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Logical models of cancer pathways are typically built by mining the literature for relevant

experimental observations. They are usually generic as they apply for large cohorts of

individuals. As a consequence, they generally do not capture the heterogeneity of patient

tumors and their therapeutic responses. We present here a novel framework, referred to

as PROFILE, to tailor logical models to a particular biological sample such as a patient

tumor. This methodology permits to compare the model simulations to individual clinical

data, i.e., survival time. Our approach focuses on integrating mutation data, copy number

alterations (CNA), and expression data (transcriptomics or proteomics) to logical models.

These data need first to be either binarized or set between 0 and 1, and can then

be incorporated in the logical model by modifying the activity of the node, the initial

conditions or the state transition rates. The use of MaBoSS, a tool based on Monte-Carlo

kinetic algorithm to perform stochastic simulations on logical models results in model

state probabilities, and allows for a semi-quantitative study of the model phenotypes

and perturbations. As a proof of concept, we use a published generic model of cancer

signaling pathways and molecular data from METABRIC breast cancer patients. For

this example, we test several combinations of data incorporation and discuss that, with

these data, the most comprehensive patient-specific cancer models are obtained by

modifying the nodes’ activity of the model with mutations, in combination or not with

CNA data, and altering the transition rates with RNA expression. We conclude that these

model simulations show good correlation with clinical data such as patients’ Nottingham

prognostic index (NPI) subgrouping and survival time.We observe that two highly relevant

cancer phenotypes derived from personalized models, Proliferation and Apoptosis, are

biologically consistent prognostic factors: patients with both high proliferation and low

apoptosis have the worst survival rate, and conversely. Our approach aims to combine

the mechanistic insights of logical modeling with multi-omics data integration to provide

patient-relevant models. This work leads to the use of logical modeling for precision

medicine and will eventually facilitate the choice of patient-specific drug treatments by

physicians.
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discretization, stochastic simulations

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2018.01965
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2018.01965&domain=pdf&date_stamp=2019-01-24
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:emmanuel.barillot@curie.fr
mailto:laurence.calzone@curie.fr
https://doi.org/10.3389/fphys.2018.01965
https://www.frontiersin.org/articles/10.3389/fphys.2018.01965/full
http://loop.frontiersin.org/people/555351/overview
http://loop.frontiersin.org/people/451838/overview
http://loop.frontiersin.org/people/113549/overview
http://loop.frontiersin.org/people/366843/overview


Béal et al. Logical Model Personalization

1. INTRODUCTION

Molecular profiling of patient samples is now becoming clinical
routine in diseases like cancer, where it has shown therapeutic
utility. Typically, tumor DNA or RNA are sequenced, and if
an oncogene mutation is found, then it opens the opportunity
to treat the patient with a targeted inhibitory drug which
counteracts the mutated oncoprotein effect. Nevertheless, this
strategy has often limited impact, because the tumor will
eventually activate compensatory pathways or acquire novel
mutations and escape the treatment. To anticipate drug
resistance and optimize treatments, a better understanding of
the regulatory network dynamics is needed. As a consequence,
mathematical modeling has been increasingly used to formally
describe the dynamics of regulatory networks representing the
signaling pathways that are frequently altered in cancers. Many
of these signaling pathways, e.g., apoptosis, mTOR pathway, RTK
signaling, or DNA repair pathways, are shared among diverse
cancers and contain common mutations or gene alterations. The
translation of the networks recapitulating these pathways into
mathematical models can be done using different formalisms.
Over the past decades, numerous uses of logical modeling have
shown that this framework is able to characterize the main
dynamical properties of complex biological regulatory networks
(Faure et al., 2006; Abou-Jaoudé et al., 2011; Grieco et al., 2013),
as well as to predict the behavior of molecular networks affected
in human diseases (Fumiã and Martins, 2013; Arshad and Datta,
2017).

However, these models usually describe general processes and
tend to be generic, missing patients’ specificities and possible
patient-tailored interventions. To avoid the relapse that follows
many treatments, these models need to be adjusted to each
individual patient, capitalizing on omics profile of the patient
tumor. Some work has been done on trying to contextualize
these models to perturbation data (often (phospho-)proteomics
data) (Saez-Rodriguez et al., 2009; Rodriguez et al., 2015; Dorier
et al., 2016) but it remains difficult to apply these methods
to patient data (typically genome and transcriptome) and get
clinical insight. Additionally, some network-based methods
have been investigated for patient stratification, using network
propagation with somatic mutations (Hofree et al., 2013) or
applying propagation of gene expression data onKEGGpathways
coupled with mutation information (Hidalgo et al., 2017).

Our PROFILE (PeRsonalization OF logIcaL ModEls)
approach aims to combine the mechanistic insights of logical
modeling with multi-omics data integration to provide patient-
relevant models (Figure 1). The generic logical model can be any
model in standard format, automatically translated into a format
specific to MaBoSS (Markovian Boolean Stochastic Simulator),
a tool that simulates continuous time Markov processes on
Boolean networks (Stoll et al., 2012, 2017). The biological data
are extracted from existing repositories or from private sources
into a data frame per data type. The merging of these two inputs

provides a personalized logical model per patient. Therefore, we

define a personalization of a logical model as a specification of
a generic logical model using available patient data. We present
here a framework to tailor a logical model to patient-specific

multi-omics data, thereby personalizing these generic models to
particular patients or sets of patients with the goal to treat these
patients in a personalized manner. We also show how to best
use mutation, copy number and transcriptome patient data for
model personalization. To illustrate the method, we gathered
2,509 breast cancer data genomic profiles from METABRIC
project, including somatic mutations, copy number alterations,
and gene expression (Curtis et al., 2012; Pereira et al., 2016),
and integrated the data on a published logical model of generic
cancer pathways (Fumiã and Martins, 2013) using MaBoSS.
Lastly, we show evidence that our patient-specific models can be
used to stratify patients by groups and by survival data.

We conclude that this framework allows us to provide
models that can capture detailed descriptions of patient data,
paving the way to modeling patient response to many potential
targeted treatments or combination of treatments, and helping
the clinical oncologists to choose the best option for personalized
treatment (Figure 1). The framework can be used on any
logical model, available in databases such as Cell Collective
(https://cellcollective.org), and with any set of patient data, and
thus used by non-experts in modeling.

It is freely available on GitHub
(https://github.com/sysbio-curie/PROFILE) and is distributed
open source under the BSD 3-clause license.

