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The ability of epithelial cells to organize through cell–cell adhesion into a functioning
epithelium serves the purpose of a tight epithelial protective barrier. Contacts between
adjacent cells are made up of tight junctions (TJ), adherens junctions (AJ), and
desmosomes with unique cellular functions and a complex molecular composition.
These proteins mediate firm mechanical stability, serves as a gatekeeper for the
paracellular pathway, and helps in preserving tissue homeostasis. TJ proteins are
involved in maintaining cell polarity, in establishing organ-specific apical domains and
also in recruiting signaling proteins involved in the regulation of various important cellular
functions including proliferation, differentiation, and migration. As a vital component of
the epithelial barrier, TJs are under a constant threat from proinflammatory mediators,
pathogenic viruses and bacteria, aiding inflammation and the development of disease.
Inflammatory bowel disease (IBD) patients reveal loss of TJ barrier function, increased
levels of proinflammatory cytokines, and immune dysregulation; yet, the relationship
between these events is partly understood. Although TJ barrier defects are inadequate
to cause experimental IBD, mucosal immune activation is changed in response to
augmented epithelial permeability. Thus, the current studies suggest that altered barrier
function may predispose or increase disease progression and therapies targeted to
specifically restore the barrier function may provide a substitute or supplement to
immunologic-based therapies. This review provides a brief introduction about the TJs,
AJs, structure and function of TJ proteins. The link between TJ proteins and key
signaling pathways in cell proliferation, transformation, and metastasis is discussed
thoroughly. We also discuss the compromised intestinal TJ integrity under inflammatory
conditions, and the signaling mechanisms involved that bridge inflammation and cancer.

Keywords: tight junction, claudin, signaling molecules, tumor, metastasis

INTRODUCTION

Epithelial and endothelial cells serve as sentries in most of the living systems by providing protective
barriers to the various organs from their surroundings and help maintaining homeostasis (Gibson
and Perrimon, 2003; Marchiando et al., 2010a; Cheng and Mruk, 2012). These protective barriers
are categorized as tight junctions (TJs), adherens junctions (AJs), and desmosomes. Proteins in
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the TJ barrier are mainly involved in regulation of intercellular
communication and paracellular transport (Abraham et al.,
2001). Based on their functions they are classified as anchoring
junctions, gap junctions and TJ proteins.

Cell adhesion to the extracellular-matrix is vital for normal cell
functioning and proper adhesion is thought to be prerequisite
for optimal function of cell surface receptors. Anchoring
junction proteins including cadherins, catenins, and integrins
are primarily involved in cell surface adhesion (Chattopadhyay
et al., 2003). Cadherins are present on the membranes of
adjacent cells binding each other at the membranes (Dejana,
2004). Among the catenins, β-catenin, which activates the
Wnt signaling pathway (Morin, 1999), is involved in cellular
adhesion, growth and differentiation and has been implicated
in transition of normal cells to transformed/cancer cells (Zhan
et al., 2017). Anchoring or Adherens junctions are responsible
for binding with the cytoskeleton thus imparting support as
well as signaling hubs, which are important in regulating
gene expression (Meng and Takeichi, 2009). Gap junctions
help in communication of cells through a set of integral
membrane proteins called connexins (Dbouk et al., 2009).
Gap junctions help in transport/direct exchange of solutes
and molecules between cells. Normal/proper functioning of
gap junctions have been shown to play key roles in growth,
development and tissue homeostasis (Kandouz and Batist, 2010;
Mathias et al., 2010). TJs serve as fortifications for the cell
with restricted entry and the only possible transport in a
normal functioning healthy cell through a TJ is via active
transport (Anderson and Van Itallie, 2009). They are also
responsible in maintaining/imparting cell polarity. However,
with increasing knowledge on TJ biology, both structurally
and functionally, their roles have been emphasized to be
equally important in cellular signaling cascades with control
over growth, development, and differentiation. TJs are formed
mainly by occludins, claudins and junctional adhesion molecules
(JAM) which will be discussed in more detail in this review
(Gonzalez-Mariscal et al., 2003). TJ proteins regulate several
key signaling pathways in cancer, also indirectly as interacting
partners (Balda and Matter, 2009). Dysregulation of cell
junction adhesion has been shown to be heavily implicated
in the process of epithelial mesenchymal transition (EMT)
(Morris et al., 2008). The dysregulation of these junctional
proteins is widely correlated in breast, prostate, ovarian,
endometrial, lung, liver and colorectal carcinomas (Martin
and Jiang, 2009; Brennan et al., 2010). In addition, the TJ
proteins play a major role in maintaining the integrity of the
intestinal epithelium and any change like gut inflammation
results in the disruption of the intestinal epithelium as seen
in inflammatory bowel disease (IBD), such as ulcerative
colitis (UC) or Crohn’s disease (CD). The disturbances in
TJ epithelial barrier integrity by dysfunctions in intestinal
epithelial cell (IEC)–intrinsic molecular circuits that control
the homeostasis, renewal, and repair of IECs can also trigger
IBD. The present review tries to bring out the connection
between various junctional proteins and signaling pathways
associated with inflammation and cancer, with major focus on
cancer.

COMPONENTS OF EPITHELIAL
JUNCTIONS

The structural integrity and key barrier function of epithelia
and endothelia is preserved through interactions involving
TJs, AJs, desmosomes and gap junctions (Figure 1). AJs
are typically formed between cells and play important roles
in development and tissue homeostasis. Desmosomes mainly
provide mechanical strength to the cell in conjunction with
cytoskeleton. Desmosomes are not continuous and cannot
prevent solute transport, instead they create a strong structural
network that binds cells together throughout the tissue (Kottke
et al., 2006). In contrast, gap junctions are like bridges between
two cells allowing passage of nutrients or solute etc. between
them. Gap junctions are a family of transmembrane proteins,
also called connexins, which play a key regulatory role in
cell differentiation and growth. TJs are exclusively found in
epithelium and endothelium and are specific to vertebrates.
The dysregulation of TJs leads to altered barrier function
resulting in changes in levels of inflammatory cytokines such
as IFN-α, IFN-gamma, IL-6 and IL-1β as seen in inflammation
associated diseases such as IBD, multiple sclerosis and cancer
(Harhaj and Antonetti, 2004; Turner, 2006; Cereijido et al.,
2007). Therefore, current strategies are being developed by
clinicians and researchers to treat these diseases by targeting the
compromised TJs. TJs in cancer and inflammation are the main
focus of this review.

TIGHT JUNCTIONS

Tight junctions define the extremes of the cell by demarcating
the cells upper and lower regions thus conferring polarity to the
cell (Figure 1). Claudins and occludins are the most important
TJ proteins that control the vital function of the cells. Other
TJ proteins such as cingulin, Pals1 (Proteins Associated with
Lin Seven 1), MUPP1 (multi-PDZ domain protein 1), and
ZO1, ZO-2, ZO-3 (Zona occludens) (Guillemot et al., 2008)
are framework forming proteins connecting transmembrane
proteins with the actin cytoskeleton. There are three different
ZO-1 proteins with shared structural features, Src homology 3
(SH3) domain, guanylate kinase (GUK) domain and N-terminal
region with 3PDZ domains. ZO proteins form the central
network for protein interactions. The first PDZ domain of all
ZO proteins associates directly with the C-termini of claudins
and this association has been attributed to have central role in
TJ assembly and function. Down-regulation of ZO proteins has
been reported in several cancers such as decreased levels of ZO-1
leads to increased motility in pancreatic cancer (Doi et al., 2012).
However, upregulation of ZO-1 expression in melanoma cells
has also been reported (Smalley et al., 2005). Abnormal TJs as a
result of either inflammation, mutations or an aberrant signaling
mechanism disturbs the proper cell functioning and consequently
results in disease such as cancer and other abnormalities (Resnick
et al., 2005; Runkle and Mu, 2013). Among the TJ proteins,
claudins in cancer and inflammation will be the focus of this
review.
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FIGURE 1 | Epithelial intercellular junctions. Schematic drawing of the epithelial junction in vertebrate cell. The tight junctions, adherens junctions and gap junctions
are located in the apical most region of the cell while the desmosomes are located toward the basal regions.

