscle RyRs (RyR1) form
a regular crystalline array with 4 four LTCCs (filled circles) apposing alternate
RyRs (open circles) to form tetrads. (B) Cardiac muscle RyRs (RyR2) interact
in several conformations including crystalline array (blue dotted box),
side-by-side (red dotted box), and disordered arrangements (black dotted
box). Different stimuli modify the predominant conformation; phosphorylation
promotes a crystalline array which may enhance the apposition of LTCCs and
RyRs (C). Pathological conditions are reported to promote RyR cluster
dispersion (Louch et al., 2013; Macquaide et al., 2015; Kolstad et al., 2018)
and mislocalize t-tubules, thus, decreasing the coupling between LTCCs and
RyRs (D).

within a cluster appears highly plastic. For example, exposure
of cells to high Mg2+ conditions was observed to drive clusters
into a side-by-side orientation, whereas low Mg2+ favored
checkerboard. Most dramatically, however, was the finding
that phosphorylated channels appeared almost exclusively in
a checkerboard orientation (Asghari et al., 2014) (Figure 6).
These findings suggest that the crystalline array favors greater
RyR activity. More recently, the same group has refined
their model with data indicating that it is phosphorylation of
RyR at S2030 and S2814 that drives the change in cluster
orientation (Asghari et al., 2017). Whether other established post-
translational modifications of RyR such as oxidation (Waddell
et al., 2016) or agonists such as caffeine (Jones et al., 2008) also
result in similar changes in orientation remains unknown.

Given that the clamp region of RyR is thought to enable
assembly of the crystalline array, and that this region undergoes
substantial movement during the transition of a channel to
an open state, it is plausible that re-arrangement into the
checkerboard pattern enhances coupled gating of channels
(Cabra et al., 2016). Coupled gating has been previously proposed
based on recordings of RyRs in bilayers, and implies that
neighboring RyRs within a cluster exhibit synchronization of
their opening and closing (Marx et al., 2001; Sobie et al., 2006).
This mechanism has been suggested to be facilitated by FK506-
binding protein (FKBP12.6), however, a role for this accessory
protein in controlling RyR function remains controversial (Marx
et al., 2000, 2001; Zhang et al., 2016; Gonano and Jones,
2017). Regardless of mechanism, an increase in coupled gating
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during transition to the checkerboard arrangement appears
essential, as Walker et al. (2015) suggest that the increased intra-
channel spacing in this configuration would otherwise reduce the
likelihood of spark occurrence. However, the concept of coupled
gating remains contentious as direct evidence linking cluster
orientation and single channel activity is lacking (Williams et al.,
2018).

In support of the work of the Moore group (Asghari
et al., 2014), Samso and co-workers employed an alternative
approach to examine RyR cluster formation, namely self-
association in solution (Cabra et al., 2016). They found that
akin to the patterns observed in cardiac muscle, in vitro RyRs
adopt two major arrangements, namely side-by-side (further
classified as center to side and adjoining) and checkerboard
(further classified as oblique and center-to-corner). At low Ca2+

concentrations the channels were found to be relatively evenly
distributed between the two conformations but, consistent with
Asghari et al., stimulatory conditions (high Ca2+) favored an
oblique and center-to-corner conformation, the basis of the
crystalline array (Cabra et al., 2016). Given that stimulatory
conditions such as high Ca2+ levels or phosphorylation appear
to also increase both intra- and inter-cluster mobility, it
would be of interest to examine the relative mobility of
checkerboard and side-by-side orientated clusters in future
studies.

PLASTICITY OF LTCC-RYR COUPLING

The preceding sections have illustrated that there is remarkable
plasticity of not only the membranes of the dyad, but also
their contained LTCCs and RyRs. The malleable activity of
these proteins is mediated through direct changes to single
channel function but also through the coordinated movement
and organization of the channels which provides another layer of
control. However, our knowledge of these phenomena is largely
limited to LTCCs and RyRs individually; whether plasticity of the
two proteins is coordinated, or indeed if the molecular stimuli
are shared, remains less clear. The dynamic clustering observed
in response to β-adrenergic stimulation of both channels might
not only increase each channel’s activity but also hints at more
effective coupling through optimization of LTCC and RyR
apposition. Perhaps the phosphorylation-induced transition of
RyR to a checkerboard conformation might, similarly, position
LTCCs into an arrangement more similar to that found in
skeletal muscle. Similarly, it is plausible that the loss of dyadic
channels in disease not only reduces their own function but,
due to an altered nano-structural arrangement, also results in
a further reduction in Ca2+ coupling between the remaining

channels. Since molecular players such as JPH2, BIN1, and Cav-
3 control the localization of both LTCCs and RyRs, perhaps
downregulation of these regulators critically reduces channel
alignment in diseased cardiomyocytes. More indirect effects
might also be important, as changes to the t-tubule architecture
such as dilation or swelling (Wagner et al., 2012; Pinali et al., 2013,
2017; Crossman et al., 2017) could also “misalign” or otherwise
disrupt the functional coupling between the channels. This form
of remodeling has been hypothesized for more than 20 years,
based on an observed reduction in the “gain” of Ca2+-induced
Ca2+ release (Gomez et al., 1997; Litwin et al., 2000). However, it
is only now with the host of recent technological advances, that
we might examine this concept experimentally, by combining
gain measurements with live-cell imaging of LTCCs and RyRs.

CONCLUSION

This review has presented a growing body of evidence illustrating
that the concept of a static dyad severely underestimates the
complexity of the structure. Rather, it is now fully apparent that
there is remarkable plasticity of both t-tubule and SR structure,
which enables dynamic dyad formation and degradation.
Furthermore, it appears that within these structures there is
likely continual regulation of both the positioning and activity of
LTCCs and RyRs. This plasticity is postulated to augment dyadic
Ca2+ cycling when required, but also to underlie impaired Ca2+

cycling during disease. Thus, greater understanding of dyadic
plasticity holds considerable therapeutic potential.
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