2. MATERIALS AND METHODS

2.1. Logical Modeling
2.1.1. Principles
Although continuous mathematical modeling based on chemical
kinetics has been widely used to study cellular biochemistry
dynamics (e.g., ordinary differential equations) (Novák and
Tyson, 2004; Fey et al., 2015), this formalism faces limits
for modeling large-scale signaling networks, due to the
difficulty of estimating kinetic parameter values. In contrast,
the logical modeling formalism represents a convenient mean
of abstraction, where the causal relationships between proteins
(or genes) are encoded with logical statements and dynamical
behaviors are represented by transitions between discrete states
of the system. The logical formalism is flexible, requires in
principle no quantitative information, and, hence, can be applied
to large networks combining multiple pathways. It can also
provide a qualitative understanding of molecular systems lacking
mechanistic detailed information. A brief summary of the main
features of logical modeling is provided hereunder and a more
detailed primer can be found in Supplementary Material. For
more in-depth reviews on logical models, their construction and
analyses, we refer the reader to several sources (Saadatpour and
Albert, 2013; Le Novère, 2015; Abou-Jaoudé et al., 2016).

A logical model is based on a regulatory graph, where each
node represents a component (e.g., a protein, gene, complex,
process, etc.), and is associated with discrete levels of activity
(0, 1, or more when justified) as represented in Figure 2A. Each
edge corresponds to a regulatory interaction between the source
and target nodes, and is represented by a positive or negative
influence, depending on the type of regulation. Logical rules (or
functions) are assigned to each node of the network. These rules
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FIGURE 1 | PROFILE methodology for personalization of logical models. On the one hand (upper left), a generic logical model, in a MaBoSS format (a BND file for

model description with logical rules and a CFG file for definition of the simulation parameters), is selected to serve as the starting-point. Note that any SBML qual

(Continued)
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FIGURE 1 | model can be easily translated into a MaBoSS format. The parameters related to the nodes (initial states and transition rates) are chosen to be generic in

the initial CFG file. On the other hand (upper right), omics data are gathered (e.g., genome and transcriptome) as data frames, and processed through functional

inference methods (for already discrete genome data) or binarization/normalization (for continuous expression data). The resulting patient profiles are used to perform

model personalization, i.e., adapt the generic model with patient data. The merging of the generic model with the patient profiles creates a personalized MaBoSS

model with an unchanged BND file and a CFG file per patient. Then, clinical relevance of these patient-specific models can be assessed before providing original and

personalized therapeutic strategies and drug predictions.

FIGURE 2 | Main principles of MaBoSS simulation framework and Gillespie algorithm (A) Toy model with B and C regulated by A. (B) In the first column, logical rules

of the logical model: as an input A remains in its initial state; presence of A triggers B activation and C inhibition. In the second column, MaBoSS activation and

inactivation transition rates are defined for each possible transition (C) In an asynchronous update scheme, starting from S0 state, there are two possible following

states S1a and S1b with their corresponding probabilities.

connect input nodes with logical operators AND (&), OR (|) and
NOT (!), or a combination of these operators (Figure 2B). An
example of a toy model can be found in Figure 2A and Figure S1.

The resulting dynamics can be represented in terms of a
second type of graphs, the state transition graph (STG), where
the nodes account for the states of the system, referred to
as the model states (Figure 2C). The model states correspond
to vectors of the nodes’ activity, and the edges to the
possible state transitions from one model state to another.
When concurrent variable changes are enabled at a given
state, the resulting state transition depends on the chosen
updating assumption. Numerous studies use the simple fully
synchronous strategy where all variables are updated through
a unique transition (Weinstein et al., 2017). This assumption
leads to relatively simple STG and deterministic dynamics

(Helikar et al., 2008; Fumiã and Martins, 2013; Cho et al.,
2016). However, the synchronous updating assumption may

lead to spurious cyclic attractors. The asynchronous updating
strategy considers separately all possible transitions and therefore

provides alternative dynamics in the absence of kinetic data. The
resulting dynamics have a branching structure that complicates
its evaluation. An example of such graphs can be found in
Figure 2C or Figure S2 for an asynchronous graph and Figure S3
for a synchronous graph.

In this work, asynchronous dynamics with stochastic
simulations have been considered.

More details of logical models and their uses can be found in
other works such as Abou-Jaoudé et al. (2016) and Chaouiya et al.
(2012).

2.1.2. Simulations With MaBoSS
MaBoSS software is applied to obtain probabilities for each of the
model states of the system using continuous time Markov chain
simulations on the Boolean network (Stoll et al., 2012, 2017).
Its principles are summarized in Figure 2 and in Figure S5 for
a more comprehensive version. MaBoSS uses a specific language
for associating transition rates, k0→1 (or kup) and k1→0 (or kdown),
to each node (Figure 2B), enabling to account for different time
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scales of the processes described by the model. Given some initial
conditions (i.e., either 0 or 1 state for each node), MaBoSS applies
Monte-Carlo kinetic algorithm (or Gillespie algorithm) to the
network.

This algorithm provides a stochastic way to choose a specific
transition among several possible ones (Figure 2C), to perform
asynchronous updates and finally to infer a corresponding
time for this transition (Figure S5D). Thus, by concatenating
stochastic updates,MaBoSS computation results in one stochastic
trajectory as a function of time. The transition rates can be
understood as probabilities in order to determine the actual
transition. For our simulations, unless otherwise specified, all
transition states were initially assigned to 1. Since MaBoSS
computes stochastic trajectories, it is relevant to generate a
population of stochastic trajectories to gain insight into the
average behavior over the asynchronous STG.

The aggregation of stochastic trajectories can also be
interpreted as a description of an heterogeneous population.
Since several trajectories are simulated, initial values of each
node can be defined with a continuous value between 0 and
1 representing the probability for the node to be defined to 1
for each new trajectory. For instance, a node with a 0.6 initial
condition will be set to 1 in 60% of simulated trajectories and to
0 in 40% of them.

Two files are needed to runMaBoSS: amodel file (BND) where
the nodes of the model and their logical rules are listed and a
configuration file (CFG) where initial states, transition rates and
other parameters of the simulation are specified.

In the present work, all simulations were performed with
MaBoSS and the focus has been set on the probabilities of nodes
and phenotypes at the asymptotic state. Indeed, asymptotic states
are more closely related to logical model attractors than transient
dynamics. They are therefore less dependent on updating
stochasticity and are more meaningful biologically (Huang et al.,
2009).

Only 1,000 stochastic trajectories were computed in all
simulations since it appeared as a sufficient number to obtain
a median standard deviation below 0.01 (see Figure S9). For
any study using MaBoSS, to insure that the state space is well
explored, it is advised to start with a higher number of trajectories
at first and reduce it when the median deviation is below a
reasonable threshold.

Examples of MaBoSS applied to biological questions can be
found in Calzone et al. (2010); Cohen et al. (2015); Remy et al.
(2015); or Montagud et al. (2017). Any logical model in SBML
qual format (Chaouiya et al., 2013) can be exported fromGINsim
(Chaouiya et al., 2012) into MaBoSS format, allowing the use of
any logical model from databases for the PROFILE framework.