CLAUDINS: BACKBONE OF TIGHT
JUNCTION STRANDS

Claudins are a group of transmembrane proteins which play
a critical role, along with other TJ proteins, in the proper
functioning of epithelial TJs. Most of the claudins share a
common motif, -Y-V in the c-terminal region. There are 27
claudins discovered till date which can be classified as closed,
selectively permeable based on their functions (Table 1). The
importance of the claudins lies in the fact that the TJs are
mainly formed by claudins (Cording et al., 2013). Claudins 1,
3, 5, 11, 14, and 19 belong to closed group and are responsible
for water tight stability of the cell. Claudins-10b, and 15 allow
passage of cations, and claudins -10a and 17 allow anions while
claudin-2 is permeable to both anions and water thus ensuring
proper availability of water and ions for cellular functions to be
effectively carried out (Gunzel and Fromm, 2012). The claudins
along with their elegant interaction with occludins can hold all
the proteins of the cytoplasmic milieu (Van Itallie and Anderson,
2004). Owing to the above fact, improper functioning of the
claudins have been shown to be responsible to several disease
conditions like IBD (Lameris et al., 2013), colorectal cancer
(CRC) (Kinugasa et al., 2012), UC (Kinugasa et al., 2010)
and in numerous additional cancers, including breast, gastric,
pancreatic, prostate, and uterine (Table 1). Similarly, mutations
in TJ proteins result in abnormalities as seen in patients
with familial hypercholanemia (Anderson and Van Itallie,
2009), ichthyosis, and neonatal sclerosing cholangitis (NISCH)
syndrome (Hadj-Rabia et al., 2004). In NISCH syndrome,
claudin-1 is lost leading to increased epithelial cell paracellular
permeability. Claudins exhibit a variable expression pattern
(Table 1) in various cell types and tissues and their expression has
been described to be important for membrane functions (Markov
et al., 2010), for example, claudin-1 is ubiquitously expressed,
while claudin-3 and 4 are restricted to developmental stages and

specific cell types (Blanchard et al., 2006; Webb et al., 2013). In the
gastrointestinal tract, claudins show a high degree of variability in
expression in different segments. In colon cancer, claudin-1 was
observed to be having transformative and metastatic potential
(Dhawan et al., 2005) while claudin-2 overexpression has been
shown to be associated with colon carcinogenesis (Dhawan et al.,
2011).

In a recent study in CRC patients, claudin-4 expression
loss has been attributed to increased metastasis or enhanced
invasiveness of tumors and was found to have a relation with
distant metastasis (Suren et al., 2014). Overexpression of claudin-
3 and -4 in ovarian cancer cells promotes cancer progression
(Agarwal et al., 2005) in both mouse and human ovarian cancer
xenografts model (Shang et al., 2012). Further, the role of claudin-
4 in pro-angiogenic and enhanced motility in ovarian cancer
was also demonstrated (Li et al., 2009). Interestingly, claudins-
3 and -4 have been shown to be tumor suppressors as well.
Their overexpression decreases Wnt signaling, affects E-cadherin
expression, and decreases in vitro cell migration and invasion.
In ovarian cancer, downregulation of claudin-3/-4 promotes
tumor growth and metastasis, while less expression of claudin-
3/-4 along with claudin-7 results in high malignancy in breast
cancer (Prat et al., 2010). On the other hand, high expression
of claudin-4 suppresses invasion and metastasis in pancreatic
cancer (Michl et al., 2003) while in gastric cancer cells similar
inhibition is seen without affecting the cell growth (Kwon et al.,
2011). Low expression of claudin-6 supports invasiveness in
breast cancer (Osanai et al., 2007), while in gastric cancer cells
less expression stimulates invasion, migration, and proliferation
(50). Interestingly, claudin-7 functions both as tumor suppressor
and promoter. In esophageal squamous cell carcinoma claudin-
7 has been shown to enhance cell growth and metastasis (Lioni
et al., 2007). In CRC and ovarian cancer, claudin-7 overexpression
promotes tumor formation and invasiveness (Johnson et al.,
2005; Dahiya et al., 2011). However, in colon cancer, the

Frontiers in Physiology | www.frontiersin.org 3 January 2019 | Volume 9 | Article 1942

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01942 January 21, 2019 Time: 18:5 # 4

Bhat et al. Tight Junction Proteins and Signaling Pathways

TABLE 1 | Dysregulated claudins in various cancers, crosstalk and the outcome.

Tight junction proteins
Claudins 1-20

Type of cancer Mechanism of action and signaling molecules involved Reference

Claudin-1 Human Breast Cancer Overexpression via PDGFRB and cadherin -1 deregulation, resulting
in deregulated miRNAs associated with tumor suppression

Majer et al., 2016

PKC/Claudin-1 signaling pathway involved. Can be controlled via
inhibiting EMT and its related factors: ZEB1, ZO-1, Slug, Twist,
MMP9

Hou et al., 2015

Human Malignant Glioma
Cells

Overexpression of Claudins-1, 2, 3, via miR-30A targeting SLUG,
suppressing EMT and metastasis

Chang C.W. et al., 2016

Upregulation via miR-203, downregulating SLUG and Vimentin and
upregulating ZOI, inhibiting invasion and migration

Chang J.H. et al., 2016

Hepatocellular carcinoma Inducing c-Abl-ERK signaling pathway Suh et al., 2013

Melanoma Delocalization to cytosol, increasing MMP-2 and migration French et al., 2009

Colon cancer Notch/Wnt-signaling activation, inhibition of goblet cell
differentiation, inducing mucosal inflammation, promoting
tumorigenesis

Pope et al., 2014a

Colorectal cancer Upregulation of Claudin-1 and occludin via phosphorylation of p38
and ERK 1/2

Sun et al., 2015

Gastric cancer Overexpressed Claudin-1 associated with β-catenin Huang et al., 2014

Squamous cellular
carcinoma/Solar Keratosis

Decreased expression and Claudin-2 overexpression resulted in
leakier epithelial barrier function consequently damaging skin
epithelial resistance

Hintsala et al., 2013

Overexpression in OSCC patient samples associated with
advanced clinical stage and invasiveness

Sappayatosok and
Phattarataratip, 2015

Pancreatic ductal
adenocarcinoma

Claudin-1, zinc finger transcription factors, ZEB1/Snail induced
expression via eEF-2K mediates cancer cell invasion and metastasis

Ashour et al., 2014

Claudin -2 Breast cancer Overexpression results breast cancer liver metastasis via promoting
cancer cell adhesion to hepatocytes

Tabaries et al., 2012

Claudin-3 Lung adenocarcinoma EGF-activated MEK/ERK and PI3K-Akt pathways Zhang et al., 2017

Breast cancer Overexpression and delocalization results in tight junction protein
deregulation, promoting tumor progression

Todd et al., 2015

Claudin-4 Breast cancer Overexpression increased cell proliferation/migration, reduces
apoptotic rate, regulated by methylation status

Ma et al., 2015

Claudin-4 associated with tumor aggressiveness and formation of
vascular channels