2.1.3. Generic Logical Model of Cancer Pathways
A published Boolean network model was used to illustrate our
PROFILE methodology (Fumiã and Martins, 2013). It is based
on a regulatory network summarizing several key players and
pathways involved in cancer mechanisms: RTKs, PI3K/AKT,
WNT/β-catenin, TGF-β/Smads, Rb, HIF-1, p53 and ATM/ATR.
An input node Acidosis and an output node Proliferation used as
a read-out were added to ease the analysis. Based on the model’s

logical rules from Fumiã and Martins (2013), Proliferation node
is activated by any of the cyclins (CyclinA, CyclinB, CyclinD,
and CyclinE) and is, thus, an indicator of cyclin activity as an
abstraction of the cell cycle behavior. This is a simplification
of cell cycle, and if readers would like to go beyond this
abstraction, a detailed study on the dynamics of a mammalian
cell cycle that takes into account cyclins and cyclin-dependent
kinases can be found in Gérard and Goldbeter (2016). The
generic model of Fumiã and Martins (2013) contains 98 nodes
and 254 edges, and can be visually inspected in Figure S6.
It is available in MaBoSS format in our GitHub repository:
(https://github.com/sysbio-curie/PROFILE/tree/master/Models
/Fumia2013).

2.2. Generation of Patient Profiles From
Multi-Omics Datasets
2.2.1. TCGA and METABRIC Data
Patient data from METABRIC (Curtis et al., 2012; Pereira et al.,
2016) with RNA expression data (n = 1,904), mutation profiles
(n = 2,509), CNA (n = 2,173) and clinical data (n = 1,980) were
gathered. Missing values were considered on an personalization-
specific basis: if the personalization method used mutation
profiles and RNA data, only the patients with data of these types
were considered. More details on the abundance of data types’
samples can be found in Figure S11A.

Breast cancer patient data from TCGA (Cancer Genome Atlas
Network, 2012; Ciriello et al., 2015) with RNA expression data (n
= 816), mutation profiles (n = 817), CNA (n = 816) and clinical
data (n = 817) were also gathered. For TCGA RNA expression
data, data from healthy samples are available (112 samples) along
with protein data (RPPA) for 673 patients. More details on the
abundance of data types’ samples can be found in Figure S11B.

Data were downloaded from cBioPortal1 (Gao et al., 2013).
To explore all possibilities offered by the two datasets, we have
used both of them to show different outcomes, METABRIC
results are hereby showcased and TCGA results can be found in
Supplementary Material.

2.3. Adapting Patient Profiles to a Logical
Model
For this analysis, we gathered the following types of data:
mutations, copy number variations, transcriptomics, proteomics
and clinical data. Usually, mutations and copy number variations
can be considered as discrete data and gene or protein expression
data as continuous data. Two approaches for handling the data
can be used inMaBoSS: (1) discrete data can be directly binarized,
and (2) continuous data can either be binarized or normalized
(expression values are modified so as to fit between 0 and 1). A
logical model is personalized differently according to the type of
data used. For instance, a deleterious mutation is integrated into
the model by setting the corresponding node to 0 and ignoring
the logical rule associated to it. For activating mutation, the node
is set to 1. Another approach is to modify the transition rates
(speed of activation or inactivation of a node, see section 2.1.2

1http://www.cbioportal.org/index.do
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and Figure S5) according to the impact of the mutation or the
level of gene or protein expression (further details in section 2.4).

In many mathematical models related to gene networks, some
genes are often listed with a generic name and it is not always
clear which gene is responsible of the reaction or if it rather refers
to a family of genes (e.g., AKT for AKT1, AKT2, AKT3). Thus,
before personalizing themodels to patient data, a correspondence
between model genes and data must be established and choices
must be made on which genes to associate to the model’s nodes.
For our example, the complete table of correspondence of the
model is available in our GitHub repository.

2.3.1. Processing of Discrete Data
Discrete data can be integrated in a straightforward manner
through functional inference. From METABRIC database, we
gathered mutations and copy number alterations.

2.3.1.1. Mutations
Based on the variant classification provided by the data,
inactivating mutations (nonsense, frame-shift insertions or
deletions and mutation in splice or translation start sites)
are assumed to correspond to loss of function mutations and
therefore the corresponding nodes of the model are forced
to 0. Missense mutations are matched with OncoKB database
(Chakravarty et al., 2017). For each mutation present in the
database, an effect is assessed (gain or loss of function assigned to
1 and 0, respectively) with a corresponding confidence based on
expert and literature knowledge. Mutations targeting oncogenes
(resp. tumor-suppressor genes), as defined in the 2020+ driver
gene predictionmethod (Tokheim et al., 2016), are assumed to be
gain of function mutations (resp. loss of function) and therefore
assigned to 1 (resp. 0). To rule potential passenger mutations out,
each assignment requires a label of deleteriousness either from
SIFT (Kumar et al., 2009) or from PolyPhen scores (Adzhubei
et al., 2010).

2.3.1.2. Copy number alterations
For CNA integration, only amplifications (+2) and homozygous
deletions (–2) (based on GISTIC processing Mermel et al., 2011)
are considered, but this choice can be adapted to the focus of the
study. Nodes corresponding to amplified genes are set to 1 and
those associated with homozygous deletions are set to 0 in patient
profiles. In our approach, we chose to discard CNA GISTIC
variations with values –1 and +1 due to their low-confidence
significance.

2.3.2. Processing of Expression Data
To be integrated into the logical model, continuous data
must be either binarized or normalized between 0 and 1.
To do so, gene expression data are first classified in three
broad categories according to their distribution across samples:
bimodal, unimodal, and zero-inflated distribution. Genes with
different distributions are treated differently as summarized in
Figure 3. Binarization and normalizationmethods different from
the ones proposed here (e.g., Müssel et al., 2015; Jung et al., 2017)
may also be used and directly integrated in the pipeline presented
in the 2.4 section.

2.3.2.1. Distribution classification
Non-variant genes are discarded based on the admissibility test:
the test verifies that the gene expression is included in a sufficient
range of values compared to other genes (i.e., a gene’s amplitude
across the cohort above one tenth of median amplitude across
all genes) and contains a sufficient number of non-zero values
(i.e., at least 5% of non-zero values). In single-cell transcriptomics
terminology, the latter corresponds to a low drop-out rate.

In order to classify the remaining genes, we identify bimodal
patterns based on three distinct criteria: Hartigan’s dip test of
unimodality, Bimodality Index (BI) and kurtosis.

The dip test measures multi-modality in a sample using the
maximum difference between empirical distribution and the best
unimodal distribution, i.e., the one that minimizes this maximum
difference (Hartigan and Hartigan, 1985). Values below 0.05
indicate a significant multi-modality. In PROFILE, this dip
statistic is computed using the R package diptest.

The Bimodality Index (BI) evaluates the ability to fit two
distinct Gaussian components with equal variance (Wang et al.,
2009). Once the best 2-Gaussian fit is determined, along with
the respective means µ1 and µ2 and common variance σ , the
standardized distance δ between the two populations is given by

δ =
| µ1 − µ2 |

σ
(1)

and the BI is defined by

BI = [π(1− π)]
1
2 δ (2)

where π is the proportion of observations in the first component.
In PROFILE, BI is computed using the R package mclust.

Finally, the kurtosis method corresponds to a descriptor of the
shape of the distribution, of its tailedness, or non-Gaussianity.
A negative kurtosis distribution, especially, defines platykurtic
(flattened) distributions, and potentially bimodal distributions. It
has been proposed as a tool to identify small outliers subgroups
or major subdivisions (Teschendorff et al., 2006). In our case, we
focus on negative kurtosis distributions to rule out non-relevant
bimodal distributions composed of a major mode and a very
small outliers’ group or a single outlier (an example of which can
be seen in Figure S7).

Although dip test, BI and negative kurtosis criteria emerge as
similar tools in the sense that they select genes whose values can
be clustered in two distinct groups of comparable size, we choose
to combine them in order to correct their respective limits and
increase the robustness of our method (see bimodality test in
Figure 3C). For that, we consider that all three conditions (Dip
test, Bimodality Index and kurtosis) must be fulfilled in order for
a gene to be considered as bimodal.

The thresholds of each test are inspired by those advocated
in the papers presenting the tools individually. Dip test is a
statistical test to which the classical 0.05 threshold has been
chosen. In the article describing BI, authors explored a cut-off
range between 1.1 and 1.5 and we chose 1.5 for the present
work. Regarding kurtosis, the usual cut-off is 0, but since this
criterion does not directly target bimodality, this criterion has
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FIGURE 3 | Processing pipeline to classify genes in different categories based on their expression pattern across the cohort. (A) Tests to separate bimodal from

non-bimodal genes before subsequent binarization. (B) Test to classify non-bimodal genes in unimodal or zero-inflated genes. (C) Statistical and logical content of the

various tests used in (A,B), thresholds have been taken from the papers presenting each tool and are more precisely justified in the Methods section.

been relaxed toK < 1. Several examples of the relative differences
and complementarities between these criteria can be seen in
Figure S7.

This method is enough to binarize continuous data as can
be seen in Figure S8. However, to normalize continuous data,
we need to further classify non-bimodal gene distributions
among unimodal or zero-inflated, looking at the position of
the distribution density peak. Then, based on this three-
category classification of genes, we performed binarization and
normalization processing as summarized in Figure S8.

Because the normalization of continuous data preserves more
original information than its binarization, we will detail here only
the normalization process. However, it should be noted that the
preliminary classification of gene distributions into three distinct
categories allows for a simple binarization (Figure S8).

Normalization functions are thus defined as follows:

Bin : OriginalValues → BinarizedValues

X 7→ Bin(X)

Norm : OriginalValues → NormalizedValues

X 7→ Norm(X)

2.3.2.2. Bimodal genes processing: Gaussian mixture models
In PROFILE, a 2-component Gaussian mixture model is fitted
using mclust R package resulting in a lower mode M0 and a
upper mode M1 (Figure 4). Each data point X has a probability
to belong toM0 orM1 such as

Prob(Xgenei ,samplej ∈ M0,genei )+ Prob(Xgenei,samplej ∈ M1,genei ) = 1
(3)

For these bimodal genes, the normalization processing is defined
as:

Norm(Xgenei ,samplej ) = Prob(Xgenei,samplej ∈ M1,genei ) (4)

2.3.2.3. Unimodal gene sigmoid normalization
For unimodal distributions, we transform data through a sigmoid
function in order to maintain the most common pattern which is
unimodal and nearly-symmetric. First of all, expression data are
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FIGURE 4 | Normalization methods for expression data of genes of all three categories (bimodal, unimodal and zero-inflated). First column panels show examples of

original patterns from the three categories. Second column panels illustrate the processing methods used for normalization (GMM 2-component, sigmoid

normalization and linear normalization). Third column panels correspond to normalized distributions.

centered around the median, which is more robust than using the
mean regarding outliers:

X′
genei ,samplej

= Xgenei ,samplej −mediangenei (X) (5)

Then data are normalized through the sigmoid function:

Norm(X′
genei ,samplej

) =
1

1+ e
−λX′

genei ,samplej

(6)

Since the slope of the function depends on λ, we adapt
λ to the dispersion of initial data in order to maintain
a significant dispersion in [0, 1] interval: more dispersed
unimodal distributions are mapped with a gentle slope, peaked
distributions with a steep one. We map the median absolute
deviation (MAD) on both sides of the median respectively to 0.25
and 0.75 to ensure aminimal dispersion of themapping. First, the
MAD is defined as:

MADgenei (X) = median(| xi −mediangenei (Xgenei ,samplej ) |) (7)

Therefore, to fulfill the proposed mapping, we solve:

1

1+ e±λMAD
=

1

2
∓

1

4
, (8)

and derive:

λ =
loge(3)

MAD
(9)

Thus, we obtain data normalized in [0, 1] for unimodal genes, as
in Figure 4.

2.3.2.4. Zero-inflated genes sigmoid normalization
Zero-inflated genes are characterized by a distribution density
peak (computed in PROFILE with the density function of
stats R package) close to 0 (Figure 3B). For this case, we
linearly transform the initial distribution in order to maintain the
asymmetric original pattern:

Norm(Xgenei ,samplej ) =
Xgenei ,samplej −mingenei (X)

maxgenei (X)−mingenei (X)
(10)

The transformation is applied to data between 1st and 99th
quantiles to be more robust to outliers. Values below q1 or above
q99 are respectively assigned to 0 and 1.

2.3.2.5. Reference expression dataset
For the processing of expression data, two main options are
available in PROFILE depending on what reference dataset is
taken into account. We can either binarize/normalize genes
based on distribution patterns across the whole cancer cohort
or based on healthy patients. In the latter case, the type of
gene distributions (bimodal, unimodal and zero-inflated) and the
corresponding parameters (like inter-quartile range) are defined
based on distribution patterns for healthy samples only, and the
binarization/normalization is then applied on cancer patients. In
the datasets under consideration in the present work, only the
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TCGA RNA dataset includes healthy samples. Except otherwise
stated, genes are processed based on cancer cohort and not based
on healthy samples.

2.4. Personalization of Logical Models
Using Patient Data
Personalization has been defined here as the specification of
a logical model with data from a given patient: each patient
has a personalized model tailored to his/her data, so that all
personalized models are different specifications of the same
logical model, using data from different patients (Figure 1).
Based on MaBoSS formalism and the processed patient data,
there are several possibilities to personalize a generic logical
model with patient data as represented in Figure 5.