Cui et al., 2015

Endometrial cancer Intracellular localization of Claudin-4 involved in signaling to and
from the tight junctions

Cuevas et al., 2015

Gastric cancer Associated with increased MMP-2 and -9 expression levels,
enhancing cancer cell invasion

Hwang et al., 2014

Nasopharyngeal carcinoma Overexpression related to advanced stage Suren et al., 2015

Claudin-5 Glioma Downregulation associated with increasing permeability and ZO-1,
occludin suppression

–

Downregulation of Claudin-5, ZO-1, occludin mediated by RUNX1
via overexpressed miR-18a, leading to increased permeability

Miao et al., 2015

Reduced Claudin-5, occludin, and ZO-1 expression via
overexpression of miR-181a targeting KLF6, leading to increasing
permeability

Ma et al., 2014

Claudin-5 and occludin downregulation mediated by
NOS/NO/ZONAB, leading to enhanced permeability

Liu et al., 2015

Claudin-6 Human adenocarcinoma
gastric cancer

Overexpression leads to MMP-2 activation Torres-Martinez et al., 2017

Claudin-7 Non-small cell lung cancer Reduced expression leads to metastasis Kudinov et al., 2016

Colon cancer Forced expression in cancer cell lines induces MET, suppresses
p-Src and MAPK/ERK1/2 via Rab 25 dependent manner inhibiting
tumor growth

Bhat et al., 2015

Claudin-8 Colorectal cancer Downregulation of Claudin- 8 is associated with tumorigenesis Grone et al., 2007

Renal oncocytoma Claudin-8 and 7 as potential diagnostic biomarkers Kim et al., 2009; Osunkoya
et al., 2009

(Continued)
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TABLE 1 | Continued

Tight junction proteins
Claudins 1-20

Type of cancer Mechanism of action and signaling molecules
involved

Reference

Claudin-9 Lung cancer Claudin -9 overexpression is associated with overexpressed
MMP-12, supporting tumor cell egression

Sharma et al., 2016

Pituitary oncocytoma Overexpression correlated with weak blood vascular
endothelium, actin cytoskeleton reorganization, paracellular
permeability

Hong et al., 2014

Claudin-10 Lung cancer Increased expression of Claudin-10 is associated with the
development of lung adenocarcinoma mediated by c-fos
pathway

Zhang et al., 2013

Biliary Tract cancer Decreased expression is observed in intrahepatic bile duct
cancer

Nemeth et al., 2009

Claudin-11 Hepatocellular carcinoma Inhibition via miR-99b targeting 3′ UTR of Claudin-11
mRNA is associated with metastasis

Yang et al., 2015

Cancer-associated
fibroblasts (CAF)

Claudin-11 and occludin overexpression is associated with
CAF migration via TGF-β secretion

Karagiannis et al., 2014

Claudin 12 Colorectal cancer Claudin-12 overexpression is associated with the
progression

Grone et al., 2007

Claudin-14 Human hepatocellular
carcinoma

Low expression observed in patient samples associated
with advance stage and downregulated expression results
in increased expression and nuclear localization of β-catenin

Li et al., 2016

Claudin-15 Malignant pleural
mesothelioma

Overexpressed Claudin-15 serves as potential
antiproliferative function

Chaouche-Mazouni et al., 2013

Colitis cancer Higher expression observed with colitis cancer Arimura et al., 2011

Colon cancer Claudin-15 overexpression associated with MMP-2 and -9
activation suggesting invasive characteristics

Takehara et al., 2009

Claudin-16 Renal cell carcinoma Overexpressed Claudin-16 is associated with disrupted
barrier function and cell adhesion in cancer cells

Men et al., 2015

Claudin-17 Gastric cancer Downregulated Claudin-17 is observed in gastric cancer
tissue correlated with lymphatic metastasis

Gao et al., 2013

Claudin-18 Lung squamous cell
carcinoma

Reduced expression is found in patient samples.
Claudin-18 overexpression results in suppression of cell
cycle G1/2 phase via p21 increase and Cyclin D1 decrease
resulting in inhibition of p-Akt

Akizuki et al., 2017

Claudin-20 Human Breast Cancer Expression results in reduced TER and no decrease in
paracellular permeability. Claudin-20 overexpression
displayed aggressive phenotype

Martin et al., 2013

same claudin-7 was shown to be having tumor suppressor
effect (Bhat et al., 2015). Claudin-11, a major component of
myelin in central nervous system, is possibly involved in growth
and differentiation of oligodendrocytes (Tiwari-Woodruff et al.,
2001). In addition, altered expression and localization of several
TJ proteins can be detected during inflammation process.
First and foremost, claudin-2 abundance increases in various
inflammatory diseases, such as CD, UC and celiac disease (Heller
et al., 2005; Zeissig et al., 2007). Functionally, this leads to a
flux of cations and water via the paracellular pathway into the
gut lumen, which gives rise to leak flux diarrhea (92). Also,
for claudin-15 an increased expression has been reported in
celiac disease (Sandle, 2005). Occludin downregulation has been
reported for CD, UC and collagenous colitis (Burgel et al.,
2002; Heller et al., 2005; Zeissig et al., 2007). In intestinal
cell lines occludin knockdown has been shown to increase
macromolecule permeability (Al-Sadi et al., 2011; Buschmann
et al., 2013). Based on the above literature, the claudins seem
to exist universally from normal tissues, hyperplastic conditions,
benign neoplasms, and cancers with differential expression, and

their loss or gain of function is linked to inflammation and several
malignancies.

CROSS-TALK OF CLAUDINS WITH
SIGNALING PATHWAYS IN CANCER

Tight junctions of both epithelial and endothelial cells are critical
in regulating the permeability across the epithelia and the TJ
complex is a hub for signaling pathways which governs the
metastatic potential in several cancers. The role of claudins in
TJ cancer signaling has been well documented (Figures 2, 3, 4).
Mitogen-activated protein kinase (MAPK) (Fujibe et al., 2004) or
protein kinase C (PKC) (Nunbhakdi-Craig et al., 2002) induced
phosphorylation of claudin-1 and cyclic AMP (cAMP)-induced
phosphorylation of claudin-5 (Ishizaki et al., 2003) promotes
the barrier function of TJs, while claudin-6 phosphorylation
mediated by protein kinase A increases Mg2+ transport (Ikari
et al., 2008). In addition, claudin phosphorylation is linked
to increased paracellular permeability (Yamauchi et al., 2004).
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FIGURE 2 | Schematic/proposed signaling model in a cell during tumor formation. Aberrant change in signaling pathways result in the resistance of the normal
cellular apoptosis and/or senescence in a cell which is destined to be a tumor cell. The anti-apoptotic proteins belonging to the bcl2 family are upregulated. The tight
junction complex changes its course of normal function of selective permeability to unrestricted flow to various unintended solutes/growth/cytokine factors which
may be responsible in up regulation of survival signaling pathways. The expression and/or phosphorylation of growth factor/cytokine receptors which promote cell
growth are enhanced. The PI3-K/Akt pathway, which is a survival pathway, becomes activated along with the RAS-RAF-ERK pathway and Wnt/beta-catenin
pathway which result in the up regulation of several growth response genes.