2.4.1. Activity of Model Nodes
One possibility to have patient-specific models is to force the
value of the variables corresponding to the altered genes, i.e.,
constraining some model nodes to an inactive (0) or active (1)
state. In order to constrain a node to 0 (resp. 1), the initial value
of the node is set to 0 (resp. 1) and kup (resp. kdown) to 0 to
force the node to maintain its defined state. For instance, the
effect of a p53 inactivating mutation can be modeled by setting
the node TP53 in the model and its initial condition to 0 and
ignoring the logical rule of TP53 variable. Thesemodifications are
referred to as node activity in the logical model. This constraint
affects the simulation trajectories and consequently may shift the
trajectories in the solution state space (referred to as the state
transition graph, STG) leading to a change in probabilities of
the resulting stable states (very often, these nodes are the ones
representing biological phenotypes that are used as read-outs of
the model) (Grieco et al., 2013; Remy et al., 2015).

2.4.2. Initial Conditions
Another possible strategy is to modify the initial conditions of
the variables of the altered genes according to the results of the
binarization/normalization. These initial conditions can capture
different environmental and genetic conditions. Nevertheless, in
the course of the simulation, these variables will be prone to be
updated depending on their logical rules. These initial conditions
can either be binary or continuous between 0 and 1, so both
binarized and normalized profiles can be used. In the present
study, we have only considered patients’ expression data to be
included as initial conditions, but PROFILE allows for more data
types to be used as initial conditions.

2.4.3. Transition Rates
Finally, as MaBoSS uses Gillespie algorithm to explore the STG,
data can be mapped to the transition rates of this algorithm.
In the simplest case, all transition rates of the model are set
to 1, meaning that all possible transitions are equally probable.
Alternatively, it is possible to separate the speed of processes
by setting the transition rates to different values to account for
what is known about the reactions: more probable reactions will
have a larger transition rate than less probable reactions (Stoll
et al., 2012). For this, different orders of magnitude for these
values can be used. They are set according to the activation status

of the node (derived from normalized or binarized values) and
an “amplification factor,” designed to generate a higher relative
difference in the transition rates, as follows:

k
up

genei ,samplej
= AmplificationFactor

2(Norm(Xgenei ,samplej
)−0.5)

(11)

kdowngenei ,samplej
=

1

k
up

genei ,samplej

(12)

Thus, if a gene has a value of 1 based on its RNA profile, its
transition rate from 0 to 1 (resp. from 1 to 0) will be 102 (resp.
10−2) with an amplification factor of 100.

Note that in the present study, we have only considered
normalized patients’ expression data to be included as transition
rates (RNA for METABRIC data and RNA or Protein for TCGA
data). The influence of the amplification factor on the results
is discussed in Section 1.6.2 and Figure S10 (Supplementary
Material). Based on this analysis, we chose an amplification factor
of 100.

2.4.4. Synthetic Definition of Logical Model

Personalization
We propose to summarize personalization methods in two
different strategies (Figure 5). One one hand, applying Strict
Node Variants (Strict NV) method, nodes for which data are
available, are set to a given value for the whole simulation. For
these nodes, logical rules are no longer in use, as they will always
have a given value (0 or 1).

On the other hand, combining Initial States and Transition
Rates modifications, we define a Soft Node Variants (Soft
NV) method. Using this method, if a given node has a
normalized value of 0.8 after data processing (based on proteins
levels for instance), it will be initialized as 1 in 80% of the
stochastic trajectories, its transition rate k0→1 will be increased
(favoring its activation) and its transition rate k1→0 will be
decreased (hampering its inactivation). These changes increase
the probability that this node will remain in an activated
state close to the one inferred from the patient’s data, while
maintaining the validity of its logical rule. Thus, Soft NV appears
as a smoother way to shape logical models’ simulations based on
patient data.

2.4.5. Combinations of Data Types
The choice of which data types to include and where to map these
data on the modeling framework is dependent on the goals of
the study. If mutations, CNA and gene and protein expression
data are provided for a given patient, one could include all
these data types as follows: nodes corresponding to mutations
and CNA could be used to specify model nodes (set to 0 or
1 if they are inhibiting or activating mutations or if they are
homozygous deletions or amplifications), and transition rates
could be modified to account for gene and protein expression
levels.

Mapping different data types with different personalization
methods avoids potential conflicts. However, combining different
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FIGURE 5 | Graphical summary of personalization methods for logical models: node activity status (nodes set to a given value for the full run of the simulation, without

consideration for logical rules), initial states (nods initialized to a given proportion of 0 or 1 states) and transition rates (weighted stochastic transitions depending on

the assumed activity level of nodes). Tuning node activity status, we define Strict Node Variants or Strict NV, i.e., forcing the activity (either present or absent) of a

node. Tuning both initial states and transition rates, we define Soft Node Variants or Soft NV, i.e, nodes whose initial activation proportion is close to that of the patient

and whose transition rates promote maintenance in its state of activity.

data types with the same personalization method raises some
ambiguity issues. For instance, a gene can be inferred as a loss of
function from the mutation data and can be found as amplified
from CNA data. In this case, we consider that the information
from mutations always overrides the information coming from
CNA or binarized RNA/protein. Since both RNA and protein
expression are available in the TCGA dataset, we explored the
possibility to combine the two data types as follows: the RNA
expression level is taken into account to define soft node variants
only if there is no corresponding data in the protein dataset
for that specific node. In the section 3.2, we present different
choices that can be made according to the studied goals and data
availability and in section 3.3, we analyze which combination is
best suited to explain our patients’ clinical data.

2.5. Comparison With Clinical Data
In order to assess the relevance of the different scenarios of model
personalization, we investigate the correlationwith biological and
clinical factors.

For METABRIC dataset, signatures from the Molecular
Signature Database (MSigDB) described in Liberzon et al.
(2015) were used to classify the relevance of Proliferation and
Apoptosis probabilities obtained from different personalization
methods. We selected the Hallmarks “G2M Checkpoint” (resp.
“Apoptosis”), a gene set composed of 200 genes (resp. 161)
to correlate with the Proliferation (resp. Apoptosis) model
probabilities. Genes used to personalize the models are excluded

from the gene set, which reduces it to 185 (resp. 150) genes.
Signature scores are then computed with the Gene Set Variation
Analysis (GSVA) method, described in Hänzelmann et al. (2013)
and implemented in GSVA R package. Correlations are assessed
based on Spearman rank method and 95% confidence intervals
are obtained by bootstrap (n = 1, 000). For the METABRIC
cohort, the patient’s Nottingham prognostic index (NPI) and
survival data are also gathered. NPI is a prognostic score based on
clinical features such as tumor size, tumor grade and node status.

Regarding the survival data, there is data for all but one of the
1980 METABRIC patients. The overall survival time points are
between 0 and 355 months with a median survival time of 283
months and 646 events (patients died of disease). Kaplan-Meier
fits are obtained using the survival R package.