Though phosphorylation of claudins is necessary for the
maintenance of their function but abnormal phosphorylation
affects their aggregation and structural stability which could lead
to impaired epithelial barrier function (Sjo et al., 2010; Li et al.,
2012). Previously, researchers have demonstrated that during the
course of colitis, the phosphorylation status of colonic claudins
changes which may be related to the change in the intestinal
barrier function and the same group has shown that cytokines
play an important role in this process (Li et al., 2015). The
phosphorylation of claudins and the associated effects on their
normal functions apparently resembles that of the changes in
phosphorylation of molecules involved in signaling cascades.
This gives us a notion that these two sets of molecules might be
closely related in their origins and functions which in due course
of evolution might have diversified roles. This would help us to
develop common drug targeting strategies.

Very recent studies on blood-brain barrier (BBB) alterations
in Japanese encephalitis virus infection (JEV), increases the
diverse relationship of TJ proteins and signaling pathways
(Wang et al., 2018). It was shown that a decrease in claudin-
5, ZO-1 and occludin was observed during JEV infection which
were restored with the administration of neutralizing antibodies
against IP-10, an abundant chemokine produced in the early
stage of JEV infection, helping decrease the BBB damage.
This study suggests a very important role for TJ proteins in
maintaining BBB (Wang et al., 2018). More importantly, the
authors found that the alteration in BBB permeability was due
to the nexus between IP-10, TNF- α and c-Jun N-terminal
kinase (JNK) pathway, giving another solid proof of cross-talk

between TJ proteins, inflammatory cytokines and signaling
networks. Another study, establishing the cross-talk between
TJ proteins and key signaling pathways was demonstrated by
Choksi et al. (2018), through blood vessel epicardial substance
(BVES), or POPDC1, a TJ-associated transmembrane protein
which has a key role in protecting colonic epithelial integrity
(Choksi et al., 2018). BVES modulates epithelial-to-mesenchymal
transition (EMT) via junctional signaling pathways (Williams
et al., 2011). While investigating its role in colitis, they observed
a decrease in claudin-7 and increased ZO-1 protein expressions.
While, a significant increase in claudin-2, JAM-A, and Zo-1
mRNA expression was observed. Moreover, they also observed
an increase in phosophomyosin light chain 2 (pMLC), which
is a key effector in RhoA signaling (Choksi et al., 2018). Their
studies demonstrated, several negatively affected TJ proteins with
BVES deletion resulting in an increased colonic permeability.
More interestingly, previous studies by Reddy et al. (2016) on
BVES suggests an enhancing and suppressive effect on Notch and
Wnt pathways respectively in BVES −/− mice. An interesting
study by Kim et al. (2018) on the exposure of ozone and TJ
proteins turned out to be revealing us another tie up between TJ
proteins and signaling pathways, the immune signaling networks.
They examined primary human lung epithelial cells and mouse
models to understand the relationship of TJ proteins in exposure
to ozone conditions. In their study, they found that ozone
exposure in mice increases TNF- α, IL-4, IL-18, and IL-1b levels
along with seemingly concomitant increase in claudin-3, claudin-
4ROS, Nrf2, and Keap1 protein expressions and decrease in the
lung claudin-14 protein expression. These recent studies take
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FIGURE 3 | Schematic/proposed signaling model of role and regulation of claudins in a cell during invasive or metastatic stage. Deregulated claudin expression and
delocalization occurs as a consequence of epigenetic factors, growth factors and cytokines, inducing loss of “gate and barrier” function and thereby promoting
inflammation, EMT and disease progression. Once the cell is destined to be a tumor cell, it further becomes more aggressive. During this stage, the well-regulated
junctional molecules between cells become more and more permissible to various factors responsible for the up regulation of the survival, rapid growth and
proliferative signaling pathways. Also, the inhibitor for apoptosis (IAP) proteins, which are critical for inhibiting cancer cell death and promoting their survival, are also
upregulated. Further, along with the PI3-K/Akt and RAS-RAF-ERK pathways, NOTCH pathway is also upregulated which further enhances the growth potential of
the cancer cell. Further, tight junctional protein, such as claudin-1 is associated with beta-catenin and help in the enhanced translocation of beta catenin into the
nucleus. At this stage both the NOTCH and the Wnt pathway act in co-ordination to enhance the metastatic potential of the cancer cell.

us toward a more better realization of closely knit association
between the TJ proteins and signaling circuits and warrants
extensive studies on TJ proteins and signaling networks.

In light of the above studies on TJ proteins and signaling
pathways in disease condition, leaves us no doubt that TJ
proteins significantly affects the cellular processes. It would also
be interesting to understand the modulations in TJ proteins
in normal development, which is beyond the scope of present
review.

APOPTOTIC SIGNALING: TNF, PI3K-Akt
AND INTEGRIN SIGNALING

Resistance to anoikis results in anchorage-independent growth
and EMT which are vital during cancer progression and
metastatic colonization (Paoli et al., 2013). Several mechanisms
are involved in anoikis resistance of tumor cells of which
integrin over-activation of receptors (Haenssen et al., 2010;
Deng et al., 2012; Singh et al., 2012) along with appropriate
changes in tumor microenvironment significantly contributes
toward successful anoikis resistance. It has been observed
that Akt, a signaling protein, plays a central role in anoikis

resistance by decreasing the proapoptotic proteins, Bad and
caspase-9, through its phosphorylation (Jeong et al., 2008)
and by upregulating anti-apoptotic protein, Bcl2 expression.
Further, in response to integrin-mediated cell attachment,
phosphatidylinositol- 3 kinase (PI3K) activates Akt that promotes
cell survival (King et al., 1997). Overexpression of claudin-
2 in tissue samples from CRC patients was shown to be
correlated with cancer progression. A similar trend was also
observed in IBD associated CRC tissues. It has been shown
that overexpression of claudin-2 increased cell proliferation,
anchorage-independent tumor growth in CRC cells via EGF
receptor (EGFR)-dependent manner (Dhawan et al., 2011). In
line with the above studies, Jose et al. group observed an increase
in cell migration and anchorage-independent behavior of human
colorectal adenocarcinoma (HT-29) cells in association with
increased claudin-3 expression mediated by EGF via triggering
ERK1/2 and PI3K-Akt pathways (de Souza et al., 2013). Singh
et al. (2012) have found a novel link between claudin-1 and Src
proteins involved in the regulation of anoikis in colon cancer
cells through claudin-1/Src/PI3k-Akt/Bcl-2 dependent signaling.
This association significantly stimulates the invasiveness and
metastasis of colon cancer cells. All these studies support that
interactions between claudins and Bcl-2 have a definitive role
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in tumor metastasis. However, it should not be overlooked that
this interaction may be more specific in CRC. Over expression of
claudin-1 in MCF-7 breast cancer cell line contributes to anti-
apoptotic role under tumor necrosis factor (TNF)-α treatment
while the knockdown of claudin-1 increases the susceptibility
of MCF-7 cells to TNF-α-induced apoptosis (Liu et al., 2012).
The findings by Rabquer et al. (2010) attribute a pro-angiogenic
role to JAM-C, while JAM-A was shown to be important
in colon inflammation and proliferation of IEC by inhibiting
Akt-dependent β-catenin activation (Nava et al., 2011). Both
in vivo and in vitro studies have shown that the loss of
JAM-A expression was associated with higher IEC proliferation
(Nava et al., 2011). The same group demonstrated that the
increased proliferation of IEC involves PI3K and phosphatase
and tensin homolog (PTEN)-dependent Akt-mediated β-catenin
transcriptional activation. Interestingly an association of loss
of JAM-A expression with significantly altered/ or increased
expression of claudin-10 and -15 (Kitajiri et al., 2004), results
in increased inflammation and paracellular permeability of the
IEC. However, occludin or claudin-2 level was not altered in
these cells, which hints toward a possible association of trigger
to specific claudins.

These studies show how complex links could be made by
TJ proteins with cell death pathways, growth and inflammatory
responses. This encourages more studies centering TJ proteins
with diverse signaling pathways.

NOTCH AND Wnt SIGNALING

Notch signaling plays a key role in tumorigenesis either by
activating or inhibiting cellular processes such as proliferation,
differentiation, and apoptosis (Bolos et al., 2007; Leong and
Gao, 2008; Bertrand et al., 2012). In HCT 116 colon cancer
cells, Notch represses the p53-dependent transactivation through
the interaction of Notch1 with p53 which results in inhibition
of p53 phosphorylation, and subsequent inactivation of p53-
dependent apoptotic pathway (Kim et al., 2007). Notch and
Wnt/β-catenin signaling is important for intestinal development
and maintaining homeostasis (Ahmed et al., 2012). The Notch
signaling is also important in determining intestinal epithelial
renewal and their function (Fre et al., 2005). On the other
hand, Wnt signaling pathway by regulating the cytoplasmic
and nuclear β-catenin levels plays a crucial role during
development of different tissues and organisms (Clevers and
Nusse, 2012). Few reports have shown upregulated expression
of Wnt target genes, c-myc, cyclin-D1, MMP-7, Tcf1, and
EphB2, and Notch target gene hes1 in tumors (van de
Wetering et al., 2002; Rodilla et al., 2009). Moreover, lack of
coordination between Notch and Wnt signaling was shown
to be involved in enhancing inflammation or tumorigenesis
(Fre et al., 2009; Ahmed et al., 2012). In CRC cell lines,
claudin-1 expression enhances the tumorigenic ability and
also leads to the mucosal inflammation via activation of
Notch pathway, and further inhibits goblet cell differentiation
(Pope et al., 2014a). It has been observed that caudal-
related homeobox (Cdx) transcription factors regulate claudin-1

gene expression in human colon cancer cells and functional
crosstalk with Wnt-signaling pathway was found to be important
for this regulation (Bhat et al., 2012). In accordance with
these studies, Notch-signaling was shown to be regulated by
claudin-1 overexpression, which in turn increase the MMP-
9 and p-ERK expression in transgenic mice resulting in
metastasis of colon cancer and colonic epithelial homeostasis
(Pope et al., 2014b). Added to the growing complexity,
it has been demonstrated recently that claudin-7 to be a
tumor promoter, in colon and pancreatic cancer, through its
association with epithelial cell adhesion/activating molecule
(EpCAM) thereby promoting/inducing EMT (Philip et al.,
2014). By disrupting the link between β-catenin and F-actin,
EpCAM interferes with E-cadherin mediated cell-cell adhesion
(Thuma and Zoller, 2013). It also has a role in Wnt/β-catenin
signaling pathway (Yamashita et al., 2007; Lin et al., 2012),
regulates PKC (Maghzal et al., 2010) and MMP-7 expression
as well (Denzel et al., 2012). It was shown that claudin-7
guides/recruits EpCAM toward signal transduction platforms
or glycolipid-enriched membrane microdomains (GEM) where
it becomes susceptible to digestion by TNF-α converting
enzyme (TACE) releasing EpIC which acts as a cotranscription
factor in cooperation with β-catenin and others (Philip
et al., 2014). In addition, EpIC also contributes to EMT
by upregulating vimentin, Snail, Slug and downregulating
E-cadherin. Interestingly, Notch was also upregulated in
holoclones, a colony-forming stem cells that have higher growth
potential due to absence of differentiated cells (Eglen et al.,
1989). Moreover, FGF and TGFβ, known to upregulate EMT
(Shirakihara et al., 2011) were down-regulated in claudin-7
knockdown cells.

Activation of Wnt/β-catenin signaling pathway by Wnt
ligands is involved in regulating embryonic development and
homeostasis in later stages (Lickert et al., 2000; Davidson
et al., 2012). Mislocalization of β-catenin and dysregulation of
Wnt/β-catenin signaling pathway is shown to be associated with
development of various cancers (Polakis, 2012; Keerthivasan
et al., 2014; Wang et al., 2014). In CRC, Wnt/β-catenin signaling
becomes more important as greater than or nearly 70% of CRC
tumors exhibit mutations in adenomatous polyposis coli (APC),
a Wnt pathway component. Interestingly nuclear localization of
claudin-1, along with β-catenin, was observed in liver metastatic
lesion samples (Dhawan et al., 2005) suggesting that claudin-1
may assist/promote the translocation of membranous β-catenin
to enhance the activation of its target genes leading to robust
growth and/or survival of the cancerous cells. These different
important interactions of the TJ proteins with the signaling
cascades suggests that TJ proteins might be having different
binding specificities to different signaling molecules and that
they are dependent in a contextual manner, which needs to be
explored.

These studies establish an association of TJ proteins with well
established growth and developmental pathways. However, it
would be interesting to know about novel signaling mechanisms
which may work independently or in association with established
pathways keeping TJ proteins in the focus. These studies would
open avenues for new strategies of treatment.

Frontiers in Physiology | www.frontiersin.org 8 January 2019 | Volume 9 | Article 1942

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01942 January 21, 2019 Time: 18:5 # 9

Bhat et al. Tight Junction Proteins and Signaling Pathways

KINASE SIGNALING

It has been observed that manipulating claudin-1 expression
results in phenotypic changes significantly effecting growth
and metastasis of tumor xenograft in athymic mice (Dhawan
et al., 2005). The same group observed that upregulation of
claudin-1 enhanced the metastatic potential by altering the
E-cadherin expression and Wnt/β-catenin signaling (Dhawan
et al., 2005). Interestingly, increased claudin-1 expression in
metastatic tissues was associated with its mislocalization from
membrane to nucleus (Dhawan et al., 2005). Given the cross-
talk between Wnt/β-catenin signaling and NF-κB in inducing
inflammatory responses (Ma and Hottiger, 2016), it is possible
that claudin-1 associated modulation in signaling may also result
in inflammation associated changes. This would be an interesting
area to explore in future. Also, in oral squamous cancer, claudin-
1 upregulates MMP activity and promotes invasiveness (Dos
Reis et al., 2008). In melanoma as well, similar correlation was
reported (Leotlela et al., 2007). In human liver cells, increased
expression of claudin-1 both at mRNA and protein levels
associated with PKC activation, which subsequently promotes
invasiveness through stimulation of c-Abl-PKC signaling (Yoon
et al., 2010; Lin et al., 2013). Lin et al. have showed that absence of
claudin-3 and claudin-4 enhanced the EMT activity in ovarian
cancer cells through downregulating E-cadherin expression,
upregulating Twist, and activating the PI3K pathway (Lin et al.,
2013). As PI3K pathway is well evidenced to have roles in
recruiting inflammatory immune cells, it may be plausible that
claudin modulation has an indirect effect on inflammation as
well (Hawkins and Stephens, 2015). Claudin-1 promotes EMT in
human liver cells, while claudin-3 and claudin-4 promote EMT
in ovarian cancer cells, which suggests that the effect of claudins
on EMT is tissue-specific (Yoon et al., 2010). Phosphorylation is
shown to be having a regulatory role in the function of claudin-
3 and claudin-4, for example, activated PKA (D’Souza et al.,
2005) or PKC (D’Souza et al., 2007) phosphorylates claudin-
3 and claudin-4 and enhance the paracellular permeability in
ovarian cancer cells through the mislocalization of claudins. In
human pancreatic cancer cells, phosphorylated claudin-4 by PKC
not only increase its mislocalization but also compromised the
TJ barrier integrity (Kyuno et al., 2011). Studies have shown
that the effects of claudin-3 and claudin-4 are more pronounced
in ovarian cancer cells. The overexpression of claudin-3/-
4 correlates to ovarian cancer progression with concomitant
activation of MMP resulting in increased invasiveness (Agarwal
et al., 2005). It was shown that claudin-3 inhibition with small
interfering RNA reduced the growth and metastasis of ovarian
cancer in xenografts model, which strongly supports the cancer-
promoting role of claudin-3 (Huang et al., 2009). Both in vitro
and in vivo studies in ovarian cancer observed that claudin-
4 promotes the angiogenesis by inducing the production of
angiogenic factors such as IL-8 (Li et al., 2009), suggesting the
pro-angiogenic role of claudin-4 in ovarian cancer. On the other
hand, adherens were shown to be responsible in the altered
expression of claudin-5. In this study, Andrea et al. showed the up
regulation of claudin-5 gene by endothelial VE-cadherin (VEC),
which transfers intracellular signals at AJs (Taddei et al., 2008).