2.6. Availability
All the scripts and models are freely available on GitHub
(https://github.com/sysbio-curie/PROFILE) and are
distributed open source under the BSD 3-clause license.
This repository can be referred to with its own DOI:
(https://doi.org/10.5281/zenodo.1491229).

3. RESULTS

3.1. Breast Cancer Data Processing
Our framework has been applied to 2,509 breast cancer patients’
molecular data that were collected from METABRIC. Patients’
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data types include exome mutations, CNA and RNA expression
as well as clinical data such as survival data. One thousand
nine hundred and four patients of the 2,509 total have all these
data types available (Curtis et al., 2012; Pereira et al., 2016)
(Figure S8A). Data were processed as described in previous
sections.

The logical model of cancer pathways (Fumiã and Martins,
2013) was chosen as a working example as it is a generic model
with a relatively big number of nodes that span several pathways
relevant to cancer. This model was initally used to study the
effects of microenvironment conditions, to simulate the response
to driver mutations in colorectal cancer progression and the
effect of genes’ perturbations as therapeutic targets (Fumiã and
Martins, 2013).

Data from the METABRIC dataset that were relevant to the
model were selected. Focusing on the 110 genes overlapping
with nodes of the logical model, exome sequencing resulted
in 2,659 mutations, of which 1,431 mutations were inferred as
loss of function and 1,228 as gain of function. Besides, 634
mutations have unknown or silent effects and therefore were
not considered. These 3,293 model-related mutations represent
19% of all mutations of the METABRIC dataset. Note that
these numbers show the intersection of a generic model and
a breast-cancer-specific dataset, so this percentage could be
further increased by using a model with breast-specific pathways.
Patients’ profiles were found to have up to 7 mutations with most
patients having only one assigned mutation. PIK3CA and TP53
were found to be the most frequently mutated genes.

For CNA data, patients’ profiles had up to 19 perturbations,
with a median number of 2. MYC gene was the most frequent
gene with copy number alterations.

RNA expression data were processed and genes were separated
in bimodal, unimodal and zero-inflated categories (Figure 3 and
section 2.3). All model-related genes in METABRIC cohort were
found to be unimodal. Note that bimodal genes occur in several
biologically meaningful situations like fusion genes such as ERG
in prostate cancer or hormone genes such as ESR1 in breast
cancer. We chose to explore the results of the METABRIC data
with a model built specifically for breast cancer analysis (Zañudo
et al., 2017) in order to assess the importance of including cancer-
specific genes. Indeed, ESR1 is present in the breast-specific
logical model analyzed in Supplementary Material.

The methods of binarization and normalization are applied
to each data type according to the previously presented rules
(Figure 4 and Figure S8).

We further compared our binarization method to an existing
tool, RefBool framework (Jung et al., 2017), using the same
METABRIC dataset. This tool uses a set of reference distributions
and it results in p-values for each sample and gene, assessing
the significance of its putative binarization. Using 0.05 as
a binarization threshold for RefBool p-values on the whole
METABRIC RNA dataset (1904 samples and 24368 genes),
around 4.4 million values were binarized (9.5% of the total).
All of these binarizations resulted in active nodes and thus set
to 1. Notably, RefBool was designed to use a reference dataset
to binarize new data. Due to the lack of a reference healthy
dataset in METABRIC, the whole dataset has been used as its
own reference: each gene was compared to the distribution of that

gene across all samples. Comparatively, our method results in 2.8
million of binarized values (6.1% of the total), respectively 4.2%
of 1 s and 1.9% of 0 s. There seems to be a trend for RefBool
in METABRIC dataset to emphasize positive outliers at the
expense of negative ones, even for roughly symmetric unimodal
distributions (Figure S18). Some examples of this dataset can be
studied in Supplementary Material, together with the analysis
on TCGA dataset, that bears healthy samples, and should be a
better showcase to RefBool capabilities (Figure S19).

3.2. Personalization of a Generic Logical
Cancer Model With Breast Cancer Data
We proceeded to personalize the logical model using different
types of data and several data integration methods, such as on
the activity of the nodes, the initial conditions and the transition
rates. The effect of integrating different data at different levels of
the model are represented by different phenotypes’ distributions
that can be used to study the respective effects of model
personalization methods in Figure 6. Note that the probabilities
for the wild type conditions are 0.019 for Proliferation and 0.906
for Apoptosis and are represented as a black dashed vertical line
in Figure 6.

Using mutation data as a forced activity (either present or
absent) of a node of the model (termed Strict Node Variants
or Strict NV throughout the text), resulted in the distribution
of Proliferation probabilities around the value 0.05 and the
distribution of Apoptosis probabilities around two values (0.5
and 0.85) in Figure 6 (upper panels, case 1). It is important
to note that as these data are discrete and sparse, this causes
the Proliferation distribution to be quite sharp. The distribution
becomes smoother when exome mutations and CNA are both
considered as Strict NV of the model and peaked around
two values (0.05 and 1 for Proliferation and 0.5 and 0.85 for
Apoptosis), as shown on Figure 6, case 2. Using CNA information
as Soft Node Variants (Soft NV) and mutation as Strict NV,
the highly proliferative mode is slightly decreased, consistent
with less stringent constraints (Figure 6, case 3). When only
RNA expression levels are used as modified transition rates,
the resulting distribution of phenotypes’ probabilities is more
dispersed (Figure 6, case 4) and only one lowly proliferative
peak appears. Adding mutations information as Strict NV does
not shift the probabilities’ distributions (case 5). Lastly, when
we consider mutations and CNA as nodes’ activity and RNA
expression levels as modified transition rates, it results in a
combination of the previously observed patterns (Figure 6,
case 6).

Nevertheless, the generic logical model we use here does not
take into account key genes in breast cancer progression such as
hormone receptors and their associated signaling networks. As
previously mentioned, a breast-cancer-specific model (Zañudo
et al., 2017) was investigated using the same METABRIC dataset
to personalize breast patient-specific models with similar trends
to those of the generic model’s study (Figure S12). Zañudo et al.
(2017) model generates narrower distributions and therefore
less discriminating probabilities from one patient to another,
which is mainly due to the fact that it captures less information
due to its lower number of nodes (especially with sparse data
such as mutations). For these reasons, and having in mind the
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FIGURE 6 | Impact of different model personalization methods on the distribution of phenotypic nodes Proliferation and Apoptosis, using a generic cancer model and

METABRIC data. On the left, description of data types used as Strict or Soft Node Variants to personalize the model resulting in different phenotypic probabilities’

distributions across the cohort, as shown on the right. Dashed lines correspond to the probabilities of the phenotypes obtained from the original model without any

personalization: 0.019 for Proliferation and 0.906 for Apoptosis.

methodological scope of present work, we will focus on the
discussion on results of the more comprehensive generic model.