This was achieved by inhibiting the β-catenin translocation to
the nucleus or sequestering it from the nucleus and through
Akt mediated inactivation of FOXO1 inhibitory activity (Taddei
et al., 2008). The treatment of the VEC-positive cells with
glycogen synthase kinase 3 (GSK-3) β downregulated the claudin-
5 expression. The β-catenin was also found to be directly
associated with FOXO1 and that this association at the promoter
region of claudin-5 is required for its regulation/overexpression
(Taddei et al., 2008). In the absence of VEC, the FOXO1–
β-catenin–Tcf-4 complex binds to the promoter of the claudin-5
gene and inhibits its expression. In the light of these studies, it
is evident that β-catenin pathway plays a central role in effecting
signaling cascades and it also seems to be imperative that it might
have influence in inflammation associated mechanism. Another
interesting study observed that the co-localization of claudin-
9 and -6 with AJs regulatory proteins in a heterologous system
forms a novel TJ strand (Nunes et al., 2006). However, this was
carried out in normal inner ear cells; it would be interesting to
investigate the existence of similar kind of associations in cancer
cells and their relevance to cancer metastasis.

ERK PATHWAY

ERK signaling is activated by diverse mechanisms which majorly
includes ligation of receptor tyrosine kinases and cell adhesion
receptors. Activated ERK can phosphorylate a wide range
of substrates and thereby affecting a broad array of cellular
functions including proliferation, survival, apoptosis, motility,
transcription, metabolism and differentiation. In a recent study
it was shown that MAPK/ERK1/2 pathway is involved in
the regulation of TJ proteins in the mouse epididymis. The
study reported that the reduction in ERK1/2 phosphorylation
(pERK), is associated with the decrease in ZO-2 expression
and increase in ZO-3 expression in TJs but had no effect
on ZO-1 expression. In addition, it was shown to affect the
redistribution of claudin-1 and claudin-4 at the membrane
junctions without affecting claudin-3 (Kim and Breton, 2016).
The contradictory role of ERK activation is more pronounced
in TJ integrity where its activation leads to disruption of
TJs in some epithelial monolayers and prevention in other
epithelia. This interesting phenomenon was observed in Caco-
2 cell monolayers by Aggarwal et al. (2011). They observed
that in under-differentiated Caco-2 cells, ERK is involved in the
destabilization of TJs, whereas a protective role was observed
in differentiated cells. They suggested that this differential effect
is due the differences in the subcellular distribution of ERK
and its ability to regulate the association of PKCζ and PP2A
(protein phosphatase 2A) with TJ proteins (Aggarwal et al.,
2011). ERK signaling has also been shown to be activated by
TJ proteins which in turn determines the fate of cell. Though
claudin-7 contributes toward cell growth and metastasis of
esophageal squamous cell carcinoma (Lioni et al., 2007), in
lung cancer it inhibits migration and invasion via ERK/MAPK
signaling pathway. ERK/MAPK signaling pathway inhibited by
claudin-7 caused reduced migration and invasion ability of non-
small lung carcinoma cells (Lu et al., 2011). Interestingly, they
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observed stable complex formation, in co-immunoprecipitation
studies, between claudin-7 and claudin-1 and -3 suggesting
a cooperative relationship between claudins. Similar results
were observed in CRC cells where overexpression of claudin-
7 inhibited proliferation and invasion by regulating ERK and
Src signaling (Bhat et al., 2015). Another study by Suh et al.
(2013) showed that claudin-1 induces EMT in human liver
cells, which largely depends on the activation of the c-Abl-
Ras-Raf-1/ERK1/2 signaling pathway. This finding supports
the importance of c-Abl-ERK signaling in claudin-1 associated
malignant phenotype. In lung cancer A549 cell line, the increased
expression of claudin-2 was associated with the activation
of EGFR/MEK/ERK signaling pathway (Ikari et al., 2012).
It was further observed that c-Fos, a down-stream target in
an EGFR/MEK/ERK pathway, upregulates the transcriptional
activity of claudin-2 by interacting with the AP-1 binding site
of claudin-2 promoter (Ikari et al., 2012). Contradictory to ERK
activation by claudin-2, Lipschutz et al. (2005) demonstrated that
the ERK 1/2 signaling pathway is a negative regulator of claudin-
2 expression in mammalian renal epithelial cells affecting TJ
permeability and renal epithelial function. These studies give us
an indication that the claudins are regulated in a tissue specific
manner and they themselves regulate the signaling pathways in
the same fashion.

In addition, TJ protein expression and localization
changes during inflammation process are well reported.
First and foremost, claudin-2 abundance increases in various
inflammatory diseases, such as CD, UC and celiac disease (90,
89, 91). Functionally, this leads to a flux of cations and water
via the paracellular pathway into the gut lumen, which gives
rise to leak flux diarrhea (92). Also, for claudin-15 an increased
expression has been reported in celiac disease (91). Occludin
downregulation has been reported for CD, UC and collagenous
colitis (90, 89, 96). In intestinal cell lines occludin knockdown
has been shown to increase macromolecule permeability (98,
99). Based on the above literature, the claudins seem to exist
universally from normal tissues, hyperplastic conditions, benign
neoplasms, and cancers with differential expression, and their
loss or gain of function is linked to inflammation and several
malignancies.

In view of the importance of kinase signaling cascades in
inflammation and cancer, and the above observed important
associations of claudins and kinase pathways, it greatly widens
the diverse roles of TJ proteins in smooth functioning of cellular
processes. More studies are warranted to delve into the details
of cross-talk between TJ proteins and signaling mechanisms not
only in cancer but also in other diseases.

TIGHT JUNCTION IN INTESTINAL
INFLAMMATION AND FUNCTIONAL
CROSSTALK WITH SIGNALING
PATHWAYS

As TJ barrier dysfunction and inflammation are tightly associated
with each other, equally inflammation and cancer are closely

linked (Coussens and Werb, 2002; Raposo et al., 2015; Korniluk
et al., 2017). Whether barrier dysfunction is the underlying
cause of inflammation or vice versa and if inflammation leads
to cancer or vice versa, these are the concepts which need
more visibility and discussion. From the literature, it seems
that there exists a positive feedback loop which connects them
together. In this section we will focus on TJ barrier dysfunction
and inflammation and in the next section we will briefly
describe the bridge between inflammation and cancer. It is well
established that the dysfunction of TJ barrier under inflammatory
conditions contributes to the pathogenesis of intestinal disease.
Compromised TJ barrier increases paracellular permeability and
triggers an array of events including apoptosis, erosion, and
ulceration that contributes to intestinal epithelial damage (Zeissig
et al., 2004; Heller et al., 2005; Schulzke et al., 2006). Influx
of immune cells into the intestinal mucosa via disrupted TJ
influences the epithelial function by stimulating the release of
proinflammatory cytokines such as TNF-α and IFN-γ. Increased
levels of TNF-α and IFN-γ in the mucosa of patients with
IBD, contributes to the proinflammatory cascade, and in turn
intestinal barrier disruption (Madara and Stafford, 1989; Adams
et al., 1993; Schmitz et al., 1999; Bruewer et al., 2003) (Figure 5).
TJ in inflamed epithelia of the intestine is characterized by
reduced TJ strands, strand breaks, and changes in TJ proteins
composition and function. Mucosal inflammation affects the
permeability of the gut barrier by altering the intestinal epithelial
homeostasis that may impair the structure and remodeling of
apical junctions. It is now clear that IBD can be triggered by
disturbances in TJ barrier integrity via disturbances in IEC
molecular machinery that controls the homeostasis, renewal,
and repair of IECs. Although TJs are considered a part of the
physical barrier, specialized IECs (IECs), such as goblet cells and
Paneth cells, play an important role in antimicrobial defense,
thus making them crucial to innate immune system. Goblet
cells help to protect against invasive pathogens by secreting
antimicrobial molecules, such as trefoil factors and mucins.
Trefoil factors help in restoring the gastrointestinal mucosal
homeostasis while mucin constitutes a thick mucus layer to
prevent excessive direct contact of bacteria to the epithelial
cell surface (McCauley and Guasch, 2015; Aihara et al., 2017).
Paneth cells are involved in the innate host defense by secreting
high levels of antimicrobial peptides within the crypts of the
small intestine (Ayabe et al., 2004; Kopp et al., 2015). The
induction of these antimicrobial peptides is profoundly related
with the function of intestinal barriers and hence an association
with the IBD (Kim, 2014). Previously, we have shown that
claudin-1, most widely studied member of TJ protein family,
helps regulate the intestinal epithelial homeostasis by regulating
the Notch signaling (Pope et al., 2014b). Increased claudin-
1 expression activates Notch-signaling through stimulation of
MMP-9 and p-ERK signaling pathway and the overall effect
is inhibition of goblet cell differentiation (Pope et al., 2014b).
Active inflammatory areas have been shown to possess increased
expression of claudin-1 which further contributes to disease
severity (Weber et al., 2008). Claudin-3, -5, and -8, function
as sealing TJ proteins, whose expression was diminished in
patients with CD resulting in impaired TJ complexity, lower
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FIGURE 4 | Schematic presentation of healthy and leaky gut. Epithelial tight junctions are intact in a healthy gut and selectively lets some molecules in and out of the
intestinal epithelium by functioning as a seal between the neighboring gut cells, hence maintaining homeostasis. Factors such as proinflammatory mediators,
microbial gut imbalance, infections, some foods, exposure to chemicals, toxins, or stress may disrupt epithelial tight junctions and increase the intestinal permeability,
as well as possibly damage the intestinal barrier by forming tissue lesions and punctures that could lead to a leaky intestinal epithelium. This whole sequence of
events may lead to the translocation of undesired luminal gut content (microorganisms, toxins, undigested food particles) into the host tissues activating an
immunological response.

number of TJ strands and more strand breaks. These patients
also have diminished levels of occludin and upregulated level of
pore forming claudin-2 expressed in the ileum of both quiescent
and active CD. In addition, colonic biopsies from CD patients
showed the mislocalization of claudin-2 contributing to the
disrupted TJs. However, other studies have reported increased
claudin-12 not claudin-2 expression in ileum of CD patients,
the contradictory decreased claudin -2 expression in the sigmoid
colon (Lameris et al., 2013). Not only the expression but also
the distribution of TJ proteins is affected in inflamed intestinal
mucosa as observed with claudin-5 and -8 in the TJ of CD (Zeissig
et al., 2007). In case of UC, similar changes in TJ proteins were
observed including decreased expression of occludin, claudin-1
and claudin-4 and up-regulation of the pore-forming claudin-
2 (Heller et al., 2005). Increased claudin-2 expression both at
protein and transcriptional levels was found to be correlated

with disease severity in UC (Heller et al., 2005). Additionally,
extrajunctional mislocalization of claudin -4 and reduced staining
intensity on surface epithelium for claudins- 3, 4, and 7 has been
shown in UC (Prasad et al., 2005; Oshima et al., 2008). Additional
TJ proteins that were upregulated in UC includes claudin-12 and
claudin- 18, however, the elevated claudin -18 expression was not
associated with the severity of inflammation indicating a primary
defect in barrier function (Zwiers et al., 2008; Lameris et al.,
2013).

Increased or abnormal expression of proinflammatory
cytokines contributes to the barrier defects in IBD. Patients with
IBD, such as UC and CD, are at increased risk of developing
CRC, confirming that chronic inflammation predisposes to
development of tumors. CRC therefore represents a paradigm
for the link between inflammation and cancer. Inflammation is
driven by soluble factors, cytokines and chemokines, which can
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FIGURE 5 | Schematic representation of claudin interaction with adhesion molecules and signaling proteins. Claudins and claudin containing complexes influence
diverse signaling processes within cancer cells that results in altered migration, invasion and metastasis. Claudins either interact directly with other adhesion
molecules or recruit signaling proteins to execute their diverse array of functions.

be produced by tumor cells themselves or, more often, by the
cells recruited to the tumor microenvironment. Inflammatory
cytokines and chemokines promote growth of tumor cells,
perturb their differentiation, and support the survival of cancer
cells. In CD, the levels of TNF-α and IFN-γ are increased favoring
Th1 profile while the inflammatory response in UC is attributed
to increased levels of TNF-α and IL-13. Cell culture and animal
studies have clearly shown that these proinflammatory cytokines
induce changes in TJ proteins, induction of apoptosis and
enhanced bacterial translocation as observed both in CD and
UC (John et al., 2011). Cytokines affect TJs by regulating the
expression and redistribution pattern of proteins. Claudin-2
protein expression was found to be increased in HT-29/B6 cells
when treated with TNF-α and IL-13 via the phosphatidylinositol-
3-kinase pathway (Mankertz et al., 2009). Native rat colon when
exposed to TNF-α and IFN-γ showed increased expression of
pore forming claudin-2 and down regulation of barrier forming
claudin-1, -5 and -7 (Amasheh et al., 2009). Colonic epithelial
cells exposed to TNF-α have shown redistribution of ZO-1 from
the cell membrane along with increased paracellular permeability
and decreased TER (Schmitz et al., 1999). The changes in TJ
structure and the expression of its component proteins on
exposure to TNF-α are mediated via NF-kB signaling (Soler
et al., 1999; Ma et al., 2004). Both human IBD and experimental
models of intestinal inflammation showed similar structural
and functional changes in TJ (Schmitz et al., 1999; Poritz et al.,
2007; Poritz et al., 2011), which were largely associated with