In order to present the use of one model with more than
one dataset, PROFILE method was also done and analyzed using
TCGA molecular data on Fumiã and Martins (2013) generic
model (Figure S14).

Figures such as Figure 6 are useful to identify the integration
of which data in which part of the model has a greater impact in
the change in phenotypes’ distributions, but say little about the
biological relevance of these distributions. To further investigate
which combinations of methodology provides better biological
or clinical insights, we compared these models’ results to several
signatures or clinical factors used in breast cancer studies.

3.3. Selecting Personalization Methods
Using Correlation of Phenotypic
Probabilities to Signature Scores
To classify the relevance of the six personalization methods
presented in the previous section, we studied the correlations
of the probabilities of the model phenotypes with representative
signatures of the same phenotypic processes. This methodology
allows to classify the different personalization methods and to

study which one is better suited to describe the diversity of
patients when tailoring a given model to a given dataset.

The Spearman rank correlations of the Apoptosis probabilities
from personalized models with the RNA-based "Apoptosis"
signature defined in the Hallmarks (Liberzon et al., 2015) gene
set was computed (Figure 7A). Sparse binary data (when using
mutations or CNA data) appear to be a poor choice to recover a
consistent Apoptosis probability with the logical models (cases
1, 2 and 3). Only models personalized with RNA data as Soft
NV are able to mimic an Apoptosis behavior consistent with the
signature.

When comparing the Proliferation probabilities from
the models to the Hallmarks’ "G2M Checkpoint" signature
(Figure 7A), personalized models are able to capture consistent

behavior regardless of the type of data used as input.
Nevertheless, the best Spearman rank correlations coefficients

used as classifiers singled out the cases that use RNA as Soft NV

(cases 4, 5 and 6), specially when the activity of nodes was fixed
by mutations and transition rates by RNA values (case 5, mean

Spearman’s ρ of 0.61). In spite of their smaller correlation, the
first three cases are also of interest since they only make use of

originally sparse and discrete information: mutations and CNA

data used as Strict and/or Soft NV. For instance, in case 3, using
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FIGURE 7 | Biological and clinical classification of phenotypic probabilities from personalized models. (A) Model personalization methods used and the corresponding

Spearman rank correlation between phenotypic probabilities from personalized model and the corresponding Hallmark signatures score based on RNA gene sets. (B)

Spearman rank correlation between personalized Proliferation probabilities and the Nottingham Prognostic Index (NPI) score based on clinical features (size and grade

of tumor, node status).

mutations as Strict NV and CNA as Soft NV, personalized models

are able to retrieve 44% of proliferation information contained
in RNA-based “G2M Checkpoint” signature (Figure 7A, case 3).

Similarly, when comparing the probabilities of the
Proliferation phenotype to NPI scores (Figure 7B), a purely
clinical index that is not based on omics data, we observe the
same trends for correlations, but with decreased coefficients.
This supports the potential of these personalized models to
partially identify clinical information as discussed in the survival
data in section 3.5.

3.4. Clinical Subgrouping of Patients’
Specific Model Outputs
Next, we studied the relationship of our patients’ specific
model probabilities to the PAM50 subgrouping, defined by the
expression of 50 genes (Parker et al., 2009). For this, Proliferation
probabilities from the personalizedmodels were compared across
subtypes (Figures 8A–C).

Using only mutations and CNA (Figure 8A), two different
patterns may be observed: Basal, Her2 and Luminal B patients
have balanced Proliferation bimodal probabilities with both lowly
and highly proliferative patients. The second pattern involves
Claudin-low, Luminal A and Normal-like patients that are
mainly lowly proliferative with a smaller highly-proliferative
mode. This grouping of subtypes, based on distribution trends,
is consistent with the distinct proliferative behaviors of breast-
cancer subtypes as described in Prat and Perou (2011): although
similar in some aspects Luminal subtypes are distinguished by
the more proliferative aspect of Luminal B; Basal and Her2
subtypes are also considered as aggressive tumors in contrast to
Luminal A and Normal-like; Claudin-low subtypes have mixed
behaviors depending on conditions but are usually described as
lowly proliferative in vivo. The trends captured by the model are
therefore consistent with clinical knowledge.

When personalizing logical models with RNA but no
CNA (Figure 8B), only the proliferative nature of the Basal
subtype seems to be well described, even when using mutation

data. When combining RNA and CNA data (Figure 8C), the
previously described clinical trends are again observed with
clearer distinctions between subtypes.

In order to provide a reference of subtyping using omics
data, a Principal Component Analysis (PCA) was performed
taking into account the RNA expression levels of the 114 genes
related to all nodes of the model (Figure 8D). The first principal
component (PC1) of this PCA captured the different molecular
subtypes and sequentially separated different subtypes (Luminal
A, Luminal B, Her2 and Basal). This analysis shows a smoother
and more linear distribution of the different subtypes, while
personalized models seem to assign them more discrete patterns.

3.5. Survival Analyses of Patients’ Specific
Model Outputs
As a follow-up to the correlation studies of phenotypes’
probabilities and clinical NPI scores, METABRIC survival data
were correlated to the Proliferation and Apoptosis probabilities.
For the survival analysis, thresholds needed to be set for the
probabilities for each phenotype in order to separate between two
groups: high and low. These thresholds were defined using the
median for each phenotype probability across the cohort. Thus,
each patient was grouped into two groups (high or low) for each
phenotype (Proliferation or Apoptosis).

Studying simulation results from case 3 (mutations as
Strict and CNA as Soft NV), thresholds of 0.12 and 0.87
were determined for Proliferation and Apoptosis phenotypes
respectively. Kaplan—Meier plot (Kaplan and Meier, 1958) for
Proliferation low and high probabilities’ groups were significantly
different (log-rank test, p = 2.05e−11) and low proliferative
patients’ models had better prognostic than the high ones
(Figure 9A). When considered as a continuous biomarker,
Proliferation appeared significant in a Cox model with a p-value
of p = 2.13e−8.

Similarly, Kaplan—Meier plot for Apoptosis low and high
probabilities’ groups were significantly different (log-rank test,
p = 8.82e−8) and high apoptotic patients’ models had better
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FIGURE 8 | Breast-cancer subtypes and personalized logical models. (A–C) Patterns of Proliferation probabilities per subtype with different personalization methods

results in different grouping of subtypes. (D) Densities of breast-cancer subtypes along first principal component, PCA transformation based on METABRIC RNA data

limited to the 114 genes described in the logical model ; percentage of variance explained by PC1 in parenthesis.

prognostic than the low ones (Figure 9B). When considered as
a continuous biomarker, Apoptosis appeared significant in a Cox
model with a p-value of 1.09e−8. The observation of survival
curves for high apoptotic or low proliferative patients’ models
having a much better prognostic than the opposite phenotypes
(Figures 9A,B) is in accordance with the underlying cancer
biology and is an implicit validation on the relevance of themodel
and its simulations.