decreased key TJ proteins including ZO-1 and occludin. Colonic
inflammation mice model generated using the dextran sulfate
sodium (DSS) showed decreased ZO-1 along with consecutive
increase in claudin-1 expression (Poritz et al., 2007). Similar
increase in claudin-1 expression was observed in IEC-18 cells
when exposed to TNF-α and in the patient samples of UC
(Poritz et al., 2011). Our study on HT29 cells also showed
that TNF-α regulates claudin-1 expression and localization via
activation of ERK1/2 and Src signaling (Bhat et al., 2016). IL6,
one of the major proinflammatory cytokine mainly produced by
epithelial cells and immune cells of the lamina propria has been
shown to induce claudin-2 expression through MEK/ERK, PI3K
signaling pathways, and transcriptional factor Cdx2 expression
(Suzuki et al., 2011). The dynamic nature, composite signaling
environment and the sensitive balance between proliferation
and cell shedding of the intestinal epithelium provides great
potential of disturbances and an interesting area of research.
This whole set of proliferation and physiologic epithelial cell
shedding involves rearrangement of TJ proteins to extrude the
cell from the epithelium (Martini et al., 2017). The integrity of
TJs is firmly regulated by TJ proteins and Myosin light chain
kinase (MLCK), an important regulatory element, is found to be
deregulated in the intestine of IBD patients (Blair et al., 2006).
Phosphorylation of MLCK results in F-actin reorganization
and consequently TJ protein redistribution to intracellular
compartments form the apical domain of the enterocyte (Shen
et al., 2006) and ZO-1 exchange was suggested to be critical
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for this process (Yu et al., 2010). In addition, MLCK activation
results in increased claudin-2 expression by stimulating IL-13
synthesis (Weber et al., 2010). In Caco2 cells, MLCK gene
expression is stimulated by TNF-α and interleukin-1β via
NFκB resulting in enhanced TJ permeability (Ye and Ma, 2008;
Al-Sadi et al., 2010). Therefore, inhibiting the TNF-α induced
MLCK expression can restore the function of TJ barrier. Mice
with experimental colitis had increased expression of MLCK,
resulting dysregulation of TJs and a severe loss of epithelial
barrier function (Su et al., 2013). Studies have also shown
that MLCK-induced caveolin-1-dependent endocytosis of
occludin is important for regulation of TJ structure and function
(Marchiando et al., 2010b). In contrast, the TJ redistribution
induced by IFN-γ was found to be via Rho/ROCK signaling-
dependent macropinocytosis-like mechanism (Bruewer et al.,
2005). Rho-A is also vital to epithelial integrity and Rho-A
signaling has been shown to be impaired in IBD patients because
of the reduced expression of the Rho-A prenylation enzyme
geranylgeranyltransferase-I (Lopez-Posadas et al., 2016). Mice
lacking either Rho-A or geranylgeranyltransferase-I in IECs
suffered from chronic intestinal inflammation, cytoskeleton
rearrangement, and aberrant cell shedding. Another important
molecule involved in regulated cell shedding and epithelial
integrity is Rho associated kinase, which is a downstream
effector of Rho-A and plays vital role in signal transduction
pathways that control adhesion, transmigration, phagocytosis,
and proliferation (Benoit et al., 2009; Zihni et al., 2014; Kumper
et al., 2016). Rho-associated kinase was found to be highly
activated in the inflamed intestinal mucosa of patients with CD,
suggesting impaired cytoskeletal rearrangements (Segain et al.,
2003).

In summary, the regulated tissue specific expression of TJ
proteins and their crosstalk with signaling pathways both at
membrane and within the cell determines distinct functions
of the small and large segments of the healthy intestine. In
IBD, TJ proteins change in expression and localization which
causes segment-specific alterations in paracellular barrier and
channel functions. These changes generally result in increased
paracellular transport of solutes and water, typically mediated
by up-regulated claudin-2 and down-regulated barrier forming
claudins. This whole process leads to diffusion of ions and
water from blood to lumen, causing leak-flux diarrhea. The
other possibility is the increased permeability to large molecules
including luminal pathogens which may initiate an immune
response and cause inflammation. The significant contribution of
claudins in different inflammatory processes and diseases and in
the recruitment of signaling molecules brands them appropriate
for therapeutic intervention.

BRIDGING INFLAMMATION AND
INFLAMMATION ASSOCIATED
COLORECTAL CANCER

Inflammation and cancer are closely connected. Inflammation
can contribute from initiation of the malignant phenotype
to metastatic spread in different ways but usually requires

a switch from acute to chronic inflammation (Coussens and
Werb, 2002; Raposo et al., 2015). Inflammatory cells generate
reactive oxygen species and proinflammatory mediators which
may enhance the mutation rate of cells, induce DNA damage
and increase genomic instability (Waris and Ahsan, 2006).
These reactive species may also inactivate mismatch repair
functions, supporting tumor initiation. In a positive feedback
loop, DNA damage can also lead to inflammation, supporting
tumor progression (Ohnishi et al., 2013). Inflammation surges
the risk of developing many types of cancer (including bladder,
cervical, gastric, intestinal, oesophageal, ovarian, prostate and
thyroid cancer) but here we will briefly review IBD associated
CRC as this falls within the scope of manuscript. It is well
known that patients with IBD are at higher risk of CRC. Many
evidences suggest a link between inflammation and CRC (Rizzo
et al., 2011; Romano et al., 2016). There is a growing evidence
that supports the role of immune cells, inflammatory cells,
chemokines, cytokines and proinflammatory mediators in the
pathogenesis of IBD associated CRC (Mariani et al., 2014; Luo
and Zhang, 2017). Inflammatory cells and mediators support the
cancer growth and progression by different means which includes
(1) production of ROS and RNI, both are mutagenic; (2) by
supporting neo-angiogenesis, and (3) by supporting metastatic
spread through the induction of EMT (Grivennikov et al., 2010;
Gupta et al., 2012). The proinflammatory pathways that are
involved in these processes and provide a mechanistic link
between inflammation and cancer include but not limited to,
NF-κB, TNF-α, IL-6/STAT3, cyclooxygenase-2 (COX-2)/PGE2,
and IL-23/Th17 (Crusz and Balkwill, 2015; Raposo et al.,
2015). The above literature besides providing a link between
cancer and inflammation, also suggests the importance of the
epithelial cell junctions in maintaining the integrity of the
intestinal epithelium. Inflammatory cytokine mediated or any
other disruption to the epithelial cell junctions results in chronic
intestinal inflammation predisposing to the development of
tumors.

The detailed knowledge and understanding of the mechanisms
that associate IBD with CRC may provide concrete benefits both
in the scientific and clinical facets related to the introduction of
innovative diagnostic and therapeutic measures in patients with
chronic inflammations.

CONCLUSION

Tight junctions have emerged as dynamic bidirectional signaling
hubs which host diverse regulatory mechanisms for appropriate
junction assembly and function. TJ proteins signal to the cell
interior either directly or through recruiting other signaling
molecules to regulate cell proliferation, migration, survival
and differentiation. Several cancers and inflammatory disorders
have altered expression of TJ proteins especially claudin family
members, making them attractive diagnostic and prognostic
markers. The functional importance of claudins in cancer
progression and other inflammatory diseases is well recognized,
however, the mechanisms that drive these disease processes
remain poorly understood. We are still in the preliminary phase
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to understand the interaction between junctional membrane
proteins and these signaling mechanisms. We are gradually
learning how this interaction affects junctional functions on one
hand, and how, on the other hand, the junctional adhesion
proteins use these mechanisms to signal to the cell interior.
Most of these mechanisms have been studied in isolation and,
therefore, it is not clear how distinct signaling mechanisms
cooperate and influence one another, and how they are triggered
in response to diverse stimuli. To understand these processes
is of significant biological importance in terms of pathological
relevance as junction assembly is disturbed in many common
diseases, including acute and chronic inflammations and different
types of cancer. The large number of pathogenic viruses and
bacteria that interact with TJ components are thus of great
interest, as they provide excellent experimental tools to expound
how the deregulation of junctional signaling mechanisms
contributes to disease development. Therefore, more studies are

warranted in this direction and thus the development of claudin-
targeted therapeutics represents a promising endeavor.
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