We next combined both thresholds to separate patients in
four groups (high and low Proliferation and high and low
Apoptosis) (Figure 9C) that was also significantly different (log-
rank test, p-value of 9.57e−14). Using this combination, the best
prognosis was for patients’ models with low Proliferation and
highApoptosis and the worst prognosis was associated to patients’
models with high Proliferation and low Apoptosis. Groups with
the other labels (either high Proliferation and high Apoptosis or
low Proliferation and low Apoptosis) had mild prognoses. This
observed behavior is fully consistent with the expected influence
of proliferation and apoptosis in cancer prognosis. Thus, using
sparse and binary data, we show that personalized logical models
result in a meaningful stratification of patients.

Next, based on Figure 7, the most effective personalization
method was selected (case 5 using mutations as Strict and
RNA as Soft NV) and its survival analysis had similarly
consistent behaviors (Figure 10). Nevertheless, using only RNA

as Soft NV (case 4 of Figure 7), Proliferation remains very
significantly correlated with survival data but Apoptosis is not
(Figure S16), supporting the importance of mutations data to
retrieve biologically consistent behaviors.

Based on Figures 7–10 we conclude that for an optimal
integration of the data available in this logical model, the best
combinations are to binarize mutations and treat them as Strict
NV, and to integrate RNA as Soft NV. Replacing RNA with CNA
data results also in largely consistent behaviors with sparser data.

We conclude that our personalization protocol is useful
to build data-tailored models that can capture patient-specific
phenotypes’ behaviors which correlate to survival data.

4. DISCUSSION

In order to reach its full potential, personalized medicine needs
precise mathematical models, and this will only be achieved
with models tailored to the data for a given patient. These
patient-specific models can be of great help to study patient-
tailored drug combinations or the different drug responses in a
group of patients with similar profiles and to advice the clinical
oncologist as to the optimal treatment to choose for a given
patient. The methodology presented here is a first step toward
the personalization of a logical model to different patient profiles
such that their results can be matched to clinical data and
patients’ subgrouping.

Our PROFILE framework is able to use different data types
(mutation, CNA and gene and protein expression data) and
incorporate them at different levels of the logical modeling
formalism. The personalization strategies presented here have
been compared to well-established signatures and NPI score,
and the outcomes of these patient-specific models have shown
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FIGURE 9 | Survival analyses of METABRIC samples from which exome mutations are used as Strict Node Variants and CNA as Soft Node Variants in the model

(case 3). All p-values are derived from a log-rank test. (A) Survival curves with high and low Proliferation groups. (B) Survival curves with high and low Apoptosis

groups. (C) Survival curves with combined groups.

FIGURE 10 | Survival analyses of METABRIC samples from which exome mutations are used as Strict Node Variants and RNA as Soft Node Variants in the model

(case 5). All p-values are derived from a log-rank test. (A) Survival curves with high and low Proliferation groups. (B) Survival curves with high and low Apoptosis

groups. (C) Survival curves with combined groups.
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to correlate well with clinical data. Any other relevant clinical
measure could be used, especially more specific features
corresponding to molecular mechanisms studied in the models.
Notably, some choices on which data to include in the
specification of the models are better than others when studying
the correlation of the phenotypic probabilities of the logical
model to signatures or the model ability to differentiate patients
by prognostic outcome. To summarize, associating genetic
mutations with the most stringent personalization method (i.e.,
Strict NV, constraining activity of nodes to either 0 or 1)
and variation of copy number and expression levels with more
permissive and stochastic personalization methods (i.e., Soft NV,
intervening in initial states and transition rates) can be seen
as biologically consistent. It is indeed expected that a genetic
mutation can have a very strong and lasting effect that makes the
gene independent of any regulation such as in the loss of function
mutations. Conversely, the RNA expression level will affect the
activity level of the genes but may not alter its regulation.

Using our PROFILE methodology, we are able to provide
guidelines regarding the patient-data personalizations of logical
models. Firstly, it is important to consider the nature of the
node (gene or protein) in order to match the proper data type
to the node. In the generic model used in our study, most
of the nodes are supposed to be proteins, therefore it would
be advisable to focus on protein data, which is unfortunately
unavailable in the METABRIC dataset. In any case, the proposed
framework could be easily adapted to the ideal case where each
node would have a well-defined nature and a proper mapping of
the corresponding data types. It is important to note that in the
context of phospho-proteomic data (like RPPA’s phosphosites),
highly phosphorylated species can correspond to an inactive
state that must be taken into consideration as mentioned in
Supplementary Materials with TCGA data.

Secondly, healthy samples should be used if they are available
in the dataset. Using an independent healthy samples for
RNA normalization in TCGA dataset not only improved the
correlation performances (Figure S15, case 4) but also the
qualitative trend of the results (Figure S17). It can be seen
that using healthy samples instead of cancer samples as a
reference for RNA normalization results in a significant shift
of the distribution toward high Proliferation model probabilities
(Figure S17).

Thirdly, to improve the results of personalized logical models,
the model used must be big enough, but also cover specificities of
the cancer under study. Models should not be too generic, as they
should include important read-outs of cancer types such as AR
for prostate or ER and BRCA1 for breast cancer allowing them
to better separate cancer subgroups. Also, they should include a
sufficiently meaningful number of genes in order to be able to
differentiate among patients.

In order to achieve clinically relevant models, it will be
necessary to bring together the best of both worlds: large models
able to integrate most alterations of common cancer pathways
(e.g., DNA repair) and cancer-specific nodes (e.g., hormone
receptors) able to explain the particular behavior of each cancer.

As perspectives, we plan to explore methods that will allow to
use the solutions of the logical model for patient-specific studies.
One possibility that would allow for personalized drug treatments
is to integrate drug interactions in these personalized models,
uncovering patient-specific drug targets whose behaviors might
depend on environmental conditions. Another possibility that
would enable a better patient stratification is to compute the
Hamming distance of a binarized profile of a patient with each
of the stable states obtained by the non-personalized model. That
way, a patient can be considered "closer" to a given phenotype,
such as Proliferation, Apoptosis or Senescence, etc. This approach
raises problems such as how to treat attractors such as limit
cycles, which are usually found in logical models, since this
comparison can only be done on stable state solutions. We have
started exploring this possibility (Cohen et al., 2015) and some
work has been done by other groups in this direction (Dorier
et al., 2016).

In conclusion, our PROFILE methodology allows to build
precise mathematical models that captures the heterogeneity
of patients profiles and their diverse behaviors. These logical
models, which are properly specified with patient information,
would enable clinicians to test personalized drugs combinations
or therapeutic strategies in silico and pave the way to precision
medicine.
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